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Abstract: In this study, the effects of particle distribution and anodizing time on the microstructure
and corrosion resistance of the TiB2 particle-reinforced Al-Zn-Mg-Cu composite were investigated.
Relationships between TiB2 particle distribution, anodizing time, coating growth rule, and corro-
sion resistance were characterized and discussed using an optical microscope, a scanning electron
microscope, an electrochemical test, and a salt spray test. Dispersion of TiB2 particles by powder
metallurgy improved the corrosion resistance of the anodized coating on composites. Compared with
the matrix, the corrosion potential (Ecorr) of the anodized coating shifted to the positive direction,
and the corrosion current density (icorr) decreased. Meanwhile, the icorr of the coating decreased
initially and then increased with the extension of the anodization time. The corrosion resistance of
the coating was optimal at an anodization time of 20 min. The corrosion resistance of the composite
was determined by both the porosity and thickness of the coating. Additionally, all samples treated
by potassium dichromate sealing had no corrosion points after a 336-h salt spray test, demonstrating
an excellent corrosion resistance suitable for harsh environmental applications in industry.

Keywords: aluminum matrix composite; corrosion resistance; TiB2; anodizing; salt spray test

1. Introduction

In recent years, the application of aluminum matrix composites has rapidly increased
due to their high specific strength, fatigue resistance, oxidation resistance, and excellent
processing properties. They are widely utilized in the manufacturing of ship and auto-
motive fields [1]. However, in some harsh environments, not only mechanical properties
but also high corrosion resistance are needed for aluminum matrix composites. Generally,
the existence of ceramic particles increases the chemical potential between particles and
matrices, inducing poor corrosion resistance of composites. Therefore, material surface
treatment is usually necessary, including physical vapor deposition [2], chemical vapor
deposition [3], electroplating [4], plasma spray [5], laser surface treatment [6], common
anodization [7], and plasma electrolytic oxidation [8].

Among these, anodizing is a widely used process in the treatment of Al [9–12], Mg [13],
Ti [14], Zr [15], Ta [16], and their alloys and composites due to its simple process, low cost,
and mature technology. The sample to be treated serves as the anode, and a stainless
steel plate is used as the cathode, and both are placed in the electrolyte. Commonly used
electrolytes are generally acidic, including sulfuric acid [17,18], phosphoric acid [19,20],
oxalic acid [21,22], chromic acid [23,24], etc. Recently, alkaline electrolytes have also been
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used to prepare anodic oxidation coatings [25–27]. By adjusting the electrical parameters, a
coating mainly composed of a base metal oxide is grown on the surface of the substrate. The
obtained coatings have good wear resistance, corrosion resistance, and oxidation resistance.
For example, Rawian et al. [28] introduced diamond-like carbon on the surface of aluminum
alloy to improve the hardness and wear resistance of the film. Gao et al. [29] proposed a
facile strategy to fabricate a micro/nano-structured bionic superhydrophobic surface with
enhanced anti-corrosion performance. Chen et al. [30] prepared a long-term antibacterial
anodic aluminum oxide-copper coating on Al alloys and researched their antibacterial
performance. Therefore, anodizing has broad application prospects in ships, 3C products,
medical, and other fields.

However, the addition of particles makes anodizing of composites difficult. For
example, Wang et al. [31] found that the aggregation of TiB2 particles hindered the normal
growth of the oxide coating, especially in areas with severe particle aggregation, where the
coating is thin and even unable to form a coating. On this basis, anodizing and rare earth
sealing were combined to investigate the feasibility of an in situ TiB2p/A356 composite by
Sun et al. [32]. It was found that the corrosion current density of the cerium sealing anodized
composite decreased by two orders more than that of the bare sample. He et al. [33] studied
the effect of the SiC reinforcement size on the oxide coating thickness of the aluminum
matrix composite, and found that the larger the reinforcement size was, the thinner the
obtained coating thickness was, and the poorer the film quality was. Furthermore, He
et al. [34] further researched the corrosion resistance of anodized coating on an SiCp/2024Al
metal matrix composite (MMC) and concluded that anodized coating on 2024Al provides
better corrosion protection than SiCp/2024Al MMC. The reason was that the presence of
SiC particles led to non-uniformity in thickness and cavity, resulting in a discontinuous
barrier layer. Huang et al. [35] compared the corrosion resistance of the alloy and the
composite after anodizing, and the corrosion resistance of the coating after anodizing on
the composite was lower than the alloy through electrochemical testing. Therefore, the
anodizing process for composites with different reinforcements or different reinforcement
sizes is also different, and further research is needed.

This paper studied the effect of particle distribution and anodizing time on the corro-
sion resistance of the composite. The influence of the coating structure and morphology on
the corrosion resistance of the composite was explored, combined with the quantitative
analysis of the thickness and surface porosity of the anodized coating, through electrochem-
ical testing and microscopic morphology characterization. The anodized sample was then
sealed with potassium dichromate to meet the anti-corrosion requirements of industrial
applications, and the corrosion resistance of the corresponding sealing coating was char-
acterized in combination with electrochemical and salt spray corrosion tests. The results
have important implications for the development and application of high-performance
aluminum-based composites in corrosive environments under industrial conditions.

2. Experimental Procedure
2.1. Composites Preparation

Nano-scaled TiB2 reinforced Al-Zn-Mg-Cu composites were firstly in situ synthesized
by a molten salt reaction, as previously reported [36,37]. The chemical composition of the
composite was measured by an inductively coupled plasma spectrometer (ICP), and the
results are presented in Table 1. Two methods were employed to obtain composites with dif-
ferent distribution states of TiB2: (1) conventional extrusion (CE) and (2) powder metallurgy
(PM). More details of the fabrication processes can be found in our previous studies [38–40].
The composites obtained by the CE method had a lot of TiB2 stripes distributed along
the extrusion direction, while those from the PM method exhibited uniform TiB2 particle
distribution. The as-achieved composites underwent T6 heat treatment: soluted at 475 ◦C
for 1 h, water-quenched and aged at 140 ◦C for 16 h.
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Table 1. Chemical composition of the fabricated composite (wt.%).

Zn Mg Cu Zr Si Fe Cr Mn Ti B Al

7.93 2.2 2.4 0.18 0.03 0.01 0.0006 0.001 3.5 1.5 Balance

2.2. Anodizing Process

The heat-treated profile was cut along the ED–ND plane into 30 × 30 specimens
(Figure 1a), which were subsequently ground using silicon carbide sandpaper with 80 #,
180 #, 400 #, and 1200 #, respectively. Finally, the abraded samples were then cleaned with
acetone and deionized water. During the anodizing process, the treated sample was used
as the anode, while a stainless steel plate served as the cathode. The schematic diagram
of the anodic oxidation is displayed in Figure 1b. The entire process was carried out in
constant voltage mode with 20 V. The anodization time range was from 15 to 60 min and a
sulfuric acid electrolyte with a concentration of 197 g/L was used for the anodic oxidation
treatment. The sealing treatment was performed for 5–15 min using potassium dichromate
with a concentration of 100 g/L at a temperature range of 95–100 ◦C.
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Figure 1. (a) Sampling location, (b) Schematic diagram of anodic oxidation device.

2.3. Microstructure Characterization

Microstructures of composites and coatings were characterized applying a scanning
electron microscope (SEM, MAIA, TESCAN) equipped with electron backscattered diffrac-
tion (EBSD) at 15 kV. To enhance their conductivity, all SEM coatings were sprayed with
gold before observation. The grain size of the composite was determined adopting EBSD
with a step size of 0.2 µm at a working voltage of 20 kV. The specimens for the EBSD
observations were mechanically polished using sandpapers of up to 5000 grit, and then
electrically polished in a solution of 30 vol% nitric acid and 70 vol% methanol at 12 V for
15 s at an ambient temperature to achieve stress-free surfaces. Finally, the EBSD data were
analyzed by a CHANNEL 5.0 software package. Grain boundaries (GBs) with misorien-
tation angles ranging from 2◦ to 15◦ were considered as low angle GBs (LAGBs, green
lines), while GBs larger than 15◦ were defined as high angle GBs (HAGBs, black lines). The
microstructure of the sample after corrosion was also observed by an optical microscope
(ZEISS). The phase compositions of anodized coating were determined by the GIXRD (D8
ADVANCE Da Vinci) using a Cu Kα source, and the scanning range was from 10◦ to 80◦

(in 2θ).

2.4. Electrochemical Test

For the electrochemical test, a CHI660e workstation was chosen, and a three-electrode
system was employed for the experiment. A sample with a test area of 1 cm2 served as the
working electrode, while the platinum sheet was the counter electrode, and the saturated
calomel electrode was the reference electrode. The corrosion solution was a 3.5 wt.% NaCl
solution, and the test temperature was maintained at 25 ± 2 ◦C. The sample was immersed
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in the corrosion solution for 0.5 h to ensure the stability of the open circuit potential (OCP)
before testing. The electrochemical impedance spectroscopy (EIS) test was conducted with
an AC amplitude disturbance of 10 mV. For the polarization curve measurement, the test
range was −1.2 V to 0.1 V referring to the OCP value, and the scanning speed was set to
0.5 mV/s.

2.5. Salt Spray Test

The flat salt spray test was conducted following the guidelines of the ASTM B117-
03 standard practice for operating salt spray (fog) apparatus [41]. The sample size was
30 mm × 35 mm, and the corrosion solution was a 5 wt.% NaCl solution with a pH value
of 6.81. The average salt spray sedimentation rate was 1.72 mL/h, and the test duration
was 336 h at 35 ◦C. All solutions were prepared exploiting deionized water.

3. Results and Discussion
3.1. Composite Structures

Figure 2 displays the micro-morphology of the as-achieved composite obtained by
two methods along the extrusion direction. In the ED−ND plane, the samples obtained
by the CE method are distributed with numerous TiB2 extrusion strips with significant
agglomeration (Figure 2a). Furthermore, the grains are elongated and turn into columnar
grains, similar to typical hot extruded alloys. In contrast, micro/nano TiB2 particles are
uniformly dispersed in the Al matrix prepared utilizing the PM method on the ED−ND
plane (Figure 2c). Meanwhile, the composite comprises near-equiaxed grains, with a grain
size of 2.0 µm (Figure 2d). These results imply that powder metallurgy processes can
effectively disperse TiB2 particles and reduce grain size.
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3.2. Effect of TiB2 Distribution on Anodizing Coating
3.2.1. Coating Characteristics

The microstructure analysis presented in Figure 3 suggests that the dispersion of TiB2
particles in the composite affects the quality of the anodizing coating. In composite with
TiB2 clusters, the anodized coating exhibits a large number of micro-cracks and micro-pores,
with a maximum pore size of ~10 µm (Figure 3a), resulting in poor coating quality. In
contrast, in a composite containing uniform TiB2 particles, the anodized coating displays
fewer micro-pores and almost no noticeable cracks (Figure 3b), indicating better coating
quality. At the same time, cross-sectional morphology analysis reveals that the quality of
the anodizing coating formed on the composite with uniform TiB2 dispersion is evidently
superior to that of the TiB2-agglomerated composite (Figure 3c,d).
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3.2.2. Polarization Curve Characteristics

The polarization curves of the composite (CE), composite (PM), coating (CE) and
coating (PM) are presented in Figure 4, where specific values are given in Table 2. The icorr
of the matrix obtained by the PM method is more than 1 time lower than that obtained
by the CE method, implying better corrosion resistance. Compared with the matrix, both
anodized coatings using the two methods show a significant positive shift in Ecorr and a
decrease in icorr, indicating that anodization can improve the corrosion resistance of the
samples. At the same time, the dispersion of TiB2 particles can reduce the coating icorr by
~6 times (from 7.54 × 10−5 to 1.23 × 10−5 A·cm−2), significantly improving the corrosion
resistance. Compared with the CE method, the PM method results in a smaller grain size
and more uniform distribution of TiB2 in the matrix without significant agglomeration
(Figure 2), which is beneficial to the quality of the anodized coating. The surface of the
coating formed on the TiB2 particle agglomerated composite contains many micro-pores
and cracks, which can serve as channels for corrosion media. This may be the reason for
the decreased corrosion resistance.
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methods.

Table 2. Polarization curve-fitting results of matrix and 20-min anodized coating obtained by different
prepared methods.

Method Ecorr (V) icorr (A·cm−2)

Matrix (CE) −0.734 1.29 × 10−4

Matrix (PM) −0.775 8.96 × 10−5

Coating (CE) −0.660 7.54 × 10−5

Coating (PM) −0.656 1.23 × 10−5

3.3. Effect of Anodizing Time on Coating
3.3.1. Coating Morphologies

After obtaining composites with uniform TiB2 particles through the PM method, the
effect of the anodizing time on the microstructure and corrosion resistance of the coating
is investigated. The subsequent anodized samples are the composite prepared by the PM
method. Figure 5 depicts the coating surface morphology of the composite after different
anodizing times. The obtained coating surface contains many micro-pores [42–44], and the
pore structure is close to circular or elliptical. In addition, there are some micro-cracks on
the coating surface.

The surface porosity and pore size of all coatings are calculated by Image J software [45,46].
The method involved converting the SEM image into a black-and-white image utilizing
Photoshop software, where the area containing pores is converted to black, while the area
without pores is turned to white (Figure 5i). The proportion of the black area is then
calculated to reflect the surface porosity of the coating. The corresponding results are
shown in Figure 5j.

It can be observed that the surface porosity and pore size of the coating obtained after
anodizing for 20 min are clearly lower than other treatment times, with a value as low as
0.5% and ~1.1 µm, which will contribute to a high corrosion resistance. Furthermore, when
the anodizing time exceeds 20 min, the crack length on the coating surface increases and
the coating quality becomes poorer, leading to a negative impact on corrosion resistance
(Figure 5f,g).

The cross-sectional morphology analysis presented in Figure 6 indicates that the
thickness of the anodizing coating increases with the prolongation of the anodizing time
(Figure 6i). When the anodization time is extended to 60 min, the coating thickness
rises to 60 µm. Concurrently, some micro-pores are also observed on the cross-sectional
morphology of the coating. Especially, when the anodizing time is more than 20 min,
the number of micro-pores in the coating increases significantly (Figure 6f,h), which can
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compromise the corrosion resistance of the material by providing channels for the corrosive
media to penetrate into the substrate [47,48].
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Additionally, the growth rate of the coating is relatively slow within 0–20 min, resulting
in a relatively dense coating with lower porosity (Figure 6j). However, when the anodization
time exceeds 20 min, the growth rate of the coating accelerates, leading to a decrease in
density and an augmentation in the porosity of the formed coating. This suggests that there
is an optimal anodizing time for achieving the best balance between coating thickness and
porosity, which can maximize the corrosion resistance of the composite.

Figure 7a shows the mapping of the cross-sectional morphology of the anodized
coating, which is mainly comprised of Al, O, and S elements with almost no Ti element. It
indicates that Ti does not participate in the coating formation during the anodizing process.
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The existence of the S element is primarily due to the migration of SO4
2− ions from the

electrolyte to the metal/oxide interface, which is subsequently incorporated into the anode
layer during the anodic oxidation process [49].
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(b) GI-XRD of the coating.

The GIXRD patterns of the anodized coating are displayed in Figure 7b. The strong
diffusion peaks at 38.4◦, 44.8◦, 65.1◦ and 78.2◦ can be recognized from the GIXRD curve of
anodized specimens, mainly attributed to the diffraction of Al (111), Al (200), Al (220), and
Al (311), respectively. Specific diffraction peaks of aluminum oxides could not be observed,
which was consistent with the results in the literature [50,51]. It was essentially amorphous
aluminum oxides formed in the anodic coating [51,52].

3.3.2. Corrosion Behavior

Figure 8 exhibits the polarization curve of the matrix and coatings after different
anodizing time treatments. The corrosion potential (Ecorr), corrosion current density (icorr),
and corrosion protection efficiency (PE) are applied to estimate the anti-corrosive property
of the coatings, where specific values are depicted in Table 3. The Ecorr and icorr are ob-
tained from the acquired polarization curves, and the PE is computed from the calculated
icorr [53,54]. In general, the icorr can directly reflect the corrosion resistance of the mate-
rial [55]. Compared with the matrix, the Ecorr of the anodic oxidation coating is positively
shifted and the icorr decreases (Figure 8 and Table 3). It is clear that the corrosion resistance
of the composite is improved after anodizing. Meanwhile, the icorr of the obtained coating
first decreases and then increases with the extension of the treatment time. As a result, the
PE value reveals an increasing trend as the icorr value decreases. When the treatment time
is 20 min, the icorr of the coating is the lowest and the PE value is the highest, indicating an
optimum corrosion resistance, owing to the lowest porosity of the coating being obtained
after 20 min (Figure 5j).
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Table 3. Polarization curve-fitting results of the composite after different anodizing times.

Time (min) Ecorr (V) icorr (A·cm−2) PE (%)

0 −0.763 2.08 × 10−4 /
15 −0.660 1.70 × 10−5 91.83%
20 −0.656 1.23 × 10−5 94.09%
30 −0.651 3.75 × 10−5 81.97%
60 −0.684 1.59 × 10−4 23.56%

3.3.3. Corrosion Morphology Analysis

In order to further analyze the corrosion behavior of the material, both macro and
micro morphologies of the coating after the polarization curve test are exhibited in Figure 9.
The coating surface after anodizing treatment has clear pitting with different sizes of pits.
Particularly, the diameter of the pits even reaches 350 µm when the anodizing lasts for
60 min. It indicates that the obtained coating mainly undergoes pitting corrosion in the
electrochemical corrosion. Simultaneously, the size of the pits first decreases and then
increases with the prolongation of the anodizing time. When the anodization time is 20 min,
the number of pits on the coating surface is the least, and the pit size is the smallest, so
that the corrosion degree is the mildest (Figure 9b). It further implies that the obtained
coating after anodizing for 20 min has superior corrosion resistance among them, which is
consistent with the previous polarization curve test results (Figure 8).
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Based on the aforementioned analysis, the corrosion resistance of the material is mainly
determined by both the coating thickness and porosity. In the 0–20 min range, the coating
thickness plays a leading role. The thickness of the obtained coating after anodizing for
20 min is larger than 15 min (Figure 6i), so its corrosion resistance is better. When the
anodization time exceeds 20 min and the coating grows to a certain thickness, the porosity
of the coating surface dominates. According to Figure 5j, the coating surface porosity
increases clearly after exceeding 20 min, causing a decrease in the corrosion resistance.
Thus, the coating obtained by anodizing for 20 min has the best corrosion resistance.

3.4. Further Improving the Corrosion Resistance of the Coating under Industrial Conditions

To further meet the corrosion resistance requirements of the composite under industrial
conditions, a potassium dichromate solution is used to immerse the anodized samples.
Here, we select a 20 min anodized coating for the sealing treatment. The cross-sectional
morphologies of the coating after the sealing treatment are shown in Figure 10a,b. The
number of micro-pores in the cross-section of the coating clearly decreases, and the coating
thickness slightly increases. These contribute to the improvement in the corrosion resistance.
Meanwhile, the polarization curve tests are carried out in both unsealed and sealed samples,
and the results are depicted in Figure 10c and Table 4. To more intuitively determine the
corrosion resistance of the sealing coatings, the corrosion rate (CR) is calculated according
to Equation (1) [56,57]:

CR (mm·year−1) = 22.85 × icorr (mA·cm−2) (1)
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Figure 10. (a) Cross-sectional morphology of the coating after anodizing for 20 min and sealing for
15 min, (b) is an enlargement of (a), (c) Polarization curve of coating after treatment with different
sealing time, (d) Corrosion rate (CR) of coated samples.

Table 4. Polarization curve-fitting results of the coating after sealing treatment.

Sealing Time (min) Ecorr (V) icorr (A·cm−2)

0 −0.656 1.23 × 10−5

5 −0.732 2.49 × 10−7

10 −0.745 6.54 × 10−8

15 −0.690 1.27 × 10−8
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Compared with the unsealed sample, the corrosion current density (icorr) of the sample
is clearly reduced (about 2–3 orders of magnitude) after potassium dichromate sealing
treatment. Particularly, the icorr value of sealing-15 sample is reduced from 1.23 × 10−5

to 1.27 × 10−8 A·cm−2. This indicates that the corrosion resistance of the sealing sample
is significantly improved. This may be due to a decrease in the porosity of coating after
sealing. In addition, the icorr of the coating further decreases with the prolongation of the
sealing time. When the sealing time is 15 min, the icorr of the coating is the lowest, and the
corrosion resistance is the best (Figure 10c). Similarly, the CR value has the same results
and the sealing-15 sample has the lowest CR value (Figure 10d).

At the same time, the electrochemical impedance spectroscopy (EIS) test was carried
out on samples with different sealing times (Figure 11). It can be seen that the radius
of the capacitive impedance arc corresponding to the sealing treatment coating is clearly
raised compared to the unsealed treatment. Furthermore, the radius of the capacitive
impedance arc is further raised with the extension of the soaking time (Figure 11a). In
general, the impedance value in the low-frequency region reflects the corrosion resistance
of the material [58–60]. The impedance value of the coating obtained by soaking for 15 min
in the low-frequency region is about 1.80 × 105 Ω·cm2, which is about two orders of
magnitude higher than the impedance value of the unsealed treatment (Figure 11b). It is
consistent with the aforementioned polarization curve test results (Figure 10c).
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Figure 11. Electrochemical plots of the coating after treatment with different sealing times: (a) Nyquist
plots, (b) Bode plots.

An equivalent circuit diagram is used to fit the EIS data to accurately analyze them
(Figure 11b). Herein, Rs represents the solution resistance between the reference and
working electrodes [61,62]. Rc and CPEc (constant phase-angle element) are the resistance
and capacitance corresponding to the coating layer. Rct and CPEdl are the charge transfer
resistance and capacitance of the double electric layer at the sample/electrolyte interface.

The fitting results corresponding to the equivalent circuit diagram are exhibited in
Table 5. In comparison with the unsealed sample, the Rct of the sealing sample increases by
at least about one order of magnitude. In particular, for th e sample sealed for 15 min, its Rct
value increases by nearly three orders of magnitude (From 8.01 × 103 to 2.69 × 106 Ω·cm2).
It further indicates that the corrosion resistance of the composite can be significantly
improved by potassium dichromate immersion treatment.

In addition, samples with different sealing times were selected for salt spray tests. To
facilitate the recording, the samples with sealing times of 5, 10 and 15 min are named as
S-5, S-10 and S-15, respectively. In the meantime, each group selects six samples with the
labels of 1-1 # to 1-6 #, 2-1 # to 2-6 # and 3-1 # to 3-6 # to ensure the testing repeatability. The
results are shown in Figure 12 and it can be concluded that three groups of samples did not
have any pitting, cracks, bubbles or corrosion defects during the 336-h salt spray test. It
demonstrates that the corrosion resistance of the coating meets the industrial application
requirements after immersion with potassium dichromate.
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Table 5. Electrochemical parameters analyzed from EIS tests.

Unsealing Sealing-5 min Sealing-10 min Sealing-15 min

Rs (Ω·cm2) 18.29 15.41 11.48 19.25
CPEc (S·cm−2·sn) 3.38 × 10−5 2.24 × 10−5 6.62 × 10−6 3.48 × 10−6

nc 0.7786 0.6678 0.7889 1
Rc (Ω·cm2) 298.7 706.2 1337 2580

CPEdl (S·cm−2·sn) 5.85 × 10−5 2.11 × 10−5 1.27 × 10−5 6.02 × 10−6

ndl 0.6274 0.6937 0.6383 0.7566
Rct (Ω·cm2) 8.01 × 103 7.49 × 104 1.69 × 105 2.69 × 106

Chi-squared 2.52 × 10−3 2.01 × 10−3 1.49 × 10−3 4.18 × 10−3
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4. Conclusions

Overall, this study provides important insights into the corrosion behavior and surface
protection of TiB2 reinforced Al-Zn-Mg-Cu composites. The findings suggest that anodic
oxidation and sealing treatment can effectively improve the corrosion resistance of the
composite, and the prepared coating can meet the requirements for corrosion resistance
under industrial conditions. The main results can be concluded as follows:

(1) The dispersion of TiB2 can improve the corrosion resistance of the anodized coating
on the composite.

(2) After anodic oxidation treatment, the corrosion resistance of the composite is im-
proved, with the corrosion potential (Ecorr) shifting to the positive direction and
the corrosion current density (icorr) reducing by one order of magnitude. Particu-
larly, the optimum anodizing time is 20 min, exhibiting the lowest icorr of coating
(1.23 × 10−5 A·cm−2).

(3) The corrosion resistance of the anodized coating is mainly determined by both the
coating thickness and the porosity.

(4) After the sealing treatment, the icorr of the coating is 2–3 orders of magnitude lower
than that of the unsealed sample, and the resistance value in the low-frequency region
is about two orders of magnitude higher than that of the unsealed sample. All the
samples after the sealing treatment did not have any corrosion points during the 336-h
salt spray corrosion, meeting the industrial requirements of corrosion resistance for
applications.
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