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Abstract: Coating materials on the bottoms of reactors/beakers has emerged as an effective method
to regulate tribo-catalytic reactions. In this study, silicon single crystals were coated on the bottoms of
glass beakers, in which 30 mg/L methyl orange (MO) solutions suspended with alumina nanoparticles
were subjected to magnetic stirring using Teflon magnetic rotary disks. With a gentle rotating speed
of 400 rpm for the Teflon disks, the MO solutions were changed from yellow to colorless and the
characteristic absorption peak of MO at 450 nm in the UV-Vis spectrum disappeared entirely within
120 min. Mass spectrometry tests were further performed to gain insights into the degradation process,
which suggested that the degradation was initiated with the cleavage of the nitrogen-nitrogen double
bond in ionized MO molecules by the attack of •OH radicals. Through comparison experiments, we
established that the observed degradation was related to the friction between alumina and silicon
during magnetic stirring, and hydroxyl and superoxide radicals were formed from the friction,
according to electron paramagnetic resonance analysis. It is proposed that electron-hole pairs are
excited in silicon single crystals through friction with alumina, which diffuse to the surface of the
single crystals and result in the degradation.

Keywords: tribo-catalysis; silicon; coating; dye degradation; methyl orange

1. Introduction

The emergence of tribo-catalysis as a promising approach to address the crises of
fossil energy shortage and environmental pollution has captured the attention of many
researchers [1–7]. Most current related research works utilize a standard or modified mag-
netic stirring system, where frictions between the magnetic rotation section, catalyst, and
the bottom of the container play a critical role in converting mechanical energy to chemical
energy [8–13]. Mechanical energy has been harnessed through friction for applications
such as hydrogen generation, dye degradation [14–17], toxins degradation [18], and CO2
reduction [19,20].

To boost the efficiency of tribo-catalysis in various applications, numerous studies have
been conducted in recent years, which can be broadly categorized into two groups. In the
first group, investigations are focused on some specific aspects of catalysts in tribo-catalysis,
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including the synthesis of particles with particular morphologies [9,11,21,22], the modula-
tion of electronic structure [8,18,23,24], and the construction of heterojunctions [10,25]. The
other group pays considerable attention to regulating friction pairs in tribo-catalysis. Rao
et al. found that after 8 h of magnetic stirring, the degradation efficiencies of Rhodamine B
(RhB) solution by BaTiO3 nanoparticles were 88%, 94.7%, and 99.1% for the friction pairs of
glass beaker-PTFE bar, PP beaker-PTFE bar, and PTFE beaker-PTFE bar, respectively [23].
Dong et al. discovered that the degradation efficiency of RHB or 2,4-DCP by BiWO3 is
significantly improved by adding PP or PTFE particles to form new friction pairs with
BiWO3 [26]. In our recent paper on the tribo-catalytic conversion of H2O and CO2 by
NiO particles, we found that the production of CH4 increased to 7 and 5 folds when PVC
and stainless steel 316 were coated on the reactor bottom, respectively [27]. In another
latest paper on the tribo-catalytic conversion of H2O and CO2 by Co3O4 nanoparticles, the
amounts of H2 and CH4 increased by 2 and 26 folds, respectively, through coating Ti on the
glass reactor bottom [28]. Similarly, for tribo-catalytic conversion of H2O and CO2 using a
copper magnetic rotary disk, the production of flammable gases also obviously changed
while coating Al2O3, copper, or titanium on reactor bottoms [29]. Regulating friction pair is
especially effective in boosting tribo-catalysis efficiency, and coating certain materials on
container bottoms is a straightforward method to realize it.

To date, two distinct mechanisms have been proposed for tribo-catalysis—electron
transfer across atoms and electron transition [30]. In the former, electrons are transferred
between materials through friction, and materials that gain or lose electrons generate active
species to initiate subsequent redox reactions. In the latter, electron-hole pairs are excited
in a material by mechanical energy absorbed through friction, which then results in redox
reactions in the surrounding environments, similar to what happens in photo-catalysis. It
is well-known that silicon is the most abundant element in Earth’s crust. It is cost-effective,
possesses a narrow band gap, and exhibits excellent processing performance, making
it widely adopted in photovoltaic applications to convert solar energy into electricity.
According to the second mechanism for tribo-catalysis, the generation of electrons and
holes in a material by mechanical energy is primarily determined by its energy band
structure. The purpose of this work is to explore tribo-catalysis by materials with narrow
band gaps. Given that silicon is a typical semiconductor with a narrow band gap, we
coated silicon single crystals on the bottoms of glass beakers, where some organic dyes
were degraded by oxide particles through magnetic stirring. With such silicon single crystal
coatings, 30 mg/L methyl orange (MO) solutions were found to be quickly de-colorized,
even by alumina particles, under magnetic stirring. MO is famous for the presence of
high-energy bonds (C=N, N=N) in its molecules, and such a concentrated MO solution is
difficult to degrade through a conventional catalytic method [31–33].

2. Materials and Methods
2.1. Materials Information

Silicon (110) single crystal wafers (
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> 105 Ω·cm) with a diameter of 40 mm and
a thickness of 0.5 mm were purchased from Hangzhou Jingxin Electronic Technology
Co., Hangzhou, China. High-purity α-Al2O3 nanoparticles (99.9 wt%, average particle
size: 150–500 nm) were obtained from XFNANO Materials Tech. Co., Ltd., Nanjing,
China, and α-Al2O3 laminated powder was purchased from Naiou Nano Technology Co.,
Shanghai, China.

2.2. Coating Silicon Single Crystal Wafers on the Bottoms of Glass Beakers

For some commercial flat-bottomed glass beakers of φ 45 mm × 60 mm, silicon
(110) single crystal wafers of φ 40 mm × 0.5 mm were first coated on their bottoms through
a glue. In this way, flat-bottomed glass beakers with both glass and Si-coated bottoms were
available separately for further investigations.
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2.3. Tribo-Catalytic Degradation of MO Solutions in Glass Beakers

In a typical experiment, 300 mg of α-Al2O3 was dispersed in 30 mL of 30 mg/L
MO aqueous solution in a glass beaker. The suspension was magnetically stirred using a
homemade PTFE magnetic rotary disk at 400 rpm in the dark at room temperature (25 ◦C).
The details of the PTFE magnetic rotary disk were described in previous work [15]. During
the tribo-catalytic process, 1 mL of the solution was taken out every 30 min, followed by
centrifugal separation to obtain the supernatant. The concentration of MO was measured
by recording the absorption spectra using a Shimadzu 2550 UV-Vis spectrometer (UV-2550;
Shimadzu, Kyoto, Japan) over a 200–800 nm range.

2.4. Analyses of Degradation Products of MO through a Mass Spectrometer

The products resulting from the tribo-catalytic degradation of MO solutions in
Si-coated beakers were further analyzed using a mass spectrometer Thermo Q-Exactive
Plus (Thermo Scientific, San Jose, CA, USA) equipped with a heated electrospray ionization
(HESI) source with the mass scan range set to m/z 60–350. The mobile phases used in the
analysis were acetonitrile and 0.01 mol/L acetic acid.

2.5. Detection of Radical Species

Electron paramagnetic resonance (EPR) spectroscopy was employed to probe the reac-
tive oxygen species of •OH and •O2

−, which are essential in attacking dye macromolecules
during the catalytic process of dye degradation. In a Si-coated flat-bottomed beaker, 0.15 g
of Al2O3 nanoparticles and 50 µL of 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) were added
to 10 mL of deionized water for the detection of hydroxyl radical production; 0.15 g of Al2O3
nanoparticles and 50 µL of 5,5-Dimethyl-1-pyrroline N-oxide (DMPO) were added to 10 mL
of methanol for the detection of superoxide radical production. The same experimental
conditions were followed to detect •OH and •O2

− without Al2O3 nanoparticles. Magnetic
stirring was carried out using a PTFE magnetic rotary disk at 400 rpm for 30 min at room
temperature without light. EPR spectra were recorded on a Bruker A300 paramagnetic
resonance spectrometer.

3. Results and Discussion

The influence of silicon single crystals on tribo-catalytic degradation of various organic
dyes employing different catalysts has been thoroughly explored. The tribo-catalytic
degradation of 30 mg/L MO aqueous solutions by Al2O3 powders in Si-coated glass beakers
has drawn our attention for two compelling reasons. Firstly, Al2O3 is well recognized for
its wide band gap, and the excitation of electron-hole pairs through mechanical energy can
be attributed to silicon only when it interacts with Al2O3 through friction. Secondly, owing
to the presence of azo double bonds in its molecular structure, MO, especially at a high
concentration of 30 mg/L, poses a challenging target for degradation. This demonstrates
the potential of silicon in tribo-catalysis.

In this study, two types of α-Al2O3 white powders were analyzed using a scanning
electron microscope (Zeiss GeminiSEM 500, Jena, Germany), and their SEM images are
presented in Figure 1. For the α-Al2O3 nanoparticles, referred to as Al2O3 I hereafter,
the particles appear as irregular polyhedrons ranging from 200 to 500 nm, as depicted in
Figure 1a. In contrast, the α-Al2O3 laminated powder (Al2O3 II) consists of laminate-like
particles as large as 5 µm, as shown in Figure 1b. The two kinds of α-Al2O3 white powders
differ greatly in both size and shape.

For reference, Figure 2a displays the UV-visible absorption spectrums of a 30 mg/L
MO solution during magnetic stirring with Al2O3 I activated by a Teflon magnetic rotary
disk in a glass beaker. No discernible change was observed in the absorption spectrum,
even after 150 min of magnetic stirring. This observation aligns with the fact that degrading
a 30 mg/L MO solution is exceptionally challenging, as described above. In stark contrast,
an entirely different outcome was observed when a 30 mg/L MO solution, suspended
with Al2O3 I, was magnetically stirred in a Si-coated beaker. As illustrated in Figure 2b,
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the absorption peak at 450 nm completely disappeared after 120 min of magnetic stirring.
Concurrently, an obvious color change, from yellow to colorless, was observed for the
solution, as indicated in the inset. When Al2O3 I was replaced with Al2O3 II, a similar result
was obtained, albeit with slower changes in absorption peak and dye color, as demonstrated
in Figure 2c. Conversely, when the solution lacked suspended particles, no observable
alterations occurred when the solution was magnetically stirred in a Si-coated beaker, as
shown in Figure 2d. Obviously, the friction between Al2O3 and silicon was pivotal in the
observed degradation.
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Figure 2. UV–Vis adsorption spectra and color evolution for a 30 mg/L MO solution in the course
of magnetic stirring: (a) suspended with Al2O3 I in a glass beaker; (b) suspended with Al2O3 I in a
Si-coated beaker; (c) suspended with Al2O3 II in a Si-coated beaker; (d) with no particles suspended
in a Si-coated beaker.

However, it is worth pointing out that a new peak at 250 nm in the UV region appeared
when the peak at 450 nm disappeared in the UV–Vis adsorption spectra presented in
Figure 2b,c. A similar phenomenon had been observed in the context of photocatalytic
degradation of MO, where it was suggested that MO molecules were broken into small
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molecules of some byproducts [34–36]. Mass spectrometry tests were performed to identify
the byproducts obtained in this study. A 30 mL solution of 30 mg/L MO, suspended
with 300 mg of Al2O3 I, was magnetically stirred using a Teflon magnetic rotary disk
at 400 rpm in a Si-coated glass beaker at 25 ◦C in darkness. Samples were extracted
separately from the original MO solution, after 90 and 240 min of magnetic stirring, for
mass spectrometry analyses. The outcomes of these analyses are presented in Figure 3.
In Figure 3a, a prominent mass spectral peak at m/z = 304 is evident for the original MO
solution, corresponding to the ionization of the methyl orange parent molecule. As the
stirring time reached 90 min, the intensity of the absorption peak at m/z = 304 declined
by at least half. Simultaneously, new peaks emerged at m/z = 150, m/z = 122, m/z = 118,
and m/z = 109, representing intermediates in the degradation process of methyl orange
molecule. After 240 min of stirring, the peak at m/z = 304 disappeared, and the MZ signals
of those intermediate products exhibited a slight decrease.
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The addition of •OH radicals to the azo double bond has been proposed as the initial
step in the oxidative bond cleavages for azo dyes [37–39]. This process is believed to
account for the variation from m/z = 304 to m/z = 150 (nitro-so-N,N-dimethylaniline)
observed in the ion mass spectrums in this study, and the possible destruction process is
depicted in Figure 4a. Three major degradation byproducts are displayed in Figure 4b, with
m/z = 122 corresponding to benzoic acid [40], m/z = 118 to succinic acid [41], and m/z = 109
to p-phenol [42]. Clearly, the degradation observed in this study is a partial degradation and
it remains a challenge to degrade concentrated MO solutions into non-toxic and harmless
water and CO2.

It is worth noting that there were no observable changes in either Al2O3 I or Al2O3
II morphology after undergoing extended magnetic stirring for dozens of hours. Since
silicon is considerably softer than Al2O3, inspecting the surface of silicon single crystals
after friction with Al2O3 during magnetic stirring is imperative. In Figure 5a, an optical
microscope image illustrates the surface of an as-received silicon single crystal, which
appears exceptionally smooth with minimal defects. Conversely, Figure 5b reveals that
some scratches 1–2 µm wide were observed on the surface of a silicon single crystal after
being treated as a coating through 10 h of magnetic stirring with Al2O3 I. Despite these
scratches, the successful degradation of methyl orange was repeated in a beaker coated
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with this silicon single crystal, indicating that these surface imperfections had no adverse
effect on subsequent catalytic utilization.
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silicon single crystal after being treated as a coating through magnetic stirring with Al2O3 I for 10 h.

In catalytic applications, particular active radicals are formed first, which subsequently
drive various specific reactions. The EPR spectra obtained in this study are shown in
Figure 6. In a silicon-coated beaker containing a DMPO aqueous solution suspended with
Al2O3 I, an unmistakable characteristic peak corresponding to hydroxyl radicals (1:2:2:1)
was observed in the EPR measurement after 30 min of magnetic stirring using a Teflon
magnetic rotary disk, as shown in Figure 6a [43], while for methanol added with DMPO
suspended with Al2O3 I in a silicon-coated beaker, four characteristic peaks representing
superoxide radicals appeared in a 1:1:1:1:1 ratio after 30 min of magnetic stirring, as
illustrated in Figure 6b [44]. In contrast, no characteristic signals were detected in the two
control experiments, with no Al2O3 particles suspended in the solutions. These results
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suggest that the generation of hydroxyl and superoxide radicals is a consequence of the
friction between Al2O3 and silicon in magnetic stirring. Regarding the disparity in MO
degradation observed between Al2O3 I and Al2O3 II, it is likely attributed to the fact that
Al2O3 I, with its much smaller particles, forms more friction with silicon single crystals
compared to Al2O3 II when subjected to the same magnetic stirring conditions.
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methanol solution, where Al2O3 nanoparticles were magnetically stirred using a Teflon magnetic
rotary disk separately in a Si-coated beaker: (a) in deionized water, detecting hydroxyl radicals; (b) in
methanol solution, detecting superoxide radicals.

In tribo-catalytic investigations, it is widely accepted that friction energy excites
electron-hole pairs in materials during friction [45–47], which subsequently induces redox
reactions in ambient environments. Given the degradation of MO solutions associated with
silicon single crystals observed in this study, it is reasonable to assume that, through the
friction between Al2O3 particles and silicon single crystals in magnetic stirring, as shown
in Figure 7, electron-hole pairs are excited in silicon:

Si
Friction energy
−−−−−−−→ Si + e−+h+ (1)

Then, the electrons and holes diffuse into the ambient solutions, leading to the forma-
tion of some radicals and, ultimately, the degradation of the MO dye:

OH− + h+ → ·OH (2)

O2 + e− → ·O−2 (3)



Coatings 2023, 13, 1804 8 of 10

·OH
(
or·O−2

)
+ MO Dye→ Decomposition (4)

It is noteworthy that, in previous investigations of tribo-catalytic degradation of
organic dyes, electron-hole pairs were consistently excited in particulate semiconductors
by friction energy [5,15], which then diffused to the surfaces of the particles, inducing
redox reactions in the ambient environment. This study marks the first instance where bulk
semiconductors have electron-hole pairs excited through friction energy, instigating redox
reactions in the ambient environment.
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Figure 7. Mechanism diagram for the excitation of electron-hole pairs in silicon single crystals
through the friction with Al2O3 particles in magnetic stirring.

As previously described, MO solutions with concentrations as high as 30 mg/L have
proven challenging to degrade through current catalytic technologies, including photo-
catalysis. The findings of this study thus underscore the potential of tribo-catalysis in
harnessing mechanical energy for environmental remediation.

4. Conclusions

An effect has been observed in the tribo-catalytic degradation of concentrated MO
solutions when utilizing silicon single crystals as coatings. In glass beakers coated with
silicon single crystals, 30 mg/L MO solutions suspended with alumina nanoparticles were
changed from yellow to colorless within 120 min when Teflon magnetic rotary disks were
driven to rotate at 400 rpm. Notably, the characteristic absorption peak of MO at 450 nm
gradually weakened and eventually vanished, while a new absorption peak at 250 nm
emerged in the UV-Vis spectrum over time. In-depth mass spectrometry tests further
illuminated the degradation process, revealing that •OH radicals initiated the breakdown
of the nitrogen-nitrogen double bond within MO molecules. This process produced three
major intermediate products: benzoic acid (with m/z = 122), succinic acid (m/z = 118), and
p-phenol (m/z = 109). Some comparison experiments have been conducted to show that
the friction between silicon and alumina in magnetic stirring has resulted in the observed
degradation, and hydroxyl and superoxide radicals have been detected to generate from the
friction through EPR analysis. It is proposed that electron-hole pairs are excited in silicon
single crystals due to the friction with alumina, which diffuse to the surface of the single
crystals, resulting in redox reactions in an ambient environment. These results suggest the
potential of using silicon in the tribo-catalytic degradation of concentrated MO solutions.

Author Contributions: Conceptualization, X.C. and W.C.; methodology, X.C., H.L., X.J. and C.M.;
validation, X.Z., Z.W. and W.C.; formal analysis, X.C., H.L., X.J. and W.C.; investigation, X.C., Z.G.,
C.M. and L.R.; data curation, H.L.; writing—original draft preparation, X.C.; writing—review and
editing, Z.G. and W.C.; visualization, H.L.; supervision, W.C.; project administration, Z.W., F.C. and
W.C.; funding acquisition, Z.W. and F.C. All authors have read and agreed to the published version
of the manuscript.
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