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Abstract: Due to the enhancement of people’s environmental awareness, flame-retardant epoxy
resin (EP) tends to be non-toxic, efficient, and multi-functional, and its development is systematic.
At present, many new flame retardants or intrinsic modification methods reported in studies can
effectively improve the flame retardability and thermal stability of EP. However, many aspects still
need to be further improved. In this review, the flame-retardant mechanism and method of flame-
retardant epoxy resins are briefly analyzed. The research progress of the flame-retardant modification
of epoxy resin by physical addition and chemical reaction is summarized and discussed. Furthermore,
the research trend of flame-retardant epoxy resin in the field of fire-protective coatings is discussed,
and future problems in this field are put forward. This work may provide some new insights for the
design of multi-functional integrated epoxy resin fireproof coatings.
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1. Introduction

Since the discovery of polymer materials, they have appeared in various fields of
modern human life [1,2]. However, high flammability and poor thermal stability greatly
limit their applications in some situations [3,4], as they will burn and release a lot of smoke
and heat so long as they are exposed to enough energy [5]. According to reports, about
5000 people in Europe and 4000 people in the United States die in fires every year. The
direct economic losses caused by these fire accidents are estimated at 0.3% of GDP [6].
Recently, fire safety authorities have stated that it is very necessary to apply suitable
materials in different environments, which has led to stricter requirements on the flame
retardancy of materials under certain conditions [7].

As an important thermosetting polymer material, epoxy resin (EP) has many ad-
vantages, such as high mechanical strength, excellent adhesion, chemical resistance, and
electrical insulation, which makes it widely used in various industrial fields of construction,
automotive, coatings, electronics, and aerospace [8–11]. Nevertheless, EP has a limiting
oxygen index (LOI) of only about 19.8%. During the combustion process, large amounts of
heat and harmful smoke will be released, which may cause huge casualties and property
losses. At the same time, generated molten droplets can easily lead to the rapid spread of
a fire, which is an important factor limiting the practical application of EP. For example,
in the electrical and electronic industries, strict flame-retardant requirements are usually
required, such as needing to reach the V-0 level in the vertical burning test. Therefore,
there is an urgent need to develop high-performance flame-retardant materials, including
high-efficiency flame retardants (FRs) and thermosetting flame-retardant materials.
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Flame-retardant additives, especially halogen-based flame retardants, are considered
to be the most effective fillers to improve the flame-retardant properties of EP. However,
with the enhancement of human awareness of environmental protection, the release of toxic
smoke and bromide pollution during the use of halogen flame retardants has become a
more and more prominent concern [12,13]. Therefore, for the consideration of environmen-
tal protection, some halogen flame retardants are gradually being eliminated, and some
halogen-free flame retardants and more environmentally friendly flame-retardant modi-
fication methods have emerged as the times require. In this review, two flame-retardant
mechanisms are briefly introduced, and two flame-retardant modification methods (in-
cluding physical addition and chemical reaction) for epoxy resin systems are summarized.
After that, the future development direction of flame-retardant epoxy resin in the field of
flame-retardant coating and the urgent problems are laid out.

2. Flame-Retardant Mechanism

The combustion of a polymer is a multistage process, including complex chemical
and physical interactions [14]. The supply of heat, fuel, and oxygen are the three necessary
factors required to maintain the combustion cycle [15]. Generally, the combustion process
of a polymer is divided into four stages: heat, pyrolysis, ignition, and combustion [16].
Firstly, the polymer is warmed to a certain temperature by a heat source, and the backbone
of the polymer begins to break and decompose, after which the following types of products
may be formed [7]: (1) combustible gases, such as CO, methane, and ethane; (2) molten
fluid produced by thermal decomposition of polymers; (3) incombustible gases such as
CO2; (4) fine solid particles composed of polymer fragments or soot; and (5) carbonaceous
residues. Afterwards, when the concentration and temperature of released combustible
gas reach certain values, they ignite spontaneously in the presence of air. Finally, great
amounts of active free radicals such as HO• and O• generated by combustion participate
in the chain reaction, accompanied by continuous heat release. Under the influence of
heat transfer processes, new decomposition reactions are induced in the polymer, and
more combustibles are produced. The combustion cycle is thus maintained [17] until all
combustible materials are exhausted without external interruption.

The generation of extensive volumes of flammable gas is one of the direct reasons
for increasing the combustibility of polymers; the other is the thermal fluid produced by
thermal decomposition. Although not as flammable as gas, the flowing part can spread
heat to adjacent parts. Therefore, reducing the release of flammable gases or preventing
the spread of flames are the most essential ways to achieve flame retardancy. For the
most part, on the basis of understanding polymer combustion, the combustion can be
suppressed by breaking the combustion cycle with different methods (see Figure 1b)):
(a) reducing heat transfer (the endothermic decomposition of some flame retardants causes
a temperature decrease by heat consumption); (b) reducing the release of combustible gas
(diluting combustible gases by adding flame retardants to produce inert, non-flammable
gases); and (c) obstructing oxygen contact with flames (by forming a carbonaceous layer
through the cross-linking reactions of flame retardants or the polymer matrix) [12].

Available studies have shown that there are two main flame-retardant mechanisms for
the inhibition of polymer combustion:

• Condensed phase inhibition, which involves the change of polymer structure after
combustion. As the combustion reaction progresses, the polymer gradually forms
a low-thickness, high-porosity residual carbonaceous structure. The carbon residue
layer has important functions, including protecting the integrity of the matrix structure,
isolating the flame contact, and preventing the flame from spreading further. However,
the generation of char residues is occasionally accompanied by a violent combustion
process and produces a large amount of smoke;
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Gas phase suppression, which involves the release of incombustible gases such as H2O
and CO2 to dilute the concentration of flammable gases or to interfere with the chemical
reactions of flame combustion. Inorganic hydroxides and halogen flame retardants are
the most representative examples of using this mechanism. Such as the dilution effect of
H2O produced by the thermal decomposition of magnesium hydroxide [18]. And free
radical inhibitors formed by volatilization of halogen flame retardants can convert highly
active H• and HO• into low-activity X• to inhibit free radical reaction [19]. As shown
in Reactions (1)–(4), this conversion first begins with the release of a halogen atom (1),
which then reacts with the fuel to produce hydrogen halide (2). The hydrogen halide is
believed to be the true combustion inhibitor by disrupting the chain reaction (3,4) [20].
Reactions (1)–(4), free radical inhibition reaction.

MX→M• + X• (1)

X• + RH→ R• + HX (2)

H• + HX→ H2 + X• (3)

HO• + HX→ H2O + X• (4)

3. Different Flame-Retardant Modification Methods

Generally, there are two main methods to improve the flame retardancy of polymer
materials: the physical addition of flame retardants and chemical reaction modification [21].
Among them, the addition of flame retardants will greatly improve the flame-retardant per-
formance of polymer materials and extend the survival time in the flame by three times [3].

3.1. Physical Additive Flame-Retardant Method

For epoxy resin, the necessary flame-retardant modification can broaden its application
potential in various fields [22]. The flame-retardant performance of epoxy resin is related
to chemical structure and flame-retardant formulation. Halogen flame retardants, which
are widely used, can improve the flame retardancy of polymers without reducing their
physical properties. However, no matter what conditions are applied, the toxic substances
produced in the firing process of composite materials containing halogen may cause
serious environmental pollution [23]. Therefore, due to the awareness of environmental
protection and health, halogen flame retardants have gradually been replaced by other
more environmentally friendly and safer flame retardants [24]. As shown in Table 1,
the common flame retardants used in epoxy resin systems include silicon-containing
compounds, phosphorus/nitrogen compounds, inorganic hydroxides, and carbon-based
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materials. How to choose the appropriate flame retardants depends on the different resin
matrices and the intended use.

Table 1. Different types of flame-retardant additives applied to the EP system.

FRs Common Example Features References

Silicon-containing compounds

Siloxane (POSS, PDMS)
Layered silicate (Wollastonite,

Montmorillonite, Kaolin)
SiO2

Forms a protective char
Decomposition endothermic

Releases non-flammable gases
Green

[25–32]

Phosphorus, nitrogen
compounds

Phosphate (Polyphosphate)
Phosphorous derivatives
(Phosphaphenanthrene,

Phosphazene)
Melamine (MLM)

Phosphorus/nitrogen synergistic FRs

Promotes char formation
Releases non-flammable gases
Scavenge active free radicals

Strong synergy

[33–39]

Inorganic hydroxides Magnesium hydroxide (MH)
Aluminium hydroxide (ATH)

Inert carbon residue
Decomposition absorbs heat and

releases H2O
Low cost, non-toxic

[40–44]

Carbon-based materials
Carbon nanotubes (CNTs)
Expandable graphite (EG)

Graphene, Oxidized graphite

Surface protection
Improves Tg

Promotes char formation
[45–51]

3.1.1. POSS

Silicon-based flame retardants, including siloxane [28], layered silicate [29], and
SiO2 [30–32], have been at the forefront of flame-retardant additives due to their high
versatility, compatibility, low toxicity, and environmentally protective qualities [25]. During
combustion, silicon flame-retardant pyrolysis generates non-combustible substances such
as SiO2, which promotes the formation of a highly thermally stable char layer, inhibits
further decomposition of the underlying polymer, and reduces the rate of heat release.
Furthermore, silicon-based flame retardants are considered one of the most promising flame
retardants because they do not produce toxic gases and fumes [26]. Among the various
silicon-based flame retardants applied to EP, polyhedral oligomeric silsesquioxane (POSS)
is one of the most studied structures in recent years. POSS is a well-defined compound
consisting of a Si-O framework with the formula (RsiO3/2)n (n = 6, 8, 10, . . .) (Figure 2) [27].
This special composition structure can significantly improve its thermal performance and
flame retardancy [52,53]. The combustion is retarded through both char formation in the
condensed phase and trapping of dynamic radicals in the vapor phase if silicone flame
retardants are functionalized by phosphorus or nitrogen. However, most reports pay more
attention to the effect of POSS on the mechanical and thermal properties of epoxy resins,
while less attention is paid to the fire performance of materials [54].
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An article reported [55] the effects of POSS with three different structures, octaphenyl
POSS, glycidyl oxypropyl heptyl benzene POSS, and glycidyl oxypropyl heptaisobutyl
POSS, on the flame-retardant properties of epoxy resin (Figure 3). The PHRR of the com-
posite samples doped with different POSS decreased by 34%, 40%, and 25%, respectively.
Among them, the cross-section of the carbon residue after burning the glycidyloxypropy-
lheptylbenzene POSS/EP sample was a sponge-like structure with an outstanding heat
insulation effect. This study demonstrates the potential of POSS as an efficient flame
retardant for epoxy resins.
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However, the improvement of the flame-retardant properties of the epoxy resin system
with a single use of POSS is limited; a more effective method, which has been widely
reported, is to modify POSS by introducing other flame-retardant elements or compound-
ing with other flame retardants. Due to the unique structure of polyhedral oligomeric
silsesquioxane (POSS) and the synergism of Si and P in the structure, the method of intro-
ducing phosphorus element into POSS to form a novel flame retardant has attracted much
attention [56,57]. Researchers also claimed that phosphorous derivatives of POSS [58,59]
are a new trend in the development of flame-retardant candidates for polymer matrices.

For example, it was reported that the flame-retardant D-POSS for EP was prepared
from aminopropylisobutyl POSS and diphenylphosphonyl chloride [60] (Figure 4a). The
epoxy resin containing 4 wt% D-POSS reached an LOI value of 29.0% and passed UL94 V-1
grade, and PHRR, THR, and total smoke production were decreased by 35.3%, 30.3%, and
38.3%, respectively. Both the diphenylphosphine group and the POSS group in D-POSS
had a strong synergistic effect in controlling PHRR, THR, and smoke production while
promoting the carbonization of EP to form an expanded char layer. It is worth noting
that some white silica was enriched on the surface of the residue (Figure 4c). White silica
and expanded internal coke formed a double carbon layer that blocks heat transfer and
improves the flame retardancy of EP composites. Similarly, Liu et al. [61] successfully
synthesized a Si/P synergistic flame-retardant POSS-bisDOPO using DOPO, POM, and
POSS as raw materials (Figure 5). The surfactant-like structure of POSS-bisDOPO has
excellent self-assembly ability, which significantly improves the dispersion uniformity
in EP. The EP, with the addition of 20 wt% POSS-bisDOPO, achieved an LOI value of
34.5%. In addition, the mechanical properties of EP were significantly improved due to the
self-assembly of POSS-bisDOPO.

In addition to P and Si, Si and N also have an excellent synergistic effect. As shown in
Figure 6 [62], two kinds of nitrogenous polyhedral oligomeric siloxanes (N-POSSs) were
prepared by using side chain branches with amino groups in POSS, and the dispersibility,
thermal stability, and flame-retardant properties of the two kinds of POSS/EP composites
were studied. The results showed that N-POSSs containing Si and N formed a composite-
stable, dense carbon layer rich in graphite, Si-C, and Si-N during the combustion process,
which effectively suppressed the release of combustible organic volatiles and the generation
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of smoke (As shown in Table 2, p-SPR, P-COP, and p-CO2P). At the same time, the PHRR
of the composite materials was decreased by 46.1% and 60.6%, respectively, compared with
pure EP (Table 2), and the synergistic flame-retardant effect was remarkable.
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Table 2. Cone calorimeter data of EP, EP/AEAP-POSS, and EP/AP-POSS composites (part).

Samples TTI
(S)

p-HRR
(KW/m2)

THR
(MJ/m2)

p-SPR
(m2/s)

p-COP
(g/s)

p-CO2P
(g/s)

Residue
(wt%)

LOI
(%)
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3.1.2. DOPO

Phosphorus-based flame retardants are the most important halogen-free flame re-
tardants used to improve the flame-retardant properties of EP. Common phosphorus-
based flame retardants include phosphorus-containing derivatives (phosphazene, phos-
phaphenanthrene) [33,34,36], phosphate esters [63], and polyphosphates [35,64,65]. For the
consideration of environmental protection, phosphorus-based flame retardants have more
advantages than halogen-based flame retardants. The main flame-retardant mechanism
involved is to suppress flame combustion and reduce heat release, control melt flow, and
promote char layer formation. The free radicals (PO2•, PO•, and HPO•) generated by the
decomposition of phosphorus-based flame retardants have a strong scavenging effect on
H• and OH• in the gas phase, which effectively extinguishes the flame and reduces the
reaction activity (See Figure 7) [66]. Furthermore, phosphoric acid and polyphosphoric
acid produced by the decomposition of some phosphorus-containing compounds form a
melt-adhesive layer that protects the polymer surface and prevents oxygen penetration.
The combustion of nitrogen-based flame retardants not only promotes the formation of
insulating layers but also releases inert gases to dilute the combustion atmosphere and often
co-occurs with phosphorus-based flame retardants [67], which promotes the development
of some phosphorus-nitrogen synergistic new flame retardants [37,39].

9,10-dihydro-9-oxaze-10-phosphoxene-10-oxide (DOPO) and its derivatives have been
widely used in EP systems due to their advantages of thermal stability, high flame-retardant
efficiency, and strong design ability [13,68,69]. The new multi-component phosphorus-
based flame retardant can be prepared by combining nitrogen, silicon, boron, sulfur,
and other elements with the phosphorus phenanthene group as the reaction site for
molecular design [70,71].
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As mentioned above, the multi-element synergistic flame retardant formed by P
and Si elements has an excellent flame-retardant effect. Figure 8 shows the structural
formulas of two flame retardants (DOPO-TMDS and DOPO-DMDP) containing phosphorus
phenanthene/siloxane groups, which are applied to the EP system [72]. When DOPO-
TMDS content was 20 wt%, the LOI of flame-retardant epoxy resin was as high as 33% and
passed the vertical burning test V-0 rating, and PHRR and THR were greatly reduced. In
contrast, 24 wt% DOPO-DMDP was required to achieve a LOI value of 32% and obtain
UL94 V-0 grade. In addition, although the addition of DOPO-TMDS and DOPO-DMDP
enhanced the mechanical strength of the EP, a decrease in Tg was observed due to the
presence of the siloxane structure.
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Huo et al. [73,74] designed two kinds of highly efficient flame-retardant additives, DOPO-
TMT and DMT, containing DOPO and maleimide groups for EP systems (Figure 9a,d). In
DOPO-TMT, phosphenanthrene and triazine were flame-retardant groups, and in DMT,
phosphenanthrene and triazine-trione were flame-retardant groups. When the phosphorus
concentration was only 1.25 wt%, the EP/DOPO-TMT-1.25 system passed UL94 V-0 grade
with a LOI of 37.5%. The PHRR and THR values of EP/DOPO-TMT and EP/DMT samples
gradually decreased with the increase in phosphorus content. Compared with EP, the PHRR
of EP/DOPO-TMT-1.25 was reduced by 54%, while that of EP/DMT-1.25 was reduced by
59%, which shows a higher flame retardancy. DOPO acted with nitrogen-containing groups
simultaneously in the gas and condensed phase. In the condensed phase, both DOPO and
nitrogen-containing groups contributed to the formation of expanded and dense carbon
residue, which acts as a fire barrier (Figure 9c,f). In the gas phase, DOPO groups produced
free radical inhibitors to quench reactive free radicals, and the nitrogen-containing groups
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released inert gas to dilute the combustible gas by pyrolysis. This work provided strong
evidence for the synergistic effect of phosphorus and nitrogen.
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The combination of phosphorus-containing flame retardants and other flame-retardant
elements (nitrogen, boron, silicon) not only further improves the flame-retardant properties
of flame retardants but also reduces the overall load of flame retardant in the material and
maximizes the effectiveness under the same conditions [75]. Multi-component synergistic
systems will become one of the possible development trends of phosphorus-based flame
retardants in the future.

3.1.3. Carbon-Based Materials

The family of carbon-based nanomaterials, including carbon nanotubes (CNTs) [45,76],
graphene [46,47,77], and expandable graphite (EG) [49–51], have been widely used in
the preparation of polymer composites. The addition of carbon materials can not only
enhance the mechanical properties of the substrate but also give the substrate excellent
thermal stability, thermal or electrical conductivity, and fire resistance [78]. According to
the reports, the flame-retardant mechanism of carbon-based materials mainly comes from
strengthening the carbon layer and catalyzing the formation of carbon. The carbon layer
formed on the heated surface of the matrix material blocked the contact between heat and
oxygen, reduced the diffusion of active free radicals, and improved flame retardancy [79].

Graphene is a two-dimensional nanomaterial formed by a hexagonal network of sp2

hybrid carbon atoms with high mechanical strength and specific surface area [76]. Layered
graphene can be dispersed in the polymer matrix, creating a “tortuous path” effect to slow
down the heat diffusion rate and matrix decomposition rate [80]. However, graphene
is prone to aggregation due to its special flake-like structure and the existence of π-π
interactions and van der Waals force, and untreated graphene is difficult to disperse evenly
in the polymer [81]. Therefore, in order to solve the problem of dispersion, many scholars
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often treat graphite to obtain graphene oxide (GO) to improve the interface binding force
between graphene and epoxy resin first [45]. Then, GO is modified by chemical grafting
or electrostatic adsorption of nanoparticles [82,83] to improve the dispersion and bring
excellent flame retardancy to the graphene/epoxy resin system. For example, Li et al. [84]
grafted 2-(diphenylphosphine) ethyl triethoxysilane (DPPES) onto the surface of graphene
oxide nanosheets (GON) by condensation reaction. The addition of DPPES-GON (up to
10 wt%) to neat epoxy significantly increased its thermal stability and improved the LOI
by 80%.

Based on their unique structure and properties, CNTs are widely used in nano-
electronic devices, composite materials, electrical and thermal conductivity, nano-flame
retardants, and other fields [85]. CNTs have the potential to improve the mechanical prop-
erties and fire resistance of epoxy resin matrices at the same time, but the difficulty of
dispersion limits the load capacity of CNTs. Too low a load will lead to poor fire resistance,
while too high a load will affect the mechanical properties of the composite [86]. There-
fore, in order to balance the load contradiction and obtain CNTs/epoxy composites with
superior mechanical properties and flame-retardant properties, reasonable modification
of CNTs seems to be a feasible scheme. Wang et al. [86] performed concentrated acid
oxidation and ball milling on pristine CNTs, which significantly increased the content of
carbon-centered free radicals. The obtained carbon-centered free-radical-rich CNTs were
used to try to improve the fire safety of a high-performance CNT/epoxy composite without
sacrificing its mechanical properties. The test found that the overhanging bonds present
in carbon-centered free-radical-rich CNTs had strong free radical scavenging capacity (as
shown in Figure 10). This ability increased the loading of CNTs to 3 wt% with an LOI of
28.4% (LOI for pure EP was 21.9%) while enhancing mechanical properties.
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Moreover, functionalized grafting or inorganic filler loading of CNTs are also the
modification approaches that have recently attracted much attention from researchers. It
has been reported [87,88] that grafting functionalized siloxane (PDMA) onto CNTs can
enhance the interfacial adhesion between CNTs and the polymer matrix, improve their
dispersion in epoxy resins, and contribute to enhancing the flame-retardant properties
of composites. Dopo-functionalized multiwalled carbon nanotubes (MWCNT) were ob-
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tained by grafting 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxygen-10-phospho-10-oxide
(ODOPB) onto the outer surface of acylated multiwalled carbon nanotubes (MWCNT), as
shown in Figure 11 [89]. MWCNT-ODOPB was co-introduced into the epoxy matrix with
aluminum diethyl phosphate as a flame-retardant filler. When MWCNT-ODOPB content
was only 1 wt%, the composite system achieved a LOI value of 39.5% and passed the UL94
V-0 grade. It is mainly due to the char formation of MWCNT-ODOPB and the synergistic
effect of diethylaluminum phosphate. In a simpler method [90], phosphorus-nitrogen flame
retardants were coated on CNTs and combined with epoxy resin to form composite mate-
rials. The synergistic effect of phosphorus-nitrogen flame retardants and nanomaterials
endowed composites with excellent flame-retardant properties.
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Typically, the fire performance of the epoxy resin was effectively improved by the
organic combination of inorganic nanoclay and carbon nanotubes [91]. Lee et al. [92] studied
the effect of adding fluoromontmorillonite-containing MMT/MWCNT additives on EP.
The mechanism of flame retardants was analyzed from three aspects, and conclusions
were drawn: 1© Fluorinated MMT/MWCNT enhanced the dispersion in epoxy resin.

2© The addition of MWCNT reduced the degradation rate of epoxy resin and increased
carbon residue yield (increased from 9.1% to 15.4%). Meanwhile, due to the formation of
gel epoxy resin during combustion and the flame retardation of MWCNTs, the fire was
hindered and had difficulty spreading, as shown in Figure 12c. 3© The exfoliated MMT
acted as a heat storage medium to inhibit the heat transfer inside the epoxy resin, as shown
in Figure 12d. Under the joint action of the three aspects, the flame-retardant performance
of the epoxy resin was significantly improved, and the LOI value was increased from 21%
to 31%.

As another well-known carbon-based material, expandable graphite (EG) is a typical
expansion flame retardant with an inherent self-expanding graphite flake [93]. When
heated, it can expand and form a worm-like carbon layer that acts as a physical barrier
to heat transfer, providing the polymer with fire-protection properties [50]. In addition,
although EG contributes to the formation of carbon, the carbon structure is not tightly
enough [49]. Therefore, EG will often be used in conjunction with other materials [23].
Yang et al. [94] reported the effect of DOPO or 6-phenoxy-cyclotriphosphonitrile (HPCP)
and EG as flame retardants on the flame retardancy of epoxy resins. They found that the
residual chars of EP/EG/DOPO and EP/EG/HPCP composites exhibited more compact
and tough structures composed of worm-like graphite and a carbonized resin matrix.
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3.2. Reactive Flame-Retardant Method

Although adding a flame retardant to improve the flame-retardant properties of
polymer materials is a relatively mature method, the disadvantages of the additive system
are obvious, including reduced mechanical properties of the resin and poor durability in
long-term use. And what is worse is that as the material degrades, the flame retardant
migrates, and there will be seepage, which will lead to the loss of flame retardancy and
environmental pollution. Conversely, chemical reaction flame-retardant modification is
achieved by functional modification of the epoxy molecular chain or curing agent. The
flame-retardant elements are connected in the resin cross-linking network in the form of
chemical bonds so that the flame-retardant elements have difficulty migrating and seeping,
and the flame-retardant ability is more durable.

Given the above, phosphorus flame retardant is an important halogen-free flame
retardant, which has a flame-retardant effect in both condensed and gaseous phases [95]. As
early as 20 years ago, researchers proposed the idea of introducing phosphorus-containing
groups in the main or side chains of epoxy resins to improve the flammability of the resin
itself (as shown in Figure 13). By introducing a low amount of flame-retardant elements
(such as phosphorus, nitrogen, silicon, etc.) into the epoxy resin chain, the LOI value, UL94
level, and thermal stability are improved, and the PHRR and THR are reduced without
affecting the mechanical and physical properties. Huo [66], Dagdag [33], and Zhi [16] made
detailed reviews on this aspect.

Currently, 90% of epoxy resins are bisphenol A (BPA) resins, and 67% of BPA resins are
derived from petrochemical and non-renewable raw materials [96,97]. Moreover, BPA has
a series of disadvantages, such as flammability, and the toxicity caused by material degra-
dation not only destroys the ecological environment but also endangers organisms. For
this reason, with the requirements of regulations and environmental protection, bio-based
epoxy resin materials derived from sources such as vegetable oil [98,99], lignin [100,101],
itaconic acid [102], and cardanol [103,104] have attracted attention because of the great
availability of raw materials, and they have been applied in many fields such as toughening,
flame retardation, and high-temperature resistance.

How to design and prepare a sustainable, biodegradable flame-retardant epoxy resin,
which is expected to replace resource-limited petrochemical products, especially bisphenol
A type epoxy resin (DGEBA), is one of the potential directions for the future development
of constitutive flame-retardant epoxy resin. Ma et al. [105] synthesized a novel epoxy resin
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(MVE) from vanillin and melamine (See Figure 14). The epoxy equivalent of MVE is about
217 g/eq. After being cured by 4,4-diaminodiphenylmethane (DDM), MVE showed better
mechanical properties than DGEBA resin, and the carbon residue yield increased to 41.77%.
MVE has excellent intrinsic flame retardancy and achieved a LOI value of 39.5%; THR and
smoke generation rate (SPR) were reduced by 67.44% and 64.69%, respectively, which was
much better than DGEBA. In addition, under suitable conditions (THF:H2O = 6:4, 50 ◦C),
the cured product of MVE/DDM can be completely degraded within 6 h.
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Figure 14. Synthesis of intermediates of vanillin derivatives. (With permission from Ref. [105];
License number: 5617580564610, 2023, Elsevier).

Diphenol acid (DPA), as a plant derivative, has been shown to be one of the sustain-
able alternatives to bisphenol A. A flame-retardant bio-based epoxy resin (TEBA) was
synthesized from DOPO, diethanolamine, and DPA in three steps (Figure 15) [106]. Com-
pared with the original resin, the TEBA passed UL94 V-0 grade with an LOI of 42.3%,
and the PHRR, THR, and total smoke production (TSP) were decreased by 67%, 27%,
and 35%, respectively. As a consequence, the presence of phosphorous and nitrogen
flame-retardant elements in the molecular chain of the resin endowed TEBA-DDM with
remarkable fire resistance.
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4. Epoxy Fireproof Coating

Fireproof coatings are one of the important branches in the field of coatings, which are
used to protect materials such as metals, polymers, textiles, and wooden structures [107].
EP is one of the most important binders in common coatings used in human production
and life [108]. Generally, EP cross-links under the action of an amine curing agent to form a
coating with high strength, high resistance to impact [109], and high chemical resistance,
but the EP coating system also has defects such as easy combustion and poor toughness.
Therefore, in order to improve upon the above problems, the existing solutions mainly
include two aspects: on the one hand, starting from the molecular structure, the molecular
structure of the monomer or curing agent can be optimized, and functional molecular
chains at the end of the chain, such as a toughened polyurethane chain and flame-retardant
silicone chain, can be inserted. On the other hand, directly filled organic or inorganic
fillers can improve the mechanical, anti-corrosion, and flame-retardant properties of the
EP coating.

After sorting out the reports on epoxy resin flame-retardant coatings in recent years
(Table 3), it can be found that most of the research focuses on the preparation of new
flame-retardant fillers, among which the modification methods include chemical reaction,
organic–inorganic/inorganic–inorganic hybrids, assembly, coating, etc.

Table 3. Flame retardancy of epoxy coatings containing new flame retardants.

EPs and Flame Retardant Composition of FRs wt% LOI
(%)

PHRR
(kW/m2)

Residue Char *
(%) Reference

EP/FNP-Co P, N, Co

0 24.2 988.07 19.89

[110]2 27.6 930.02 26.50
4 30.2 791.97 27.71

(700 ◦C)

EP/BP@Si/CNTs
Polydopamine, KH560, Layered

hexagonal
BN, CNTs

0 - - 20.90 ± 1.9

[111]
1.5 - - 27.15 ± 1.4
2.0 - - 31.94 ± 3.1
2.5 - - 28.84 ± 2.7

EP/PZS@ZIF-67 Polyphosphazene, ZIF-67

0 25.5 1156.16 14.60

[112]1 30.1 957.56 14.90
3 31.2 748.09 18.35
5 31.9 565.59 23.27
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Table 3. Cont.

EPs and Flame Retardant Composition of FRs wt% LOI
(%)

PHRR
(kW/m2)

Residue Char *
(%) Reference

EP/(CH/PT)-TNTs
Titanium dioxide nanotubes (TNTs),

Chitosan (CH), Synthetic
phosphatized chitin (PT)

0 - 1406 -
[113]0.5 - 1009 -

2 - 719 -

EP/Zn-Al/LDH@RGO
Zinc-aluminum layered double

hydroxides (Zn-Al/LDH), Reduced
graphene oxide (RGO)

0 - - 20.6

[114]
1.0 - - 28.8
1.5 - - 32.2
2.0 - - 30.5

EP/Sep@AlPO4 Fibrous type sepiolite, AlPO4

0 21.8 1304.2 5.71

[115]5 25.2 1244.9 7.15
10 27.4 1130.7 11.71
20 30.1 1065.1 13.49

EP/GO@M-CNTs
Polydopamine, KH550, CNTs,

Graphene oxide (GO)

0 - - 20.1

[116]
1.0 - - 26.9
1.5 - - 28.8
2.0 - - 27.6

EP/BP@ZHS
Polyethyleneimine (PEI),

Zinc hydroxystannate (ZHS), BN
0 - - 20.5

[117]3.0 - - 30.3

* Data were derived from TGA test curves at 800 ◦C unless otherwise stated.

However, with the deepening of research on fireproof materials, people now have
higher and higher expectations for the service life of coatings, so the demand for multi-
functional organic coatings has become more and more urgent [118]. When it is difficult for
a single-performance coating to meet the application requirements in some harsh environ-
ments, flame-retardant coatings based on EP gradually developed into high-performance
coatings with multiple functions such as flame retardancy and anti-corrosion or wear resis-
tance qualities in order to extend the service life. Furthermore, the organic combination and
synergy of the components may be the key to the successful preparation of multi-functional
integrated fireproof coatings.

As shown in Figure 16, two kinds of silicon-sulfur multi-functional carboxyl curing
agents (S-I and S-II) were synthesized from cashew phenol as raw materials by mercapto-
ene coupling method and applied to EP [119]. The curing agent is mixed with conventional
epoxy resin instead of a traditional curing agent and coated on the steel plate to form a
coating. The coatings cured by S-I and S-II still maintain excellent corrosion resistance
after 1000 h of exposure to a salt spray test. Compared with the S-I coating, the S-II-cured
coating exhibits high impedance values and low corrosion rates and has a higher weight
loss temperature and carbon residue yield (As shown in Table 4). This is because the
presence of additional functional groups in S-II increased the cross-linking density of the
resin and improved the thermal stability and other coating properties.

It has been reported that the introduction of bifunctional phosphate-containing triazole
derivatives (D-ATA) into the epoxy resin system through curing reactions can simultane-
ously improve the flame retardancy and corrosion resistance of the resin (Figure 17) [120].
In this system, the structure of triazole phosphate not only contributes to flame retardation
but also effectively inhibits electrochemical corrosion. When D-ATA content was only
5 wt%, the flame-retardant epoxy resin achieved an LOI value of 33.2%, passed the UL94
V-0 grade, and residual char yield reached 16.6%. Moreover, the anti-corrosion efficiency of
EP/5 wt% D-ATA was increased by 95.3% compared with pure EP. At the same time, the
mechanical properties of composite epoxy thermoset materials were also improved due to
the existence of hydrogen bonds and π-π interaction in D-ATA.

Porous coordination polymers (PCPs), commonly known as metal–organic frame-
works (MOFs), are a new class of organic–inorganic porous structures in which metal
cations serve as nodes and organic molecules serve as bridges [121]. Because of their
controllable structure and easy surface functionalization, MOFs are often used to prepare
MOFs/polymer nanocomposites. Additionally, MOFs have satisfactory compatibility with
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polymer substrates due to the presence of organic–inorganic hybrid structures [122]. The
existing research reports indicate that the addition of MOFs to epoxy resins can affect vari-
ous properties of epoxy resins, such as anti-corrosion [123,124], flame retardation [125–127],
thermomechanical [128], and dielectric properties. Accordingly, MOFs/EP system has great
potential in the preparation of multi-functional integrated coatings such as fire protection
and anti-corrosion.
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Table 4. TGA values and electrochemical parameters of coatings cured with S-I and S-II.

Coatings
Thermal Properties Corrosion Properties

T5%
(°C)

Tonset
(°C)

Toffset
(°C)

Char Yield
(%) Impedance Icorr

(A)
Corrosion Rate

(mm/yr)

S-I-0.6 240 305 399 5.74 1.71 × 109 4.5 × 10−6 7.40 × 10−3

S-I-0.8 243 313 429 24.8 1.43 × 1010 2.74 × 10−7 4.50 × 10−4

S-I-1.0 267 309 403 48.2 2.02 × 1010 1.28 × 10−7 2.10 × 10−4

S-II-0.6 297 351 443 29.2 6.39 × 109 3.2 × 10−6 5.26 × 10−4

S-II-0.8 300 363 450 47.3 9.27 × 1010 9.7 × 10−8 1.60 × 10−4

S-II-1.0 335 365 453 63.1 2.91 × 1011 7.47 × 10−8 1.45 × 10−4

For example, it has been reported that an anti-corrosion coating (ZnG@ZIF-8/EP)
was successfully prepared by adding MOF-based anti-corrosion materials loaded with
corrosion inhibitors (ZnG@ZIF-8) to EP [129]. ZnG@ZIF-8 is uniformly dispersed in the
coating system and exhibits better corrosion resistance than ZIF-8/EP, EP, and ZnG+ZIF-
8/EP coatings. The mechanism study showed that the corrosion rate was delayed due to
the defects, and the pores in the EP coating were fully populated by ZnG@ZIF-8. Organic
ligands in the MOF structure not only help to improve compatibility but also provide
flame-retardant elements or groups, including nitrogen-containing groups and aromatic
structures [130]. The ligand of ZIF is composed of imidazole compounds rich in nitrogen
atoms. Furthermore, it has recently been reported that nitrogen-rich MOF, when used as a
flame retardant for EP, had a remarkable catalytic carbon formation ability to improve fire
safety performance [131].
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The multi-functional integrated flame-retardant coating is mostly used in special condi-
tions; in addition to the necessary fire prevention ability, it also usually has other properties
such as anti-fouling, antibacterial, anti-corrosion, and wear-resistant. For example, the fire-
proof coating applied to a tunnel surface needs both anti-fouling and water resistance [132].
This is because the environment inside the tunnel is closed, and the oil smoke generated by
the car is not easy to dissipate and adsorb on the tunnel wall surface, so the fireproof coating
on the surface should have the ability to resist the adhesion of oil smoke and withstand
high-pressure water cleaning. For this reason, when designing the coating formulation,
nano-silica, titanium dioxide, and organosilane were introduced into the epoxy resin ex-
pansion flame-retardant system to enhance the fire protection, anti-fouling, and waterproof
properties of the coating.

5. Summary and Perspectives

As one of the most important polymer materials since it was discovered by human
beings, epoxy resin is widely used in various fields due to its excellent performance.
However, the high flammability caused by its structure is an urgent problem for researchers
to explore and solve. This review first describes the combustion process of polymer and its
flame-retardant mechanism. The research progress of flame-retardant epoxy resin in recent
years is summarized from two modification methods: the physical additive flame-retardant
method (including silicon-, phosphorus- nitrogen- and carbon-based flame retardants) and
the reactive flame-retardant method, and their advantages and disadvantages and flame-
retardant properties are briefly summarized. Finally, the new flame retardants used for
epoxy resin flame-retardant coatings are summarized, and the development trend of epoxy
flame-retardant coatings with multi-function integration of flame retardant/anti-corrosion
is proposed. Although the flame-retardant chemical system has gradually matured after
decades of development, the following issues still need to be further studied in the future:

1. The flame-retardant life is short. With the degradation of the resin, the doped fillers
will continue to overflow, losing the flame-retardant effect and easily causing environ-
mental pollution. Therefore, green and efficient reactive flame retardants need to be
further explored;



Coatings 2023, 13, 1663 18 of 23

2. The performance is not long-lasting, which makes it difficult to meet the applica-
tion requirements of special environments, especially in the application of coating
preparation. Generally, harsh environments (such as aviation, aerospace, plateau,
and deep-sea) will accelerate the aging of materials, so there is an urgent need to
develop a series of multi-functional epoxy flame-retardant materials that have long-
term durability, low-temperature mechanical properties, antibacterial and corrosion
resistance, etc.;

3. The flame-retardant effect of multi-element coordination is much greater than that
of a single element, but the high cost limits the development and application of
multi-element flame retardants. Therefore, active flame retardants with cheap raw
materials, simple preparation methods, and low overall costs need to be further
explored. Ultimately, it will be an important research direction in the future to prepare
reactive flame-retardant resins from abundant bio-based raw materials or to regulate
the flame retardancy of resins through molecular structure design.
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