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Abstract: Great efforts are constantly being made by industry-specific coffee agencies to standardize
the certification of coffee quality. In consequence, international trade requires quick and reliable
analyses because of their high cost, the risk of misclassification, the difficulty of large-scale analysis,
and, most importantly, the subjectivity generated by tasters. A powerful analytical method that can
be used to accurately evaluate and identify coffee varieties is Laser-Induced Breakdown Spectroscopy
(LIBS). In this study, it provided a quick, cost-effective, and residue-free method commonly used in
laboratories for direct analysis, determining multi-elemental composition, and exploring the organic
composition of roasted coffee. The mineral composition of eight varieties of pure roasted coffee was
determined using a pulsed nanosecond laser produced from a Nd:YAG laser at 1064 nm. The most
important spectral variables for coffee variety identification were sequestered using LIBS coupled
with a chemometric-tool-based principal component analysis (PCA). The nine main wavelengths
chosen corresponded to the elements of C(I), Mg(II, I), Ca(II), Fe(I), K(I), H(I), and O(I), in addition to
the CN group. The overall findings indicated that using LIBS to identify coffee varieties is feasible
based on a simple, quick, and eco-friendly strategy without the requirement for complex preparation
or wasting time in preparation. Such studies can help to protect the coffee market and businesses by
certifying product quality. Using LIBS and full statistical illustrations with PCA, the prevention of
unfair competition, protection of consumers, and determination of coffee quality can be achieved.

Keywords: laser-induced breakdown spectroscopy; principal component analysis; roasted coffee
beans; optical properties; laser ablation; detection method; chemical analysis

1. Introduction

All over the world, roasted coffee is a mandatory part of the morning routine. It is a
staple in many societies and is consumed by millions of people every day [1,2] as freshly
roasted coffee beans have an enticing aroma and a bold, complex flavor [3]. According to
the International Coffee Organization (ICO)’s statistics, coffee consumption increased by
4.2% during 2021/22, which is expected to completely increase by 1.7% during 2022/23 [4,5].
This highlights the significance of coffee in international trade, as it is the second most
traded commodity in the world after oil [6]. As a result of this widespread acceptance,
quality has evolved from a differentiating factor to a prerequisite as the organoleptic
qualities of coffee are affected by a number of variables, from planting to post-harvest
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treatment [7,8]. The structure of coffee shows that its flavor and aroma come from a variety
of compounds, including caffeine, trigonelline, chlorogenic acid, amino acid (COOH-RNH),
peptide (-CO-NH-), citric acid, malic acid, and others [6,9]. Coffee’s complex composition
makes it hard to pinpoint its precise ingredients. Additionally, the mixing process of
roasted coffee, which attracts the attention of gourmets, is characterized by the addition of
coffee husk and stems, maize, barley, wheat, soybeans, rye, etc., which lower coffee quality.
This is related to DNA-based coffee adulteration detection. Roasted ground coffee is often
examined under a microscope to detect adulterants because visual inspection is insufficient.
The dark color and small particle size make it hard to detect roasted adulterants in the
original sample.

The use of spectroscopic methods for characterization paves the way for the estab-
lishment of objective parameters that characterize coffee’s quality. There is ample room
for an investigation to establish a reliable set of parameters that distinguish coffee’s nu-
tritional value, because until now, there have been no standardized techniques available.
For this reason, in today’s homogeneous, competitive coffee industry, an easy, fast, cheap,
and reliable analytical method is still needed. Many analytical methods for tracking and
categorizing coffee beans have been developed to ensure quality and prevent fraud [10].
Recent research has focused on how FT-MIR spectroscopy and multivariate analysis can
be used to improve food quality control [11]. This does not, however, imply that utiliz-
ing IR spectroscopy achieves the study’s goal without destroying samples and/or losing
time. Microscopy, chromatography with sophisticated statistical tools, and DNA-based
methods are all examples of assessment techniques that are not always appropriate. Mi-
croscopy and DNA-based methods may be prohibitively expensive in terms of time and
money as advanced statistical tools that can provide detailed information, but they are not
perfect [12].

Laser-Induced Breakdown Spectroscopy (LIBS) can be analytically used to vaporize
a small portion of the coffee sample before it breaks down, releasing radiation at specific
wavelengths that can be analyzed to determine its chemical composition and physicochem-
ical properties, which cannot be easily evaluated using other techniques. LIBS’s ability
to measure constituents quickly and accurately without disrupting the product is one of
its main strong points as a regular coffee analysis tool, as well as its high sensitivity and
specificity. This method is based on using Q-switched nanosecond laser pulses to induce
a laser–matter interaction with the sample’s surface, forming a plasma plume containing
ions and swirling electrons at extremely high temperatures that reach more than 6000 K.
After that, the appropriate optical system collects the emitted light and feeds it into the
entrance slit of a spectrometer equipped with a light detector (typically an ICCD) for the
dispersion and detection of the light spectrum. Taking self-absorption and the matrix effect
into account, the emission spectrum obtained from stoichiometric ablation includes the
characteristic spectral lines of the elements presented in the plasma plume of the sample
material [13–17].

In order to obtain more precise and trustworthy results from LIBS analysis, chemo-
metric methods like principal component analysis (PCA) are widely used in tandem with
LIBS [18–20] to better see patterns and connections [21]. By applying PCA to the data
obtained from LIBS analysis, researchers can determine which variables are most important
in determining the composition of a sample and use this information to develop more
accurate models for predicting the composition of unknown samples. Furthermore, spec-
tral interferences and other sources of measurement errors during the LIBS analysis can
be correlated and corrected using chemometric methods as applied in materials science,
environmental monitoring, and forensic analysis. All of these applied fields show the
successful incorporation of chemometric methods like PCA with LIBS analysis [4].

In 2017, Zhang et al. [4] investigated coffee varieties and identified their main elements
using LIBS and chemometric methods. In 2018, Sezer et al. [22] investigated the feasibility
of using LIBS in conjunction with multivariate data analysis techniques such as PLS and
PCA as a rapid method for distinguishing coffee arabica, triticum aestivum/Triticum
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durum wheat, maize, and chickpea samples, as well as determining adulteration ratios. In
2019, Silva et al. [23] presented a novel work investigating the spectral responses of LIBS
for some coffee compounds in conjunction with linear regression modeling in order to
solve the coffee value chain problem. A few studies have used LIBS to analyze parameters
intrinsically related to coffee quality [4,7,24–26], which demonstrated how LIBS can be
used to solve various problems related to coffee authentication by building calibration
curves for detecting the degree of simulated adulteration in coffee and applying the ANN
methodology. In 2020, Bilge et al. used PCA analysis to evaluate the variations in spectra
by considering the physicochemical changes of coffee beans in order to determine the most
effective factor in the physicochemical changes of samples [22].

The purpose of this study is to determine how well LIBS and PCA collaborate in
classifying and authenticating eight samples of roasted coffee beans. PCA can be used to
analyze the chemical makeup of coffee and isolate the factors that truly distinguish each
variety. We demonstrate that the PCA approach is a preferred method for delivering LIBS-
based product classification and can identify the most significant chemical constituents
supporting the classification results under realistic and demanding conditions. As a result,
using PCA in conjunction with LIBS, the complex world of roasted coffee can be more
understood and appreciated.

2. Material and Method
2.1. Coffee Samples

Figure 1 shows the eight different cultivars of roasted coffee beans collected from bean
producers present in Egypt. These coffee samples are Arabica medium, Ethiopian dark,
Robusta medium, Colombian medium, Colombian dark, Brazilian light, Brazilian medium,
and Brazilian dark which are imported from Ethiopia, India, Colombia, and Brazil.
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2.2. Preparation of the Samples

The experiment was performed with the total number of each coffee bean type up to
20 beans to ensure the correction of the studied samples. As the first step of the experiment,
the studied bean samples were ground and roasted at 250 ◦C for 15 min. Then, the samples
were prepared as pellets by using 10-ton force with a hydraulic pellet press machine. Each
pellet was analyzed as five replicates. After that, for qualitative analysis with high accuracy
with high precision, the samples were prepared by mixing each sample group within itself
to represent the general sample type.

2.3. Experimental LIBS Setup and Procedure

The LIBS experimental setup is a Q-switched Nd: YAG laser (Continuum Laser,
Surelite II, Santa Clara, CA, USA), which has a pulse duration of 10 ns and typically
employs a laser wavelength of 1064 nm, energy of 100 mJ/pulse, 10 Hz repetition rate,
and a 0.5 mm effective beam diameter (Figure 2). Experiments are conducted on a sample
mounted on an air-pressure-operated holder. The same laser source generated a plasma
plume from the interaction of the focusing laser beam with the studied sample. With the X-
Y-Z motorized stage at atmospheric pressure, the studied samples were placed on a sample
holder with a 70 mm plano-convex quartz lens. The plasma plume is transported using
Czerny-Turner spectrometer fiber optics (0.6 mm diameter and 50 cm length) (Princeton
Instrument Acton SP2500, Trenton, NJ, USA). A total of 2400 lines/mm in the dispersion
grating are used, covering wavelengths from 200 to 900. With an ICCD camera, the
monochromator (1KRB-FG-43, gating time 2 ns). WinSpec/32, LIBS++, and the required
database (open tools for analyzing the LIBS) are used for data acquisition and analysis.
Three successive spectra were accumulated at the same position and measured in ambient
air for each sample.
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Figure 2. Schematic diagram of the LIBS experimental setup used for the analysis of the
coffee samples.

For the atmospheric measurement condition, in the context of elemental measurement,
Laser-Induced Breakdown Spectroscopy (LIBS) has shown that the laser-generated plasma
ablation plume could alter its morphology in response to variations in the surrounding
air pressure. Furthermore, the plasma is influenced by the specific composition of the
ambient gas. Hence, the plasma formation processes, development, and emission, as well
as the emission lines’ atmospheric factors, such as pressure and the composition of the
surrounding gas, have an impact on the LIBS spectra. Nevertheless, the utilization of the
signal-to-background ratio (SBR) presents itself as a viable approach for quantifying the
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measurement of Laser-Induced Breakdown Spectroscopy (LIBS) in atmospheric conditions.
The utilization of SBR exhibits significant advantages in terms of enhanced performance at
ideal pressure compared to atmospheric pressure, with the former being greater if it was
measured just before sample measurement to reduce the effect of moisture.

2.4. Principle Component Analysis (PCA)

The analysis of spectral data is frequently made by PCA, a qualitative technique, in
which one’s original set of variables is transformed into a set of new variables that are
linear combinations of the original set. Principal components are orthogonal variables that
are ranked according to those differences which have explanations. Most of the variances
could be accounted for by the first principal component (PC1), which was then followed
by the second PC2, the third PC3, and so on. The first few PCs typically accounted for a
large percentage of the total variance. Distributions of samples are typically shown in a
score space using the score biplots, which are based on three PCs [27]. The spectroscopic
data were analyzed statistically via PCA introduced by the commercial software OriginPro
2022 (version 9.5.0 SR1). The LIBS spectra of the eight types of roasted coffee samples were
obtained after ten LIBS pulses to be confirmed theoretically by means of PCA analysis.

3. Result and Discussion
3.1. Main Elements Identified by LIBS

LIBS technique is used to analyze the elemental composition of the studied samples
by focusing a laser beam individually on them and measuring the light emitted by the gen-
erated plasma. This technique is non-destructive and requires minimal sample preparation.
The focused laser beam on the surface of the sample causes a small amount of material
to vaporize and form plasma. This plasma emits radiation at specific wavelengths, which
can be analyzed to determine the elemental composition of the sample. The typical LIBS
spectra of the roasted coffee beans are shown in Figure 3, where ionic and molecular bands
along with a neutral atomic emission line of hydrogen can be observed. The observed
atomic emission lines and molecular lines were identified using the standard spectral lines
collected from the National Institute of Standard Technology (NIST).

Emission lines of roasted coffee beans in the spectra showed that the spectrum mainly
consisted of various elements such as C, H, O, N, K, Ca, Mg, Fe, and CN groups. These
elements of C, N, O, and H reflect the organic structure, while the elements of Ca, Mg, K,
and Fe represent the inorganic part. The elemental composition of coffee beans can vary
depending on factors such as the origin of the beans, the roasting process used, and storage
conditions. Additionally, the profile of the mineral content in coffee varies depending on
soil composition, geographical origin, field practice, climate conditions, and fertilizers. This
information can be useful in determining the quality and authenticity of coffee beans as
well as identifying any potential contaminants or adulterants as shown in Figure 3. Table 1
summarizes the relative wavelengths and intensity spectra from each element identified
from different roasted coffee. Moreover, according to the literature, K represents the highest
mineral content of coffee beans, with the minor remaining elemental content typically
consisting of Mg and Ca, as well as the presence of other trace elements such as Fe. The
presence of the addition elements as a trace element or the varying ratio between elements
has a significant impact on the taste of coffee. These spectral lines were chosen because
they are stable emission lines for the elements being investigated. Furthermore, there is no
interference or overlap between the selected lines and any other element’s spectral lines.
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Figure 3. LIBS spectra of (a) C, (b) Mg, (c) Ca, (d) CN groups, and (e) Fe, (f) K, (g) H, and (h) O for
eight different roasted coffee samples.
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Table 1. Variation of integral emission intensity corresponds to the elements C(I), Mg (I, II), Ca(II),
Fe(I), K(I), H(I), O(I), and CN group for different eight roasted coffee samples.

Element
Wave-
length
(nm)

Integral Emission Intensity (a. u.)

Brazilian
Dark

Brazilian
Medium

Brazilian
Light

Colombian
Dark

Colombian
Medium

Robusta
Medium

Ethiopian
Dark

Arabica
Medium

Carbon C (I) 247.856 53,712 45,535 99,489 22,258 98,867 51,561 49,009 77,518

Magnesium
Mg (II) 279.553 49,538 98,348 127,475 60,735 64,427 20,808 79,253 90,062
Mg (II) 280.27 37,304 73,225 96,480 31,061 122,858 17,375 56,375 65,576
Mg (I) 285.2 10,398 14,865 14,022 9194 16,275 4783 12,870 10,003

Calcium Ca (II) 315.887 7882 9798 23,481 17,728 20,330 8685 9999 18,051
Ca (II) 317.933 13,413 17,547 48,387 30,345 32,907 16,094 17,217 28,991

CN group CN 388.342 10,922 15,692 25,404 15,895 31,965 14,470 17,030 26,202
Iron Fe (I) 396.926 67,296 47,085 49,795 43,785 60,683 68,531 63,619 31,481

Hydrogen H (I) 656.3 18,434 27,690 54,355 29,294 48,918 42,241 34,613 28,428

Potassium K (I) 766.4 12,624 8141 7216 19,012 14,024 8084 9732 10,984
K (I) 769.897 10,601 8692 17,108 7519 11,195 5786 10,508 9727

Oxygen O (I) 777.194 10,922 15,692 25,404 15,895 31,965 14,470 17,030 26,202

3.2. Evaluation of LIBS Spectra

The LIBS spectra shown in Figure 3a–h were acquired from eight roasted coffee bean
samples. Ten laser shots are taken at three different locations on each sample to generate an
average LIBS spectrum. All of the samples were found to be composed of C, Mg, Ca, Fe,
K, and CN groups, among other elements. The figure demonstrates how widely roasted
coffees can vary in quality. Variations in the concentration of the individual elements can
be seen in the LIBS spectra of the coffee beans as the changes in the normalized intensity
values of the atomic emissions.

The sample spectra in Figure 3a show carbon recognition at wavelengths ranging from
235–259 nm. The C intensity of the most prominent C I lines differs almost imperceptibly
between the dark Colombian sample, the light Brazilian sample, and the medium Colom-
bian sample. Colombian dark coffee contains approximately 88% as much C as Brazilian
light coffee. Furthermore, when comparing the Arabica medium sample to the Colombian
dark, the amount of C increases by approximately 66%. Other Colombian dark samples
showed carbon intensity increases ranging from 45.7% to 53.9%.

Additionally, three prominent Mg lines are visible between 279 and 286 nm, as shown
in Figure 3b. Mg line intensities (279.668, 280.35, and 285.313 nm) are provided. The
Mg line intensity was the highest in the Colombian medium coffee sample, while the
convergent value of the Brazilian light coffee sample was very close to that of the C sample.
In contrast, the Robusta medium contains 85.8% less Mg than the Colombian medium or
Brazilian light.

Moreover, the level of Ca emission from the roasted coffee beans is depicted in Fig-
ure 3c. Ca emission intensity is reduced during roasting [28,29]. Coffee beans lose some of
their Ca emission intensity during roasting because H and O are released from their hy-
drocarbon bonds. This is true; however, the coffee beans also lose weight, grow in volume,
and shrink in density throughout the roasting process, making it a complex heat transfer
process. Ca in coffee will be measured at 315.88 nm and 317.93 nm in this investigation.
Light coffee from Brazil has the highest Ca emission intensity, while dark coffee from Brazil
has the lowest Ca contribution, dropping by about 72.28% from the highest concentration.

Furthermore, to explain its high-fat content, the LIBS spectrum of Colombian medium
coffee shows a much stronger CN band than the spectra of the other samples (Figure 3d).

Moreover, the spectra of the Fe lines between 394 and 400 nm are displayed in Figure 3e
for all samples. The sample’s Fe concentration was determined using the strong Fe line
at 396.9 nm. Elevated Fe concentrations were found in all four samples (Brazilian dark,
Colombian medium, Robusta medium, and Ethiopian dark), though to varying degrees.
The remaining four samples are all very similar in intensity, dropping by only 36% from
the strongest sample.
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In addition, the K spectral lines between 764 and 772 nm are shown in Figure 3f.
These lines have wavelengths of 766.4 and 769.897 nm, respectively. The findings show
that the K intensities of Brazilian light, Colombian dark, and Robusta medium coffees all
differ significantly. Except for the Brazilian medium, where the two K spectral lines have
identical intensities, the difference in all other samples is negligible. This could be due to
the roasting technique.

Additionally, the H line at 656.3 has the highest emission intensity and is, therefore, the
most noticeable in both the Brazilian light and the Colombian medium coffee samples. From
the highest concentration in the Brazilian light coffee sample to the lowest concentration in
the remaining samples, as shown in Figure 3g, the H concentration gradually decreases.

Moreover, Figure 3h illustrates the O emission lines of eight coffee samples of varying
concentrations. In Colombia type, the intensity ranges from medium to low, with the latter
having a reduction of 65.8%.

3.3. PCA with LIBS Spectra

PCA can be used to dissect laser-pulsed element composition spectra to analyze large
datasets for eight different types of roasted coffee with multiple variables while retaining as
much information as possible. It can also determine which wavelengths or spectral bands
best define each type of coffee. PCA would first normalize the data to remove any outliers
caused by changes in laser pulse intensity or other factors that could affect the spectra.
PCA can determine which factors are most and least dependent on one another after data
normalization [30]. Highly correlated elements may have originated in the same location
or been roasted under similar conditions. Separate components, on the other hand, may
reveal unusual roasting or sourcing conditions. This is achieved by extracting patterns
from the data and generating new variables (principal components) that account for the
majority of the variance in the source data. PCA revealed that three major components
accounted for 99% of the variance in the data in this study. Using these variables, a score
plot depicting the relationships between the samples based on their elemental makeup
was created. Each PC is a linear combination of element concentrations that explains the
observed variation in the sample. The initial PC, followed by the smaller PCs, explains the
greatest amount of variation. Some samples are grouped together based on their elemental
composition, indicating that common factors influence their chemistry, whereas those with
different compositions will branch off. This explains the significance of coffee quality and
how these factors influence the coffee roasting process.

In Figure 4, 3D PCA is used to display the data in a geographical context as a useful
tool. When dealing with massive, intricate datasets that resist easy two-dimensional display.
It prioritizes various spectral elements that influence the overall variation in spectral LIBS
data from roasted coffee samples. As a result, spectral differences between coffee varieties
could be a useful grading metric. The PCA plot generated from the LIBS data in Figure 4a–h
convincingly validated the coffee sample discrimination. The PCA model was constructed
using three PCs and revealed significant variability among the various matrices. The first
two PCs explain the vast majority of the variance. The first PC explained 74.60% of the total
variance for C, 99.5% of the total variance for Mg and Fe, 97.5% of the total variance for Ca
and O, 96.88% the total variance for the CN group, and 89% of the total variance for K. The
second PC variance contains 24.31% C, 3.26% K, and 1.85% O, with the remaining elements
ranging from 0.18 to 0.75%. Finally, the LIBS method allows for analysis in seconds with
high accuracy and precision, with no need for chemicals or sample preparation steps.
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1 
 

 
Figure 4. PCA Biplot (loading and score plot) based on LIBS spectra of (a) C, (b) Mg, (c) Ca, (d) CN
group, (e) Fe, (f) K, (g) H, and (h) O for eight different roasted coffee samples.
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It’s worth noting that PCA can also be used to determine whether or not a given coffee
sample is authentic by analyzing its chemical composition makeup. Principal component
analysis can be used to zero in on the precise variables or chemical substances that have the
greatest impact on the observed differentiation. The coffee samples can be analyzed with
PCA to find connections between the many variables or chemical information. Knowing
the effects of various adulterants on the composition and quality of roasted coffee is
aided by these data. The PCA findings can be shown graphically in the form of scatter
plots or biplots, which show the connections between the samples and the variables. The
findings are easier to understand and relay thanks to the three-dimensional visualizations
displayed. Therefore, PCA in the context of adulteration of roasted coffee offers a thorough
analysis that aids in detecting trends, identifying outliers, discriminating between genuine
and contaminated samples, understanding correlations, and visualizing results for better
interpretation. Since principal component analysis (PCA) is a mathematical model used
to explain the unseen reality, evaluating its veracity necessitates a convincing model in
which the truth is not open to interpretation. The results of principal component analysis
(PCA) are used to uncover patterns and form conclusions about the genesis, development,
distribution, and relatedness of phenomena. Our results provide more evidence that PCA
outputs and the insights gleaned from them are reliable and can be relied upon by LIBS.

Even though the first two principal components do a good job for explaining the total
variance, the third principal component may still be useful. The third principal component
may reveal new insights into the data that the first two principal components have missed.
It can help shed light on previously unseen connections and trends. The addition of a PC3
can increase the analysis’s interpretability, leading to a more satisfying result. It could focus
on additional variables or factors that contribute to the total variance in ways that were
not obvious from looking at the first two components. Therefore, the analysis will be more
stable and reliable when using a larger number of principal components. Generally, adding
more principal components provides more availability for working with different kinds
of data. Therefore, while the first two principal components may explain a substantial
amount of variance, taking into account additional components may yield insightful new
information, improve the quality of interpretation, increase the robustness of the analysis,
and make it more resistant to change.

Table 2 displays the loadings or the extent to which each variable is related to each
factor in a factor analysis. It shows the strength and direction of the relationship between
each variable and each factor as each cell in the table represents the loading value for the
corresponding variable and factor. The loading value is a standardized estimate that ranges
from −1 to 1, where values closer to 1 indicate a strong positive relationship, values closer
to −1 indicate a strong negative relationship and values closer to 0 indicate little to no
relationship. The factor loadings table is used to interpret which variables are most strongly
associated with each factor. By examining these loadings, they can identify the underlying
factors that explain the correlations obtained in Table 3 among the studied variables. This
information is crucial for understanding the structure or dimensions of the data and can
guide further analysis or decision-making. Additionally, the variance percentage of factor
score coefficients for all studied elements has been provided in Table 3. A factor analysis
must be first performed to obtain the factor score coefficients (factor loadings). The variance
percentage for each element may be calculated by squaring the coefficient and multiplying
it by 100. This estimation gives the percentage of variance explained by each factor for
each element. Moreover, the correlation matrix is a statistical method for analyzing the
connection between three or more variables (eight coffee samples). Therefore, Table 4 is
built by summing up the correlation coefficients between every possible pair of variables in
the dataset for each studied element. This matrix is usually square with the same number of
rows and columns as the number of principal components variables. The diagonal elements
are always 1 because each sample is perfectly correlated with itself. The generated matrix
quantifies how strongly and in what direction the variables are related. A value of −1 in the
matrix represents an absolutely negative correlation, a value of 0 indicates no correlation
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at all, and a value of 1 represents an absolutely positive correlation. Consequently, in
Table 4, the generated set of matrices corresponding to all elements under consideration is
a powerful tool for exploring multivariate data for structure and relationships.

Table 2. Unrotated loading values correspond to each variable and the underlying factor.

Sample
Factor 1 Factor 2

C Mg Ca CN
Group Fe K H O C Mg Ca CN

Group Fe K H O

Arabica 0.029 0.998 0.994 0.986 0.996 0.963 0.996 0.994 0.970 −0.006 −0.019 0.072 0.039 0.033 0.004 0.046
Ethiopian 0.998 0.999 0.989 0.976 0.998 0.951 0.997 0.994 −0.016 6.2 ×

10−5 0.003 0.038 0.019 −0.076 0.001 −0.028
Robusta 0.997 0.994 0.987 0.982 0.998 0.933 0.997 0.992 −0.017 0.007 −0.012 0.072 0.001 −0.126 −0.001 0.049

Colombian
light 0.998 0.997 0.988 0.987 0.998 0.932 0.996 0.979 −0.013 −0.008 −0.006 0.018 0.019 −0.160 −0.006 0.116

Colombian
dark 0.996 0.998 0.989 0.980 0.997 0.931 0.996 0.991 −0.005 0.002 0.0208 0.052 0.0304 0.086 −7.7 ×

10−4 0.027

Brazilian
light 0.030 0.998 0.988 0.985 0.997 0.961 0.997 0.995 0.942 −0.007 −0.043 0.054 0.018 −0.160 0.002 0.007

Brazilian
medium 0.995 0.997 0.98 0.984 0.993 0.909 0.994 0.979 −0.018 −0.001 0.003 0.006 0.020 0.222 −0.002 −0.104

Brazilian
dark 0.997 0.997 0.980 0.983 0.998 0.963 0.994 0.972 −0.004 0.004 −0.035 0.057 0.028 −0.126 −0.008 −0.11

Table 3. Variance percentage of factor score coefficients for all studied elements.

Element
Variance Percentage of

Variance (%)
Cumulative

(%) Variance Percentage of
Variance (%)

Cumulative
(%)

Factor 1 Factor 2

C 5.9686 66.31782 66.31782 2.12802 23.64466 89.96248
Mg 7.96531 88.50349 88.50349 1.00017 11.11297 99.61647
Ca 7.80191 86.68784 86.68784 0.99642 11.07136 97.7592

CN group 7.89182 87.68686 87.68686 0.86198 9.57751 97.26437
Fe 7.99277 88.80855 88.80855 0.97216 10.80183 99.61038
K 7.22654 80.29486 80.29486 1.02551 11.3945 91.68936
H 7.94608 88.28975 88.28975 1.00002 11.11132 99.40107
O 7.80127 86.68072 86.68072 1.04036 11.55961 98.24033

Table 4. Correlation matrices between all variables (eight roasted coffee samples) correspond to
each element.

C Arabica Ethiopian Robusta Colombian
Medium

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabica
medium 1 0.013 0.01362 0.01765 0.02325 0.9458 0.01129 0.02543

Ethiopian 0.013 1 0.9962 0.99552 0.99223 0.01368 0.994 0.99409
Robusta 0.0136 0.9962 1 0.99554 0.99125 0.01397 0.99241 0.99258

Colombian
medium 0.0177 0.99552 0.99554 1 0.9942 0.02219 0.99033 0.99745

Colombian
dark 0.0233 0.99223 0.99125 0.9942 1 0.02738 0.98964 0.99563

Brazilian
light 0.9458 0.01368 0.01397 0.02219 0.02738 1 0.01049 0.02879

Brazilian
medium 0.0113 0.994 0.99241 0.99033 0.98964 0.01049 1 0.98892

Brazilian
dark 0.0254 0.99409 0.99258 0.99745 0.99563 0.02879 0.98892 1

Mg Arabica Ethiopian Robusta Colombian
Medium

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabica 1 0.998 0.99 0.99876 0.99589 0.99777 0.99549 0.99382
Ethiopian 0.998 1 0.99304 0.99685 0.99775 0.99644 0.9962 0.99681
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Table 4. Cont.

Robusta 0.99 0.99304 1 0.98864 0.99336 0.99055 0.99039 0.99617
Colombian

medium 0.9988 0.99685 0.98864 1 0.99508 0.9986 0.99582 0.99222

Colombian
dark 0.9959 0.99775 0.99336 0.99508 1 0.99595 0.99602 0.99708

Brazilian
light 0.9978 0.99644 0.99055 0.9986 0.99595 1 0.99618 0.99368

Brazilian
medium 0.9955 0.9962 0.99039 0.99582 0.99602 0.99618 1 0.99437

Brazilian
dark 0.9938 0.99681 0.99617 0.99222 0.99708 0.99368 0.99437 1

Ca Arabica Ethiopian Robusta Colombian
Medium

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabica 1 0.98054 0.98135 0.98364 0.97923 0.98498 0.96881 0.97213
Ethiopian 0.9805 1 0.97497 0.97284 0.97767 0.97784 0.96338 0.96193
Robusta 0.9814 0.97497 1 0.96769 0.97142 0.98274 0.9617 0.95603

Colombian
medium 0.9836 0.97284 0.96769 1 0.97783 0.96815 0.95869 0.97648

Colombian
dark 0.9792 0.97767 0.97142 0.97783 1 0.96879 0.96546 0.96789

Brazilian
light 0.985 0.97784 0.98274 0.96815 0.96879 1 0.96678 0.95775

Brazilian
medium 0.9688 0.96338 0.9617 0.95869 0.96546 0.96678 1 0.95368

Brazilian
dark 0.9721 0.96193 0.95603 0.97648 0.96789 0.95775 0.95368 1

CN group Arabic Ethiopian Robusta Colombian
Medium

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabica 1 0.96045 0.97398 0.97432 0.96211 0.97489 0.97019 0.96796
Ethiopian 0.9605 1 0.9545 0.95723 0.95663 0.96093 0.951 0.95353
Robusta 0.974 0.9545 1 0.96796 0.95948 0.97405 0.95875 0.96142

Colombian
medium 0.9743 0.95723 0.96796 1 0.963 0.97016 0.97239 0.96941

Colombian
dark 0.9621 0.95663 0.95948 0.963 1 0.96375 0.96005 0.96725

Brazilian
light 0.9749 0.96093 0.97405 0.97016 0.96375 1 0.95996 0.96374

Brazilian
medium 0.9702 0.951 0.95875 0.97239 0.96005 0.95996 1 0.97059

Brazilian
dark 0.968 0.95353 0.96142 0.96941 0.96725 0.96374 0.97059 1

Fe Arabica Ethiopian Robusta Colombian
Light

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabica 1 0.99428 0.99344 0.99692 0.9973 0.994 0.98747 0.99613
Ethiopian 0.9943 1 0.99762 0.997 0.99648 0.99798 0.99302 0.99815
Robusta 0.9934 0.99762 1 0.99538 0.99471 0.9968 0.99098 0.99551

Colombian
light 0.9969 0.997 0.99538 1 0.99742 0.99547 0.99179 0.9977

Colombian
dark 0.9973 0.99648 0.99471 0.99742 1 0.99555 0.98848 0.99739

Brazilian
light 0.994 0.99798 0.9968 0.99547 0.99555 1 0.98984 0.99694

Brazilian
medium 0.9875 0.99302 0.99098 0.99179 0.98848 0.98984 1 0.99252

Brazilian
dark 0.9961 0.99815 0.99551 0.9977 0.99739 0.99694 0.99252 1
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K Arabica Ethiopian Robusta Colombian
Medium

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabic 1 0.89863 0.88376 0.88735 0.88628 0.91759 0.86988 0.91524
Ethiopian 0.8986 1 0.88019 0.87758 0.87884 0.91863 0.83538 0.91461
Robusta 0.8838 0.88019 1 0.86027 0.84111 0.906 0.80031 0.90858

Colombian
medium 0.8874 0.87758 0.86027 1 0.82393 0.91906 0.80515 0.91179

Colombian
dark 0.8863 0.87884 0.84111 0.82393 1 0.86242 0.84596 0.87211

Brazilian
light 0.9176 0.91863 0.906 0.91906 0.86242 1 0.82649 0.95212

Brazilian
medium 0.8699 0.83538 0.80031 0.80515 0.84596 0.82649 1 0.82992

Brazilian
dark 0.9152 0.91461 0.90858 0.91179 0.87211 0.95212 0.82992 1

H Arabica Ethiopian Robusta Colombian
Medium

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabic 1 0.99321 0.99411 0.99419 0.9927 0.99393 0.98926 0.98968
Ethiopian 0.9932 1 0.99493 0.99375 0.993 0.99553 0.99236 0.99179
Robusta 0.9941 0.99493 1 0.99495 0.99386 0.99448 0.989 0.9919

Colombian
medium 0.9942 0.99375 0.99495 1 0.99314 0.99391 0.98783 0.99024

Colombian
dark 0.9927 0.993 0.99386 0.99314 1 0.99333 0.99071 0.98939

Brazilian
light 0.9939 0.99553 0.99448 0.99391 0.99333 1 0.99354 0.99109

Brazilian
medium 0.9893 0.99236 0.989 0.98783 0.99071 0.99354 1 0.98804

Brazilian
dark 0.9897 0.99179 0.9919 0.99024 0.98939 0.99109 0.98804 1

O Arabica Ethiopian Robusta Colombian
Medium

Colombian
Dark

Brazilian
Light

Brazilian
Medium

Brazilian
Dark

Arabica 1 0.98397 0.99092 0.98566 0.9879 0.99044 0.96143 0.95367
Ethiopian 0.984 1 0.98518 0.96651 0.9844 0.98619 0.97827 0.97326
Robusta 0.9909 0.98518 1 0.98664 0.98406 0.98805 0.95919 0.94433

Colombian
medium 0.9857 0.96651 0.98664 1 0.97602 0.97633 0.93038 0.91309

Colombian
dark 0.9879 0.9844 0.98406 0.97602 1 0.98779 0.95954 0.95399

Brazilian
light 0.9904 0.98619 0.98805 0.97633 0.98779 1 0.97195 0.96265

Brazilian
medium 0.9614 0.97827 0.95919 0.93038 0.95954 0.97195 1 0.981

Brazilian
dark 0.9537 0.97326 0.94433 0.91309 0.95399 0.96265 0.981 1

4. Conclusions

A detection system based on Laser-induced breakdown spectroscopy was used as
a rapid, low-cost and residue free technique to perform multi-elemental analysis and
investigating the composition makeup of eight coffee samples. In this study, LIBS was
created and used to detect qualitative elemental composition in eight coffee samples from
Egypt’s local market. LIBS emission lines from the C(I), Mg(II, I), Ca(II), Fe(I), K(I), H(I),
O(I), and CN groups demonstrated high discrimination power between roasted coffee
beans. LIBS, in conjunction with Multivariate Analysis, plays an important role in the
classification and contribution of spectral lines in various roasted coffee beans. Principal
Component Analysis (PCA) was used to validate results and differentiate between eight
samples due to their origin-producing area. The results demonstrate the potential relevance
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of the methodology utilized in the accurate elemental identification and classification of
coffee samples. The overall results revealed that using LIBS in addition to PCA to identify
coffee types was viable.
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