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Abstract: Previous studies have often observed that moisture can promote the lubricity and wear
resistance of carbon-metal contact pairs in purely mechanical conditions. However, the damage to
pantograph carbon strips was found to be aggravated in rainfall conditions, leading to a much lower
service life than anticipated. This suggests a novel influence mechanism of water on carbon-copper
(C-Cu) contacts during current-carrying friction. In this paper, the influence mechanism of water on
the current-carrying friction characteristics of carbon-copper contacts, including friction coefficient,
wear loss, electrical contact resistance, and arc discharge characteristics, was studied under different
current levels by controlling the water content of carbon sliders. The results show that the variation
trend of current-carrying tribological parameters of C-Cu contacts with water content at 60–100 A is
significantly different from that at 20–40 A, which is mainly the result of the competition of lubrication,
cooling, and obstruction of current transmission by moisture. The abnormal wear of carbon sliders
in the water environment occurs when the current is greater than 60 A, and the main reason for the
abnormal wear is the intensification of discharge erosion. In addition, micro-crack propagation under
high water content is an important factor in the deterioration of carbon strip properties.

Keywords: C-Cu sliding contacts; water content; current-carrying friction and wear; electrical contact
resistance; arc discharge characteristics

1. Introduction

C-Cu contacts are used as the first choice for moving current collection parts in high-
speed railway pantograph-contact line systems due to their excellent conductivity and
self-lubricity [1–3]. To ensure the safety and stability of energy transfer in railway systems,
it is particularly important to study the friction and wear characteristics of C-Cu contacts [4–6]. In
the case of fixed material, the main factors affecting the tribological properties include the
lubrication state of contact pairs, operating conditions, and environment. For C-Cu contacts,
most studies on tribological properties focus on the influence of operating conditions,
including velocity [7,8], contact pressure [9,10], and current level [11–13].

In a large number of studies on friction and wear properties of carbon-graphite
materials, it has been found that moisture is a key influencing factor [14–21]. As early as
1978, Lee and Johnson found that metal-graphite brushes had a lower friction coefficient
and wear loss in humid environments [14]. Water adsorption on the lamellar graphite
surface terminates the graphite active edge bond, thus reducing the graphite surface energy
and improving its self-lubrication performance [15]. Rietsch et al. further studied the
adsorption and desorption process of water on graphite surfaces through isotopically
labeled water to explain how the lubrication properties of graphite depend on water [16].
Surface passivation of water has also been observed in ultrananocrystalline diamond and
tetrahedral amorphous carbon, which significantly reduces the friction coefficient of these
two materials [17]. Zaiti et al. found that the existence of water vapor contributes to the
high orientation of the microcrystals on the graphite surface, which is an important reason
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for the decrease in the friction coefficient and wear amount of graphite materials [18].
However, water does not always play a role in increasing the lubrication properties of
graphite materials. Morstein et al. found in a study of graphite coatings that under high
load conditions, when the humidity exceeds 37%, the wear rate of graphite coating will
increase significantly, and the dissolution and stratification of graphite coating caused by
excessive water is an important reason [19]. Hirani and Goilkar found in their research
on the tribological properties of carbon–graphite face seals that excessive water drains
the carbon layer formed between the primary seal and flange surfaces and consequently
increases the wear rate of carbon seals [20]. Wu et al. studied the current-carrying friction
of C-Cu contacts and found that the wear of the carbon slider increased with humidity.
They believed that the main reason was that water passivation made the carbon layer slip
more easily [21].

The C-Cu contacts of the pantograph-contact line systems usually operate in rainfall
or in a high humidity and heat environment. The operation experience shows that the
damage of the C-Cu electrical contacts is intensified during rainfall, and the wear of the
carbon slider is 3 times that of the dry environment. However, the C-Cu electrical contacts
are different from those of the mechanical friction system, and the electrical damage caused
by the high current is the main reason for the wear of the carbon slider [22]. In this case,
it is uncertain whether the increased wear of the carbon slider caused by water is also
attributable mainly to the loss of the carbon lubricating film. After all, in the presence
of water film, the transmission of current at the C-Cu interface is different from that in
the dry condition, and the change in electrical damage of the C-Cu contacts is not clear.
Although the reference [21] also studied the influence of humidity on the current-carrying
wear of C-Cu contacts, it was found that the wear of the carbon slider was aggravated
under humidity. However, the current level in the test is only 2 A, which is far from the
actual current level (hundreds A) of the pantograph-contact line systems, and it is difficult
to fully explain the causes of abnormal wear of the carbon slider. Therefore, it is necessary
to investigate the influence of moisture on the current-carrying tribological properties of
C-Cu contacts at different current levels.

In this paper, current-carrying friction tests of C-Cu contacts under six water content
levels and six current levels are carried out. The effects of water content on FC, wear,
electrical contact resistance (ECR), and discharge energy were tested. Based on the surface
morphology and composition analysis results of the carbon samples, the deterioration
mechanism of the tribological properties of C-Cu contacts in a water environment was dis-
cussed. Through this study, the theoretical basis is provided for the design and formulation
of the operation, overhaul, and maintenance plans of high-speed railway pantograph-
contact line systems in rainfall or hot and humid environments. It also points out the
direction for the research and development of new pantograph strip materials suitable for
rainfall environments.

2. Materials and Methods
2.1. Experimental Device

The self-made reciprocating current-carrying friction test platform simulating the
operating state of the pantograph-contact line systems is shown in Figure 1 [23]. The
copper contact line is at an angle of 15 ◦C in a horizontal direction and is fixed between
the support column through the insulator and the contact line clamp. The carbon slider is
installed in the fixture of the moving parts, which can slide reciprocally under the contact
line through the linear guide rail to simulate the “Z” movement of the pantograph-contact
line systems. The effective travel of the linear guide rail is 500 mm, and the operating
frequency is continuously adjustable from 0.3–6 Hz. A cylinder is arranged directly below
the slider fixing device, which can provide a 0–500 N continuously adjustable load for
C-Cu contacts. The matching AC/DC current source can provide 0–200 A continuously
adjustable AC/DC current for C-Cu contacts.
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Figure 1. Schematic diagram of the reciprocating current-carrying friction and wear test facility.

The data acquisition system in the test was introduced in a previous study [24],
which can collect the voltage, current, contact pressure, friction force, and contact interface
temperature between the C-Cu contacts during the test.

2.2. Test Conditions and Test Materials

The carbon sample used in the test is a pure carbon slider produced by Dongxin
Electric Carbon Co., LTD. (Zigong, China) with a size of 100 mm × 35 mm × 35 mm. The
copper sample is made of a pure copper contact line with a cross-sectional area of 150 mm2.
The chemical composition and physical properties of the above materials are shown in
Table 1.

Table 1. Chemical composition and physical properties of the experimental material.

Materials and Properties Carbon Slider Contact Wire

Element content/wt% 99.19%C, 0.73%S, 0.08%O 99.50%Cu, 0.50%O
Density/103 kg·m−3 1.67 8.9

Resistivity/10−6 Ω·m 25 0.018
Specific heat/J·kg−1·K−1 769 380

Thermal
conductivity/W·m−1·K−1 3 380

Hardness/107 N·m−2 70 82.6
Elastic modulus/ GPa 11.7 132

Poisson’s ratios 0.427 0.323
Softening temperature/◦C - 350

The test conditions are shown in Table 2. The motion frequency of the C-Cu contacts
set in the test was 6 Hz, the applied load was 120 N, and the test time was 60 min. Two
variables are included in this test: water content and current. Through the preliminary test,
it is found that the saturated water absorption capacity of the carbon slider used in the test
is about 10 g. Therefore, the water content of the carbon slider in the test is set at 6 levels in
the range of 0–10 g. The current is also set at 6 levels. The FC, wear loss, contact resistance,
and discharge energy were extracted as characteristic quantities of the test results. In order
to ensure different experimental conditions in each group, 36 non-repeated combinations
of the two variable values were selected for the test. Each group was repeated three times
to reduce experimental error.
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Table 2. Parameters of the test.

Items Conditions

Water content/g 0, 2, 4, 6, 8, 10
Sliding frequency/Hz 6

Normal load/N 120
Current/A 0, 20, 40, 60, 80, 100

Sliding time/min 60

The test process mainly includes the following 4 steps:
Step 1: Pretreatment and weighing of the carbon slider. The friction surface of the

carbon slider was polished with 320# and 2000# sandpaper in turn, and then the carbon
slider was ultrasonically cleaned with distilled water for 30 s. Put the cleaned carbon slider
into a vacuum drying box and dry it at 105 ◦C for 8 h. Take out the carbon slider after
drying and put it in the desiccant to cool to 25 ◦C. Then, weigh the carbon slider, and mark
its mass as m1.

Step 2: Water content control of the carbon slider. Place the carbon slider into the
measuring cylinder with deionized water and remove the slider when the water level drops
to the specified scale. To make the carbon slider saturated with water absorption, a boiling
method should be adopted [25]. The carbon slider after water absorption is placed on the
drain rack so that there is no dripping water on the carbon surface, and the mass of the
carbon slider is m2 at this time.

Step 3: Carry out the current-carrying friction test. The carbon slider, after absorbing
water, was placed on the test machine for the current-carrying friction test. Four groups
of data, including friction force, contact pressure, contact voltage drop, and current, were
collected in real-time during the test. After the test, the carbon slider was cooled to 25 ◦C
and weighed, and the mass of the carbon slider at this time was recorded as m3.

Step 4: The drying treatment of the carbon slider after the test. The carbon slider after
the test was put into the drying box and dried at 105 ◦C for 8 h. After drying, remove the
carbon slider and put it in the desiccant to cool to 25 ◦C. Then, weigh the carbon slider and
mark its mass as m4.

2.3. Test Data Processing

When the load is applied to the C-Cu contacts during motion, the contact pressure
perpendicular to the contact interface is Fc, while the friction force parallel to the contact
interface is f. The FC µ is calculated by the ratio of friction force f to contact pressure Fc,
as shown in Equation (1). In the reciprocating motion of the carbon slider, tension, and
pressure are applied to the force sensor in the two motion directions. Therefore, the signs
of the friction forces in the two directions are opposite, which are denoted as f l and f r in
two directions.

µ =
f

Fc
=
| fl|+ | fr|

2Fc
(1)

where the FC µ is dimensionless; the unit of contact pressure Fc and friction force f, f l, and
f r is N.

An electronic balance of type PR224 ZH with an accuracy of 0.0001 g was used to
weigh the carbon slider. The wear loss of the carbon slider in the test process is calculated
by Equation (2).

ω = m1 −m4 (2)

where the unit of ω, m1, and m4 is g.
The measured voltage drop U consists of three parts: copper voltage drop Ua, carbon

voltage drop Ub, and contact voltage drop Uab. According to the Ohm method, the ECR of
C-Cu contacts is:

R =
Uab

I
=

U −Ua −Ub
I

(3)
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In this test, Ua and Ub are far less than Uab and can be ignored. The unit of R is Ω, the
unit of U, Ua, Ub, and Uab is V, and the unit of I is A.

When the carbon slider is separated from the copper contact line, and the off-line
voltage drop is greater than the arc starting voltage, discharge occurs [26]. Discharge energy
E is related to the off-line voltage U, current I, and off-line time t, as shown in Equation (4).
The average single discharge energy can be obtained from the discharge energy E and
discharge frequency N, as shown in Equation (5).

E =
∫

UIdt (4)

e =
E
N

=

∫
UIdt
N

(5)

where the unit of E and e is J.

3. Results and Discussion

Before presenting the test results, all abbreviations that appear in this paper are ex-
plained. Abbreviations are represented by the first letter of the nomenclature. The friction
coefficient is expressed by FC. The average friction coefficient is the average value of the
friction coefficient during the test time, expressed by the AFC. The dynamic friction coeffi-
cient is the time domain function of the friction coefficient expressed by the DFC. Electrical
contact resistance is expressed by the ECR. The average electrical contact resistance is
the average value of the electrical contact resistance during the test time expressed by the
AECR. The dynamic friction coefficient is the time domain function of the friction coefficient
expressed by the DFC.

3.1. Influence of Water Content on Friction and Wear under Different Current

Figure 2 shows the variation trend of the average FC (AFC) with water content. The
influence of water content on the AFC differed under different current levels (Figure 2a). In
the first case, when the current is between 0 A and 20 A, the AFC decreases with the rise of
water content. The decrease rate of AFC reached the maximum before 6 g of water content
and then gradually slowed down. When the water content is in the 8–10 g range, the AFC
tends to be stable. In the second case, when the current was greater than or equal to 40 A,
the AFC showed a U-shaped distribution with an increase in water content. The AFC has
a minimum value. When the current is 40 A, the AFC reaches the minimum value at the
point of 8 g. With the increase in current, the corresponding water content decreases when
the AFC reaches the minimum value. The variation trend of AFC with the current is similar
under different water content; that is, AFC increases monotonically with the increase of
current (Figure 2b). However, the rising rate of the AFC with the current was different with
different water contents. It has the slowest rate of rise at 20 A and the fastest rate at 100 A.
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In past studies [15,16,27], the reason why water promotes the co-lubricity of carbon-
metal contacts has been clarified. The free OH− and H+ in water are adsorbed on the
surface of carbon materials, which helps to reduce the surface energy of active bonds, thus
making the adhesive component in AFC decrease significantly. On the other hand, water
first gathers at rough spots to form the curved liquid surface effect and to generate the
curved liquid surface force. When the rough spots on the contact interface are covered by
the liquid, the curved liquid surface force reaches the maximum [28]. With the increase
in water content, more contact spots were covered by the liquid, and the gradual rise of
curved liquid surface force offsets the promoting effect of water on the lubrication property
of carbon material. This is also an important reason why AFC decreases first and then
becomes stable with water content at 0–20 A. At 40–80 A, a new factor appeared to make
the AFC rise when the water content exceeded a certain value.

The influence of interface water content on dynamic FC (DFC) at currents of 10 A,
40 A, and 80 A was further studied, as shown in Figure 3. When the C-Cu contact pair
was in pure mechanical friction (I = 0 A), the DFC fluctuated around 0.17 and then shifted
downward with the increase of water content. When the water content was 6 g, the DFC
shifted to 0.14, and the downward trend became weak. The DFC fluctuated around 0.14 in
the 6–10 g range. According to the standard deviation of the DFC at 0 A, the fluctuation
degree of DFC gradually slows down with the increase in water content, which indicates
that the lubrication effect of water can not only make FC decrease but also make FC more
stable. When the current is 40 A, the DFC fluctuates around 0.25 at 0 g and then translates
downward to around 0.21 at 8 g. The water content continued to increase, and the DFC
always fluctuated around 0.21. At 40 A, the standard deviation of the DFC decreased first
and then increased with the increase in water content and reached the minimum value at
6 g water content. This indicates that new factors affecting friction increase the instability
of the FC. The slight rise of the AFC at 40 A—10 g was mainly caused by the increase in
DFC fluctuation. When the current reaches 100 A and the water content is less than or
equal to 6 g, the DFC fluctuates around 0.31, while when the water content is more than
6 g, the DEF gradually shifts upward. After the standard deviation of the DFC drops from
0.0418 at 0 g to 0.0364 at 2 g, it enters a stable stage. When the water content exceeds 8 g,
the standard deviation of the DFC increases rapidly, even exceeding that at 0 g. It needs to
be further determined whether the factors causing this change are the same as those at 40 A.

Figure 4 shows the variation trend of wear loss with water content. The effect of
water content on wear loss is significantly different between the current-carrying condition
and the pure mechanical condition (Figure 4a). When the water content rises from 0 g to
2 g, the wear loss of pure mechanical friction decreases, while the wear loss of current-
carrying friction increases. When the current rises from 20 A to 100 A, the gap of wear loss
corresponding to 0–2 g water content gradually drops from 323% to 5%. The reasons for
this difference need to be further explored. When the water content is greater than 2 g,
there are still two trends of wear loss with water content under different current levels. In
the first case, when the current is between 0 A and 20 A, the AFC decreases with the rise
of water content. However, the change in wear loss at 0 A is still slightly different from
that at 20 A. At 0 A, the decrease rate of wear loss gradually decreases with an increase
in water content, while at 20 A, the wear loss is basically stable when the water content is
greater than or equal to 6 g. In the second case, when the current is greater than or equal to
40 A, the wear quantity shows a U-shaped distribution with a rise in water content, which
is similar to the changing trend of AFC. It is worth noting that when the current exceeds
80 A, the wear loss corresponding to a high water content (8–10 g) is far greater than that
of other conditions, and the carbon slider is in an abnormal wear state.
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Figure 4. Effect of water content on wear loss of C-Cu contacts: (a) under different currents; (b) under
different water content.

On the one hand, the lubrication and isolation of the water film effectively reduces
adhesion wear and delamination wear. On the other hand, water evaporation decreases
the temperature of the contact interface and inhibits the oxidation wear of carbon materials.
This is the main reason for the decrease in wear loss under low water content. The
increase in wear loss at a high water content may be related to the obstruction of current
transmission.
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3.2. Influence of Water Content on ECR and Arc Discharge under Different Current

Figure 5 shows the variation trend of the average ECR (AECR) with water content.
When the current is 20–60 A and 80–100 A, the changing trend of AECR with water content
is different. The main difference appears in the water content of 0–2 g. When the current is
lower than 60 A, the AECR corresponding to 0–2 g water content shows an upward trend.
However, this upward trend gradually decreases with an increase in current. When the
current is 80–100 A, the AECR decreases at 0–2 g water content. When the water content is
more than 2 g, the AECR shows a U-shaped distribution with the water content at 20–80 A,
while the AECR at 100 A increases monotonically with the water content. It is worth noting
that at 20–80 A, the minimum value of AECR as a function of water content continuously
moves forward with the rise of the current. When the current is 100 A, the minimum value
of AECR obtained at 2 g water content may be the result of the advance of the minimum
point. In other words, the changing trend of AECR with 2–10 g water content at 100 A is
similar to that at 20–80 A. Under different water contents, the changing trend of AECR
with current is slightly different. When the water content is less than 6 g, the AECR reaches
the minimum value at a current of 40 A and then rises with the rise of the current. When
the water content was more than 8 g, the AECR increased with the current.
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The main factors affecting ECR include the number and size of contact spots and
the interfacial film layer. In the water film, carbon/copper debris and positive/negative
ions form a new current transmission channel under the action of electric field force, and
the actual number of conductive spots increases, which is helpful in reducing ECR [29].
However, when the coverage area and thickness of the water film increase further with the
increase in water content, a large number of C-Cu spots cannot be directly contacted, and
the velamen resistance increases significantly, which makes the ECR rise. In addition, the
cooling effect of water weakens the plastic deformation of the C-Cu contact spots, and the
size of the contact spots decreases, which may increase the ECR. When the current is small
(I ≤ 40 A), the leakage current channel in the water film can still complete the task of current
transmission, so the increment of AECR is not significant at a large water content. However,
as the current gradually increases, the conductive channel in the water film is difficult to
transmit more current. At this time, the higher the water content, the more difficult the
current transmission between C-Cu contacts, which is reflected in the significant increase in
AECR. When the current is 0–60 A, the reason why the AECR corresponding to 2 g water
content is higher than that of 0 g water content needs to be further explored.

The dynamic ECR (DECR) changes with water content at the currents of 20 A and
100 A were further analyzed, as shown in Figure 6. When the current is 20 A, the fiducial
value of DECR corresponding to 0 g of water content is the lowest, but its fluctuation
degree is the highest in terms of the standard deviation. When the water content reached
2 g, the DECR shifted upward, but the fluctuation degree of DECR decreased significantly.
With a further increase in water content, DECR shifted downward, and the fluctuation
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degree gradually decreased. When the water content is greater than 6 g, the DECR basically
stabilizes around 75 mΩ. However, the fluctuation of the DECR was the weakest when the
water content was 6 g, and then the fluctuation was aggravated with an increase in water
content. When the current reaches 100 A, DECR corresponding to 0–2 g water content
fluctuates around about 110 mΩ, and DECR gradually shifts upward with a further increase
in water content. The fluctuation degree of DECR reached the minimum value at 2 g water
content and then increased rapidly with the increase in water content. The fluctuation
degree of DECR corresponding to 10 g water content is increased by 155.12% compared
with the case at 0 g water content.
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Figure 7 shows the variation trend of arc discharge characteristic parameters with
water content. In the process of current-carrying friction, the discharge characteristic
parameters concerned mainly include discharge frequency (Figure 7a), average single
discharge energy (Figure 7b), and total discharge energy (Figure 7c). Under different
current levels, the discharge frequency and average single discharge energy showed two
different trends with the increase in water content. When the current is in the range of
20–40 A, the discharge frequency decreases with water content, while the average single
discharge energy shows a U-shaped distribution with water content. When the current
exceeds 60 A, the discharge frequency shows a U-shaped distribution with water content,
and the average single discharge energy increases with water content. The minimum point
of discharge frequency with a current of 60–100 A and the minimum point of average single
energy with a current of 20–40 A appear near 4 g water content. The variation in total
discharge energy with water content is similar to that of the average single discharge energy.
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The effect of water film on arc discharge when the current is less than or equal to
60 A is obviously different from that when the current is greater than or equal to 80 A.
Firstly, the discharge mechanism is analyzed when the current is less than or equal to
60 A. The lubrication effect of the water film makes the relative motion of the C-Cu
contacts more stable, which is beneficial for restraining the vibration separation of contact
spots and reducing the discharge frequency. However, at the same time, the presence
of water film increases the degree of non-uniformity of the electric field between C-Cu
contacts and significantly increases the local field intensity [30]. In the case of vibration
separation or brittle fracture of contact spots, the locally enhanced electric field is easy
to break down the air gap, which is manifested as the increase of discharge frequency
and the decrease of average single discharge energy. When the current level does not far
exceed the transmission limit of the leakage current channel in the water film, with the
increase in water content, the lubrication performance of the water film decreases, but
the ability to cause electric field distortion increases, which makes the decreasing rate
of discharge frequency gradually close to zero. In addition, Joule heat and friction heat
in the process of current-carrying friction cause the evaporation of water, while water
molecules are electronegative, and the increase in water vapor content in the air increases
the breakdown field strength of the air [31]. When the water content is small, the distortion
effect of the water film on the electric field is dominant, and the average single discharge
energy decreases with the water content. When the water content exceeds a certain value,
a large amount of water vapor effectively increases the breakdown field strength of the
air, and the average single discharge energy increases with the water content. When the
current is greater than or equal to 80 A, the water film seriously hinders the transmission
of the current. Even if the contact spots are in stable contact, discharge still occurs in the
water film. The higher the water content, the more frequent the discharge in the water film,
resulting in a slight decrease and then a rapid increase in discharge frequency with water
content. The breakdown field strength of liquids is much higher than that of gas, which
leads to an increasing trend of average single-discharge energy with water content.

3.3. Morphology and Composition Analysis under Different Water Contents

Figure 8 shows the surface morphology and element content of the carbon slider under
different electric currents when the water content is 0–2 g. Compared with the case of
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2 g water content, a copper-red, blue-purple, or silver-gray adhesion layer exists on the
surface of the dry carbon slider (Figure 8a–c). According to XRD composition analysis,
the adhesion layer is mainly composed of Cu, CuO, and Cu2O (Figure 8g), which comes
from the material transfer of the copper contact wire. When the water content is 0 g, the
amount of copper transfer on the carbon surface decreases with the increase in current.
However, it is found from the EDS spectra that the larger the current, the more overlap the
enrichment areas of copper and oxygen elements, which indicates a higher degree of copper
oxidation (Figure 8h,i). Under dry conditions, the surface energy of carbon materials is
very high, and the adhesion of carbon materials to copper materials is strong. At the same
time, Joule heat reduces the hardness of copper materials. It enhances the activity of copper
atoms, resulting in a large number of copper elements adhering to the carbon surface. The
transferred copper offsets the loss of the carbon material and thus shows a low wear loss
at 0 g water content. After the transfer of copper to the carbon surface, the lubricated
C-Cu contacts change to highly adhesive Cu-Cu contacts, but the Cu-Cu contact spots have
better conductivity. Therefore, when the current is less than 60 A, the average value and
fluctuation degree of FC increase, while the ECR achieves a smaller value. With the increase
of current, a large amount of Joule heat promotes the oxidation rate of the copper surface,
and the adhesion between the copper oxide and carbon surfaces is relatively lower. The
direct contact between the carbon-copper matrix is isolated to a certain extent [32], which is
the main reason for the decrease in the copper transfer amount.
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Figure 8. Surface morphology and composition of carbon sliders at 0–2 g water content: (a–c) surface
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currents at 2 g water content; (g) XRD patterns; (h,i) EDS composition distribution of (a,c). Point A is
the region of 0 g-20 A carbon slider surface scanned by EDS. Point B is the region of 0 g-100 A carbon
slider surface scanned by EDS.
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When the water content increased to 2 g, the ions in the water film reduced the surface
energy of the carbon material and, at the same time, isolated the direct contact of C-Cu spots
to a certain extent, resulting in an insignificant copper transfer layer on the carbon surface
(Figure 8d–f). However, different from that at 0 g water content, the material transfer traces
under high currents are more obvious. The copper ions move toward the carbon surface
under the action of an electric field force in the water film. The larger the current, the
stronger the electric field. The increase in copper ion migration in the water film is the
main reason for the expansion of the transfer layer. The wear loss measured at 2 g water
content is closer to the wear loss of the carbon material itself. Although the wear loss of
carbon material is inhibited, the value is higher than that at 0 g water content. When the
current is less than 60 A, the ECR also shows an upward trend due to the decrease in the
copper transfer amount, but it is more stable. When the current is greater than 80 A, the
barrier effect of the oxide film on the carbon surface at 0 g water content is higher than that
of the water film at 2 g water content. Therefore, the ECR is different from that at 0–60 A
but shows a downward trend.

Figure 9 shows the surface morphologies of carbon materials with different water
contents at 100 A. Similar to the variation trend of total discharge energy, the discharge
erosion trace on the carbon surface gradually increases with the increase in water content
(Figure 9a–d), and the discharge erosion area grows faster when the water content is
greater than 6 g. It can be inferred that the abnormal wear of carbon materials under high
water content (8–10 g) is caused by discharge erosion. According to the metallographic
microscopic images, the area and depth of the discharge erosion pit increase with the
increase in water content, and copper ions migrating through the discharge plasma channel
accumulate at the bottom of the erosion pit (Figure 9e–g). These pits significantly increase
the roughness of the carbon material, resulting in an increase in both the average value and
the fluctuation degree of EF. On the other hand, the rough interface corresponds to fewer
contact spots, and the current propagation is further hindered, which is an important reason
for the significant increase in the mean value and fluctuation degree of the ECR. In addition,
micro-cracks on the surface of carbon materials were observed in SEM images (Figure 9h–j).
The width, length, and number of microcracks increased significantly with the increase in
water content. On the one hand, the high contact resistance and frequent discharge caused
by interfacial water film aggravate the heat generation of the C-Cu interface. On the other
hand, water evaporation accelerates heat dissipation on the carbon surface. This causes the
local temperature gradient of the carbon material to increase observably. The concentration
of thermal stress and the difference in the thermal expansion coefficient of each component
of carbon material are important factors leading to the germination and expansion of
micro-cracks [33]. The higher the water content, the more obvious the role of water in
promoting heat production and heat dissipation, which leads to a higher cracking degree
of carbon materials. Micro-cracks are an important factor leading to the deterioration of
carbon material properties. With the expansion of micro-cracks, the compression strength,
tensile strength, and bending strength of carbon materials decrease significantly, which
makes it difficult to cope with the operating environment of the railway pantograph-contact
line system under strong vibration and impact.

3.4. Discussion

The material of the carbon slider in this paper is amorphous pyrolytic carbon with a
low degree of graphitization and a large number of dangling bonds. Under dry conditions,
the binding force of the C-Cu interface is strong, showing a high FC, which is also reflected
in the morphology of the carbon slider in Figure 8. The transfer of copper material to
carbon material caused by high adhesion accelerates the wear of the copper contact line.
In the C-Cu contacts of the pantograph-contact line systems, the important purpose of
using a carbon slider is to protect the copper contact line, which will break due to wear and
cause serious train running accidents. Therefore, some measures should be considered to
enhance the lubricity of C-Cu contacts in areas with low humidity.
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When the interface contains water, the water film distribution between the interfaces
as the water content increases is shown in Figure 10. Due to the curved liquid surface effect,
the water film first accumulates at the contact spots (Figure 10a). With an increase in water
content, the water film gradually covers the entire contact area (Figure 10c). On the one
hand, with the increase in water content, the dangling bond on the carbon surface captures
polar particles, reduces interface adhesion, and helps to form a continuous carbon friction
film [34], which is conducive to obtaining a smaller FC. On the other hand, the increase in
the curved liquid surface force also makes the FC to decrease to a certain extent and then
tend to be stable.

The change in the current conduction path in water film is an important factor that
affects the friction and wear characteristics of the C-Cu interface. The carbon and copper
abrasive particles and the copper ions of the contact line in the water film form a new
current transmission channel under the action of an electric field force. In the case of
water film coverage shown in Figure 10a, the current can be conducted through both the
contact spots and the conducting particles in the water film, and the current transmission
capacity is improved. However, when the water film gradually covers the entire contact
surface (Figure 10b,c), the contact spots that can transmit current gradually decrease. When
the water film completely covers the contact surface, current transmission can barely be
completed in the case of a low current. However, at higher current levels, the conducting
particles in the water film cannot undertake the task of current transmission. At this time,
a high contact voltage drop is generated, accompanied by an intensified arc discharge.
The wear loss of the carbon slider is significantly increased due to discharge erosion,
which is consistent with the change in wear loss in Figure 4 and the morphology of the
carbon surface in Figure 9. The intensified discharge erosion leads to a significant increase
in the roughness of the contact interface materials, which decreases the stability of the
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C-Cu contact system, increases the FC and ECR, and further intensifies the discharge, thus
forming closed-loop feedback that exacerbates the damage to the carbon-copper interface.
The reasons for the decrease in the wear loss of carbon materials with low water content
differ under different current levels. In addition to discharge erosion, the electrical damage
to the carbon slider also includes oxidation wear caused by joule heat [35]. However,
this oxidation wear becomes significant only after the contact spot temperature exceeds
600 ◦C [36]. Clearly, at low current levels, Joule heat is difficult to heat the contact spot
to this temperature. Therefore, the main reason for the decrease in wear loss under the
condition of low current is the passivation of water and the formation of friction film.
Under high current conditions, oxidative wear is significant [24]. The water film isolates
the contact between carbon material and oxygen to a certain extent. Meanwhile, the
evaporation of water causes Joule heat to spread rapidly, and the temperature of the contact
spots decreases accordingly. The inhibition of oxidative wear of carbon materials is the
main reason for the decrease in wear loss under large currents. In addition, the cooling
effect of the water film increased the temperature gradient of the carbon material, and
the material microcracks germinated and expanded. When the microcracks are connected
with each other, the carbon material is separated locally, which further reduces the wear
resistance of the carbon slider.
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4. Conclusions

In this work, the variation trends of the current-carrying tribological properties of C-Cu
contacts, including FC, wear loss, ECR, and arc discharge characteristics with water content,
are studied. Combined with surface morphology and composition analysis, the essential
causes of the abnormal wear of C-Cu contacts were explored. The relevant conclusions are
as follows:

(1) When the current is less than or equal to 60 A, the AFC decreases first and then
gradually becomes stable with the water content. When the current is greater than 80,
the AFC is U-shaped with water content. The fluctuation degree of the DFC is U-shaped
with an increase in water content under the current-carrying condition. The decrease in
the surface energy of carbon materials caused by the water film is the main reason for the
decrease in AFC and the stabilization of DFC. The curved liquid surface effect of the water
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film causes the FC to decrease to a certain degree and then tend to be stable. However, the
hindrance effect of the water film on current transmission is to promote the increase of AFC
and the increase of DFC fluctuation.

(2) There is an upward trend of wear loss at 0–2 g water content. The transfer of
copper to the carbon surface results in lower wear loss at 0 g water content. When the
water content is in the range of 2–10 g, the wear loss decreases with water content at 0–20 A,
while presenting a U-shaped distribution with water content at 40–100 A. When the current
exceeds 60 A, the wear loss of the carbon slide at 10 g water content is higher than that
at the dry condition, which shows the abnormal wear of the carbon slide in the water
environment. The increase in discharge erosion is the main cause of abnormal wear.

(3) When the current is less than or equal to 60 A, AECR shows a downward trend,
while DECR’s standard deviation shows an upward trend at 0–2 g water content. At 0 g
water content, the copper adhesion layer on the carbon surface helps to reduce AECR
but makes DECR more unstable. At 2–10 g water content, AECR presents a U-shaped
distribution with water content, and the minimum point of AECR moves forward with
an increase in current. The minimum value of AECR at 100 A was obtained at 2 g water
content. The current transmission obstruction and the increase of contact surface roughness
caused by damage intensification are the reasons for the significant increase in AECR and
the aggravation of DECR fluctuation when water content exceeds a certain value.

(4) There are two different trends in arc discharge characteristics with water content
at different current levels. At 20–40 A, the discharge frequency decreases with water
content, while the average single discharge energy shows a U-shaped distribution with
water content. At 60–100 A, the discharge frequency presents a U-shaped distribution with
water content, while the average single discharge energy increases with water content.
The variation trend of total discharge energy with water content is similar to that of the
average single discharge energy. The lubrication and distortion of the electric field caused
by the water film contribute to the decrease in discharge frequency and discharge energy.
However, when the water content increases to a certain extent, the water film seriously
blocks the transmission of current, and discharge occurs in the water film, leading to a
significant increase in discharge frequency and discharge energy.

(5) With an increase in water content, the current transmission resistance increases,
and the heat generation of contact spots increases. At the same time, water evaporation
accelerates heat emissions at the contact interface. The temperature gradient in the local area
of the contact interface was significantly enlarged, and a thermal stress crack was generated
and extended, which accelerated the deterioration of the carbon slider performance.
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