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Abstract: To solve the problem of low detection accuracy of water supply pipeline internal wall
damage, a random forest algorithm with simplified features and a slime mold optimization support
vector machine detection method was proposed. Firstly, the color statistical characteristics, gray
level co-occurrence matrix, and gray level run length matrix features of the pipeline image are
extracted for multi-feature fusion. The contribution of the fused features is analyzed using the feature
simplified random forest algorithm, and the feature set with the strongest feature expression ability
is selected for classification and recognition. The global search ability of the slime mold optimization
algorithm is used to find the optimal kernel function parameters and penalty factors of the support
vector machine model. Finally, the optimal parameters are applied to support the vector machine
model for classification prediction. The experimental results show that the recognition accuracy
of the classification model proposed in this paper reaches 94.710% on the data sets of different
corrosion forms on the inner wall of the pipeline. Compared with the traditional Support Vector
Machines (SVM) classification model, the SVM model based on differential pollination optimization,
the SVM model based on particle swarm optimization, and the back propagation (BP) neural network
classification model, it is improved by 4.786%, 3.023%, 4.030%, and 0.503% respectively.

Keywords: pipeline inspection; random forest; feature selection; slime mold optimization algorithm;
support vector machine

1. Introduction

As a key piece of equipment in modern urban construction, cast iron has good fatigue
resistance and vibration reduction, so it is often used in automobile parts manufacturing,
railway, machinery manufacturing, and other fields. Because of its high strength, it is also
widely used in urban water supply systems. According to the American Water Association
(AWWA), the vast majority of water supply pipes in the United States are gray iron pipes
and ductile iron pipes, and more than 90% of the existing water supply pipelines in China
use metal pipes. Still, at the same time, cast iron pipes are generally prone to rust, which
can easily cause damage to the surface layer of the metal pipeline, thus resulting in a
reduction in the service life of the pipeline and an increase in construction and maintenance
costs [1]. To ensure safe operation and to avoid water pollution and waste of resources
due to internal damage, timely and accurate pipeline damage detection is of great value
for industrial applications. Corrosion exists in all areas of life, not only in water supply
pipelines but also in tooth corrosion and ceramic corrosion [2—4].

Nowadays, popular pipeline defect detection methods include the magnetic flux
leakage method [5], ultrasonic detection method [6], etc. However, these methods have
certain limitations. The cost of detection is too high, and the area that can be detected is
limited. It is difficult to detect some small areas of corrosion. Therefore, a pipeline defect
detection method with wide application scope and low cost is needed [7].
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In recent years, digital image processing and machine vision techniques have been
rapidly developed in the field of structural health monitoring and can be effectively used
to investigate defects on the external surface of pipes or other metal surfaces [8], such as
corrosion and cracks. Kuo [9] et al. constructed a rust identification model based on the
statistical properties of image color and the K-means clustering method, which is suitable
for images with uneven illumination, However, when the image surface is uneven or the
corrosion area is large or very deep, the probability of correct detection of this algorithm is
low. Medeiros [10] proposed a model for classifying corroded and non-corroded surfaces
using texture descriptors obtained from greyscale co-occurrence matrices and image color
features. Safari and Shoorehdeli [11] applied artificial neural networks, Gabor filters,
and entropy. Bondada [12] et al. detected and quantitatively assessed pipeline corrosion
damage by calculating the average of image pixel saturation values. Hoang [13] proposed a
method to automatically detect the corrosion of the inner wall of the water supply pipe. By
combining the image texture feature extraction algorithm and the support vector machine
classifier with the differential pollination optimization, the detection accuracy of the inner
wall of the water supply pipe was 92.81%. Qu, ZH [14] et al. proposes a method to
detect pitting corrosion by combining feature extraction and random forest algorithms,
without studying more corrosion types. Nhat-Duc [15] proposed a LSHADE meta-heuristic
algorithm to optimize the SVM model to detect pitting on the surface of components, with
an accuracy of 91.80%, the accuracy rate needs to be improved. However, the above method
only detects the presence or absence of corrosion on the pipeline without classifying and
identifying different corrosion patterns, which lacks practicality and accuracy for realistic
water supply pipelines with different corrosion types.

Therefore, this paper uses a combination of multiple image feature extraction and
selection and Support Vector Machines (SVM) to classify and identify different corrosion
patterns of pipes. The existing SVM research and applications mainly use Principal Com-
ponent Analysis (PCA) methods to reduce the dimensionality of the dataset. Still, the
PCA-extracted principal components have a certain degree of ambiguity. They are not as
complete as the original samples. At the same time, the Random Forest (RF) algorithm
is an excellent solution to this problem. Retaining Rahman [16] used the Random Forest
algorithm to calculate and rank the feature importance, and after selecting the top-ranked
features, used SVM to classify the proteins. However, the random forest algorithm for
feature selection suffers from the problem of not considering the impact of correlation
between feature variables on recognition accuracy, so this paper uses feature simplification
(FS) to reduce the effect of redundant features on the random forest algorithm. In the face
of high-dimensional feature data, the feature simplification algorithm can improve the
performance of the random forest algorithm in feature selection, further enhancing the
timeliness of the algorithm and the accuracy of subsequent recognition.

In addition, SVM is highly dependent on determining parameters such as kernel
function parameters and penalty factors, so optimizing the optimal parameters is the key
to improving the generalization ability of SVM models. The Particle Swarm Optimization
(PSO) algorithm, a population intelligence-based stochastic search algorithm, is commonly
used to optimize the kernel function parameters and penalty factors of SVM models.
Li. F [17] proposed a PSO-SVM-based method for predicting the probability of failure of
pressure pipelines. Although the PSO algorithm can optimize the parameters of the SVM
model, the PSO algorithm itself lacks stochasticity and quickly falls into the dilemma of
local optimum. In this paper, the Slime Mold Algorithm (SMA) [18] is proposed to optimize
the parameters of the support vector machine classification model. The Slime Mould
Optimisation algorithm has the advantages of solid convergence performance, few tuning
parameters, and easy operation, and it can maintain a balance between local optimality
search and global search, which can meet the needs of optimizing the internal parameters
of support vector machines in this paper.

Therefore, this paper combines the image feature extraction and selection algorithm,
as well as the support vector machine classification model to achieve the classification and
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recognition of pipeline inner wall corrosion, and uses the feature simplified random forest
(RF) algorithm to improve the related algorithm to improve the performance of random
forest algorithm feature selection. The Slime Mold algorithm (SMA) is used to optimize
the parameters in the SVM model to build the SMA-SVM classification model. Finally, the
model is applied to the data set of pipe wall corrosion to classify and identify the damage
to the pipe’s inner wall.

2. Related Work
2.1. Video Image Acquisition of Pipeline Corrosion

In this paper, the industrial endoscope video capture platform built and assembled by
ourselves is used to obtain the video image of pipeline inner wall corrosion [19], the video
capture platform is shown in Figure 1, and Figure 2 is a sample image of the video after
processing.

| | 7= V4 ’
monitor rail PLC Power Endoscope stepper motors

Figure 1. Video image acquisition platform.

Normal pipeline Texture order corrosion Localised corrosion

Figure 2. Partial image acquisition result map.

The image obtained using the above acquisition platform contains 3D information.
In order to facilitate the subsequent image feature extraction, it is necessary to conduct
panoramic expansion of the 3D image. As the pipeline is usually buried underground or in
a dark environment, the acquired image is dark and the corrosion area is not obvious in
the background, so an image enhancement algorithm is required to preprocess the image.
Figure 3 is the process diagram of pretreatment.

The pre-processing process of the original image is as follows: first, use the cone-
based bidirectional projection model to expand the three-dimensional image into a two-
dimensional image [20]; secondly, the improved Retinex algorithm of bidirectional illumi-
nation estimation model is used to improve the image contrast and enhance the brightness
of the corroded area [21].
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Figure 3. Image pre-processing process diagram.

Finally, the establishment of the pipe damage image sample library is divided into
normal pipe, color sequence corrosion, texture six types of level corrosion, pitting corrosion,
local corrosion, and global corrosion, as shown in Figure 4. There are 1320 sample images
in the data sample library, which are stored in JPG format, including 923 training sets
and 397 test sets, in order to lay the foundation for subsequent image feature extraction
and recognition.

e o £ 4 - £
(a) Normal pipeline (b) Color order corrosion

(e) Localised corrosion (f) Global corrosion

Figure 4. Selected images from the sample library. (a) Normal pipeline; (b) Color order corrosion;
(c) Texture order corrosion; (d) Pitting corrosion; (e) Localised corrosion; (f) Global corrosion.

2.2. Image Feature Extraction

As the surface of the pipe contains various irregularities and its features are complex,
objects with similarities to the target, such as dirt and paint, and pixels with the same color
value can belong to different levels of corrosion images at the same time. Therefore, the
information provided by just one pixel is not sufficient for corrosion detection. Thus, in
this paper, multiple features are extracted from the corrosion image of the pipe’s inner
wall, including color features, greyscale co-occurrence matrix, and greyscale travel matrix
features [22]. The features are fused and selected to form a useful feature set for subsequent
damage type identification. Color features [23]: This paper uses the statistical properties
of the image samples’ three color channels (red, green, and blue) to represent the image
features. The mean, standard deviation, skewness, kurtosis, color entropy, and color range
of the image color moments are extracted to characterize the color statistics of the pipeline
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image. R. Haralick developed the Gray Level Co-Occurrence Matrix (GLCM) as a texture
feature in 1973 by studying the spatial correlation characteristics of image greyscales [24].
In this paper, the eigenvalues of the four edge parameters (second-order angular moments,
contrast, correlation, entropy) of the Gray-Occurrence Matrix are extracted in four direc-
tions: 0°, 45°, 90° and 135°. The Gray-Level Run Lengths Matrix (GLRLM) is a texture
description method proposed by Galloway [25]. This paper extracts 11 statistical features
from the Gray-Level Run Lengths Matrix at 0°, 45°, 90°, and 135° to describe the texture
statistics of a pipeline image, which can effectively identify textures of different finenesses.
Based on the above feature extraction, a 78-dimensional feature dataset is constructed. The
feature extraction results are shown in Tables 1-3.

Table 1. Extraction Results of Statistical Characteristics of Some Samples Based on Color Channels.

Pipeline Category Mean Value  Standard Deviation Skewness  Kurtosis  Color Entropy Color Range
R 107.844 23.941 0.292 1.990 6.428 117
Normal pipe G 97.574 23.492 0.308 1.939 6.374 113
B 167.188 30.549 0.003 1.972 6.856 155
R 84.769 16.854 0.197 2.739 6.028 221
Color order corrosion G 80.407 16.747 0.132 2.853 6.022 225
B 150.145 29.435 0.201 2.113 6.814 172
R 83.570 11.230 —0.771 3.215 5.387 70
Texture order corrosion G 74.736 11.643 —0.447 3.068 5.489 77
B 136.067 35.168 —0.026 1.832 6.991 158
R 100.661 21.139 0.376 2.698 6.386 123
Pitting corrosion G 93.763 20.932 0.391 2.553 6.359 115
B 158.628 31.468 —0.246 2.203 6.909 151
R 80.059 16.561 1416 5.681 5.866 121
Localized corrosion G 80.037 13.787 0.804 3.274 5.707 91
B 164.378 23.403 —0.174 2.888 6.571 152
R 98.441 14.020 0.476 3.199 5.813 94
Global corrosion G 89.284 12.502 0.409 3.186 5.663 86
B 142.005 21.896 0.353 2.506 6.427 125
Table 2. Statistical characteristics extraction results of some samples based on gray level co-occurrence
matrix.
Pipeline Category Angular Second Moment Contrast Ratio Relevance Entropy
0° 0.160 0.083 0.413 2.086
Normal pipe 45° 0.145 0.136 0.410 2.230
pip 90° 0.150 0.115 0411 2.179
135° 0.141 0.151 0.408 2.258
0° 0.190 0.145 0.756 1.970
Col d . 45° 0.1529 0.271 0.719 2.212
OloT Order corrosion 90° 0.159 0.240 0.728 2.168
135° 0.147 0.292 0.712 2.249
0° 0.313 0.032 1.220 1.428
T q . 45° 0.296 0.069 1.202 1.549
exture order corrosion g 0.302 0.057 1213 1510
135° 0.295 0.070 1.201 1.553
0° 0.175 0.073 0.510 2.020
Pitting corrosion 45° 0.153 0.141 0.505 2.205
& 90° 0.160 0.119 0.508 2.149

135° 0.153 0.145 0.505 2212
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Table 2. Cont.
Pipeline Category Angular Second Moment Contrast Ratio Relevance Entropy
0° 0.281 0.068 1.170 1.561
Localized . 45° 0.250 0.132 1.128 1.730
ocalized corrosion 90° 0.261 0.109 1.142 1.675
135° 0.252 0.130 1.130 1.724
0° 0.279 0.070 1.187 1.589
Global . 45° 0.242 0.143 1.134 1.779
obal corrosion 90° 0.254 0.115 1.151 1.717
135° 0.244 0.137 1.138 1.768

Table 3. Extraction results of statistical properties of some samples based on gray run matrix.

Parameter Normal Pipe Color O.r der  Texture Qrder Pitting Corrosion  Localized Corrosion Global Corrosion
Corrosion Corrosion
0° 0.771 0.857 0.621 0.809 0.832 0.809
SRE 45° 0.865 0.929 0.786 0.867 0.915 0.914
90° 0.833 0.918 0.737 0.854 0.897 0.904
135° 0.849 0.921 0.783 0.875 0.908 0.911
0° 6.071 4.328 17.270 8.522 4.039 4.758
LRE 45° 2.106 0.929 3.062 2.134 1.574 1.486
90° 2.783 1.747 4.522 2.604 1.845 1.730
135° 2.256 1.554 3.133 2.017 1.597 1.507
0° 442.623 740.262 599.922 454.300 681.941 746.097
GLN 45° 581.45 886.416 947.395 554.823 877.198 975.340
90° 543.257 862.205 823.412 543.484 848.442 943.703
135° 563.991 874.832 939.930 563.330 869.975 971.063
0° 19,966.020 29,580.394 8621.792 21,687.847 27,213.109 24,183.847
RLN 45° 33,794.335 44,607.519 24,049.713 33,965.463 42,129.079 42,296.771
90° 28,945.779 42,181.717 18,916.917 31,661.123 38,679.191 39,982.996
135° 31,665.173 43,093.962 23,667.970 35,348.021 40,958.871 41,829.793
0° 1.197 0.767 1.097 1.023 1.341 1.355
RP 45° 1.588 0.967 1.971 1.391 1.683 1.813
90° 1.476 0.938 1.756 1.338 1.618 1.755
135° 1.550 0.953 1.955 1.415 1.668 1.805
0° 0.002 0 0 0.001 0 0
45° 0.003 0 0.001 0.002 0 0
LGRE  gqo 0.003 0 0.001 0.002 0 0
135° 0.003 0 0.001 0.002 0 0
0° 3172.112 4325.982 2265.700 4565.655 2957.301 2633.387
HGRE 45° 2730.462 4058.447 1998.330 3892.727 2832.746 2383.500
90° 2767.959 4070.036 1944.681 3897.827 2839.865 2364.071
135° 2752.042 4070.046 1986.400 3846.712 2827.241 2383.808
0° 0.001 0 0 0 0 0
45° 0.002 0 0 0.001 0.001 0
SRLGE  gqo 0.002 0 0 0.001 0.001 0
135° 0.002 0 0 0.001 0.001 0
0° 2707.915 3768.246 1461.829 3965.357 2513.504 2210.679
SRHGE 45° 2487.672 3798.357 1573.591 3566.641 2614.016 2184.739
90° 2438.457 3762.410 1412.859 3514.164 2570.794 2134.102
135° 2476.439 3782.280 1551.406 3538.903 2587.578 2180.085
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Table 3. Cont.

Color Order  Texture Order

Parameter Normal Pipe Pitting Corrosion  Localized Corrosion Global Corrosion

Corrosion Corrosion

0° 1 1 1 1 1 1

45° 1 1 1 1 1 1
LRLGE g0 1 1 1 1 1 1

135° 1 1 1 1 1 1

0° 7971.153 12,460.391 27,913.795 14,437.773 9478.739 8410.301
LREGE 45° 4120.572 5516.019 5875.481 5900.670 4126.334 3485.919

90° 5105.659 6274.054 9086.611 6978.469 4725.028 4119.797

135° 4357.937 5729.299 6077.917 5732.068 4229.234 3540.333

2.3. Surface Roughness Measurement

Common methods of surface roughness measurement include probe profiler, scanning
tunneling microscope (STM, R i schlikon, Zurich, Switzerland), atomic force microscope
(AFM, Bruker Corporation, Billerica, MA, USA) and some optical measurement tech-
niques [26]. Because AFM can give a high-resolution image of the surface morphology
at the atomic scale, it has the advantages of not harming the measured surface and high
accuracy, AFM has brought great progress to the measurement research in this field.

In this study, RMS (root mean square, also known as Rq) and R, (absolute arithmetic
mean) are used to quantitatively describe the surface roughness.They are calculated ac-
cording to the height values of the data points in the AFM image (set the average height of
each data point to 0) using the following statistical method [11], where h; is the measured
surface height value and n is the number of surface height values to be counted.

1 n
RMS =, [-) h? 1)
n3
1 n
Ra = _Z|hi| (2)
N3

The AFM image of pipeline corrosion image is shown in Figure 5, and the relationship
curve between RMS and R, values of surface roughness and AFM scanning scale is shown
in Figures 6 and 7.

0.67

X

Figure 5. AFM Image.

It can be seen from the above figure that the surface of the image studied in this paper
is rough and undulating, and there is some corrosion. Therefore, it is necessary to carry out
follow-up research to classify and identify the corrosion morphology of the inner wall of
the pipeline.
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Figure 6. Relationship between RMS value and AFM scanning scale.
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Figure 7. Relationship between R, value and AFM scanning scale.

3. Method

In this paper, a variety of defect features, including color features, gray level co-
occurrence matrix, and gray level run length matrix features, are extracted from the pipeline
inner wall corrosion image, and then these features are fused and combined with the
random forest algorithm (FS-RF) improved by feature simplification algorithm to filter the
fused features, and finally, the key and effective feature data set is extracted. Finally, the
SVM classification model is used to test the extracted feature dataset, and the SMA (slime
mold optimization algorithm) is used to optimize the SVM classifier, which improves the
accuracy of recognition classification. The overall experimental process of this paper is
shown in Figure 8.
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Figure 8. Overall flow chart of the experiment.

3.1. Feature Selection

In recent years, Random Forest has been widely used as a generalization method.
Because it can handle many high-dimensional features, can determine the importance and
relationship of features, and has no tendency to overmatch, this paper selects data features

based on a random forest algorithm.

3.1.1. Random Forest Algorithm

In 2001, Breiman proposed the Random Forest algorithm [27], a classifier that can pro-
vide training and integrated estimation of samples using multiple decision trees. Figure 9

is the schematic diagram of its algorithm.
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Figure 9. Schematic diagram of the random forest algorithm.

In a classification decision tree, the Gini index (Gini impurity) is used as a criterion for
selecting features, and the Gini index for each node is calculated as

N

Gini(t) =1 - Y [p(jlt)]* ®

j=1
where p(j|t) it indicates the probability that the category j is selected at the node ¢, the
sample data at the node ¢ is identified as the same type when the Gini impurity is zero, the
smaller the value, the lower the probability that the selected samples in the set are classified
wrong, i.e., the higher the purity of the set, the more information is obtained.

3.1.2. Feature-Simplified Random Forest Algorithm

The purpose of the feature simplification algorithm is to reduce the interference
of some useless features of the random forest algorithm in the calculation of the Gini
index value in the decision tree and to eliminate features that have little influence on the
identification of damage to the inner wall of the pipe. By calculating the correlation between
each feature parameter and different damage category samples, each feature parameter is
assigned a corresponding weight, and the features are ranked and filtered according to the
magnitude of the weights. Figure 10 is the algorithm flow chart of FS.

Step1 A sample R is randomly drawn from the candidate set of pipeline damage features,
with samples from the same class S being adjacent and randomly drawn from a
different class of samples.

Step 2 Select one of the three samples R S which D is a unique feature A;.

Step 3 Calculate the Euclidean distance between the feature A; of the sample R and the
feature A; of the sample S, denoted as d(R4,,S4,), and the Euclidean distance
between the feature A; of the sample R and the feature A; of the sample D, denoted
as d(RAi/ DAi)'

Step 4 Repeat steps 1 to 3 and calculate the weights for each feature A; with the following
formula.

W(A;) = W(A;) — (d(RAI;‘; Sa) _ d(RA;r’lDAf) )(i=1,23,...,N) @)

where W(A;) is the weight of the feature A;, and the initial value of each feature weight is
assigned to 0; m is the number of repetitions; N is the total number of pipe damage features,
the values are assigned to 0.7 * P and P is the total number of samples in the pipe damage
feature dataset.
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Pipeline damage
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Y
N
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Calculate W(A4i)

v

m = m+l

v

7/ Output: W(A4i)

End

Figure 10. Flow chart of the feature simplification algorithm.

The process of the feature simplification-based random forest feature selection algo-
rithm (FS-RF) is as follows: firstly, features with zero or very low weights in the pipeline
damage dataset are removed using the feature simplification algorithm (FS); secondly, the
random forest algorithm is used to calculate the importance of the features and rank them; fi-
nally, feature selection is performed based on the ranking results of the feature importance.

3.2. SMA-SVM Classifier Design
3.2.1. Support Vector Machine Principles

The SVM algorithm is a statistical machine learning technology. It uses structural risk
minimization approximation to solve binary and multi-classification problems and has
good applications in the case of insufficient sample size and nonlinearity [28].

Figure 11 is the schematic diagram of SVM.
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Figure 11. SVM schematic.
In the sample space, the hyperplane function used for classification is denoted as
wix+b=0 (5)

where w = (wy; wy; . ..;wy) is the weight vector, and b is the bias, for (x;,y;) € D if the
hyperplane correctly classifies the sample, then we have
wlx;+b>0,y; = +1

T,. o (6)

w'xi+b<0,y;, =-1

The sample data satisfying Equation (4) is the “support vector,” and the interval (Mar-
gin) between the two categories is defined in Equation (5) and is called the maximum interval.

2
Margin = Teoll )
The separating hyperplane with “maximum spacing” is the one that finds the con-
straint parameters w b in Equation (5) such that Margin it is maximum, i.e.,

maxi
w,b [|zwl] (8)
styi(wlxi+b) >1,i=1,2,...,m

Support vector machines use a non-linear transformation to transform the input space
to a higher dimensional space; this transformation is achieved using a kernel function, the
RBF kernel function has been chosen for this paper, and the formula is

2
[l — x|
202

) )

x(x;,x;) = exp(—
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3.2.2. Slime Mold Optimization Algorithm

This paper proposes using the Slime Mold Optimization Algorithm (SMA) to optimize
the parameters of the SVM classification model C g. SMA is a powerful population
optimization algorithm based on the natural mucus oscillation pattern [29]. It has the
advantages of strong convergence, less parameter adjustment, and easy operation. It can
ensure the balance between local and global search and meet this paper’s requirements for
optimizing the internal parameters of support vector machines.

A mathematical model of the mucilage foraging process is developed, and the equation
for an individual mucilage position update is

rand(UB — LB) + LB, rand <z
X(t+1) =< Xp(t)+ovbx (Wx Xa(t)—Xp(t)), r<p (10)
vex X(t), r>p

where UB, LB denotes the upper and lower boundaries of the search area rand is a random
number uniformly distributed between the intervals [0, 1]. z is a custom parameter (usually
0.03), vb is a random number between [—4, a], and vc is a linear convergence from 1 to
0. t denotes the current number of iterations, X;(t) denotes the current position of the
best-adapted individual, X(t) denotes the current position of the slime individual, X4 and
Xp denote the positions of two randomly selected slime individuals, respectively, and W
denotes the weight factor of the slime indicates the weight factor of the mucilage.
The control parameter p is updated with the following formula

p =tanh|S(i) — DF| i€1,2,---,n (11)

where S(i) represents the fitness value of X and DF represents the best fitness value in
all iterations.
The interval for the parameter vb is [—a, a], and the function expression for a is

a= arctanh(—(%) +1) (12)

where T indicates the maximum number of iterations.
The updated formula for

1+7r- log(ﬁiﬁf? +1), condition
1—r- log(il;__ifg +1), others

W(Smelllndex(i)) = { (13)

SmellerIndex = sort(S) (14)

where condition represents the top half of the population in terms of fitness, others repre-
sents the remaining individuals, r represents the random number of individuals in the [0, 1]
interval, bF represents the best fitness obtained for the current number of iterations, wF
represents the worst fitness obtained for the current number of iterations, and SmellIndex
represents the sequence of fitnesses (increasing sequence in the minimum value problem).

The parameter vc takes a value between the interval [0, 1] and eventually converges to

0. The updated formula is

ve = [=b,b],b = 1—% (15)

3.2.3. SMA-SVM Classification Model

The penalty factor C in the support vector machine (SVM) classification model with
the kernel function parameters ¢ was used for the optimization search using the slime mold
algorithm (SMA). The classification recognition rate of 30% (397) of the test samples in the
sample feature dataset was used as the value of the fitness function in the SMA algorithm
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for the optimization search of the SVM parameters. The iterative steps of the SMA-SVM
learning algorithm are as follows: Figure 12 is the algorithm flow chart.

Start .| Initializing the
"l population
‘ ”i
Set algorithm v
parameters, input Calculate the fitness value of
training set and test set individual slime bacteria to
< obtain the optimal solution
SMA algorithm to obtain optimal v
arameters bF and wF . .
P i " Updating population
locations
\ 4
Mapping to SVM parameters in C and
g for training based on optimal \ 4
parameters Recalculate the

fitness and select the
optimal solution

\ 4
Test with the trained SVM
classification model and output the

test results

Y
End

Is the maximum number o
iterations reached?

Figure 12. Flow chart of SMA-SVM algorithm.

Step 1
Step 2
Step 3

Step 4
Step 5

Step 6

Numerical initialization, setting the relevant parameters of the SMA, such as
the number of populations, the maximum number of iterations, the number of
optimization parameters, the upper and lower bounds for the values of C g, etc.
Initialize the slime population N, and randomize the initial population location.
Use the SVM classification model to calculate the fitness of each slime fitness and
rank the slime with the smallest fitness saml! fitness as the target location best fitness.
Update the optimal position of the slime bacteria, as per Equation (8).

Determine whether the maximum number of iterations has been reached. If so,
continue with Step 6; otherwise, jump to Step 3 to continue the execution.

Output the optimal parameters (bestc, bestg) and map them to the SVM parameters
(C, g) to obtain the initial SVM model, then train the SVM model and test the
SVM model.

4. Experiments
4.1. Experimental Environment Platform

The experimental environment of this study is Inter Core i5-4200M CPU 2.5 GHz,
using Matlab R2016a platform and Libsvm toolbox.

4.2. Feature-Simplified Random Forest Algorithm

In this paper, the features of the traditional random forest algorithm and the improved
random forest algorithm are ranked in importance by two metrics, Mean Decrease Accuracy
(MDA) and Mean Decrease Gini (MDGini) [30], as shown in Figures 13 and 14.
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Mean decrease in Accuracy of RF
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feature
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Figure 13. Traditional random forest feature algorithm.

Mean decrease in Accuracy of FS-RF

magnitude
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feature

100 Mean decrease in Gini index of FS-RF

magnitude
g
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feature

Figure 14. Improved random forest feature selection algorithm.

In Figures 13 and 14, “MDA” indicates the degree to which the prediction accuracy of
the RF algorithm decreases. The higher the value, the more critical the function is. “MDGini”
indicates the degree of influence of each variable on the heterogeneity of observations at
each node of the classification tree. The higher the value, the greater the importance of
the variable. When calculating feature importance, the improved random forest algorithm
has used the simplified algorithm (FS) to eliminate features with zero or very low weights.
Only the remaining features are analyzed for feature importance (in this paper, the features
eliminated are 41, 43, 44, 55, 66, and 77); the features screened out by the improved random
forest algorithm are the same as the features with the lowest importance in the traditional
algorithm’s importance ranking. The improved random forest algorithm effectively reduces
the random forest error’s upper bound and improves the feature selection’s feasibility.

In Table 4, 1-78 represent the original feature dataset, A1-A78 represent the results
of ranking the feature parameters of the traditional random forest algorithm, and B1-B78
represent the results of ranking the feature parameters of the random forest improved by
the feature simplification algorithm. The bolded and italicized features in the table are the
features eliminated by the feature simplification algorithm.
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Table 4. The sequence of pipeline damage characteristics before and after the assessment.

1~78: Ranking of Original Features; A Ranking of RF Feature Evaluation Results; B: Ranking of Improved RF Feature Evaluation Results

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A3 Al A60 A4 A57 A29 A36 A68 A6 A58 A2 A6l A28 A71 A30
B3 Bl B4 B60 B6 B36 B57 B68 B29 B71 B2 B28 B27 B58 B15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A27 Al5 A25 A69 A50 A72 Al3 A47 Alé6 A24 Al7 A5 A49 Ad6 A70
B50 B47 B30 B13 B61 B16 B5 B72 B25 B69 B24 B49 B17 B46 B26
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
A23 A48 A26 Al8 A32 A33 A39 A9 A35 A38 A8 A37 Al4 A59 A7
B23 B70 B38 B59 B18 B37 B35 B48 B32 B39 B31 B14 B9 B7 B8
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
A31 A34 A45 A19 Al2 A67 All A22 A10 Ab4 A21 A42 A20 A40 A56
B33 B45 B34 B67 B19 B10 B21 B11 B40 B20 B12 B42 B22 B64 B56
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
A65 A62 A78 A51 A76 A52 A53 A75 A73 A54 A74 A63 A43 A41 A44
B62 B65 B51 B73 B53 B63 B78 B75 B76 B54 B52 B74 B43 B41 B44

76 77 78
A55 A66 A77
B5 B66 B77

Through a large number of comparison experiments, the top 70% feature attributes
in the feature importance ranking of the improved random forest algorithm were finally

selected in this paper as the vector set for constructing subsequent feature recognition,
namely 1, 2, ..., 55, with a total feature importance percentage of 94%.

4.3. Experimental Parameter Setting

Parameter setting of SVM: the most widely used RBF kernel function is used as the
kernel function.

SMA parameter settings: the initial population size is set to 20, and the number of
terminating generations is set to 200; the penalty parameter C is set to 0.01 to 500; the kernel
parameter g is set to 0.01 to 100, and the weighting factor is set to 1. Figure 15 shows the
changing trend of the fitness function value.

(Termination algebra = 200,Number of populations = 20)
Best ¢ = 10.3858 g = 0.1 CVAccuracy = 99.2065%

1
08 ® ® 7 —+—Optimal adaptation | |
Q Q o —&—Average adaptation
o
L oo | SRS ® 7
2074 0 ® 5 ol | § o ®l o o © ¢ |
=i ® @ :c @ ol @ ¥ | ? 't o YR ol ¢ O
s b o9 b ® f Bg A il b } ' % (lal9/| & ® d o
@ P o PI® o|l B 5 ®| ¥ @® 7 D ® [ [o) Q
8 @ L Pt ) & ® ol o8 & & o9l
Zos 8 | & |¢° “1N° S\ [ 1471 P
) ¢
b & 394 ) | o O & 5 & 030 D ! © 1 ldd o f
I § © & & © & & P b @ d 0 &
05| P © ! d o & ° o 4
(i)} © © ©
b o o
0.4 n
3
0.3 I I I I I I
0 20 40 60 80 100 120 140 160 180 200

Evolutionary algebra

Figure 15. The evolutionary curve of fitness function values.

As seen in Figure 15, the penalty parameter C has a value of 10.3858, and the kernel
parameter g has a value of 0.1 for the SVM classification model after optimization by the
vicious bacteria optimization algorithm.
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4.4. Classification Results of the FS-RF-SMA-SVM Model

Sample sets after image feature selection are divided into training and test sets and
classified in the SMA-SVM classification model. At the same time, in order to better
demonstrate the recognition ability of the newly constructed Support Vector Machine
Classification Model (SMA-SVM) optimized by the Myxobacteria Optimization Algorithm
for corrosion detection in water supply pipelines, its performance is compared with the
traditional SVM classifier, the Support Vector Machine Classification Model (DFP-SVM)
optimized by differential pollination in [13], and so on. The support vector machine clas-
sification model (PSO-SVM) of [31] particle population optimization and the BP network
of [32] were compared. These benchmark models were selected because they have been
proven by previous studies to be a method for pattern classification. The confusion ma-
trix graph of classification and recognition results is shown in Figures 16-25 (where RF
represents a random forest algorithm feature and FS-RF represents an improved random
forest algorithm).

RF-SVM Confusion matrix

120

el 113 0 4 9 0 0
100

b o2 21 2 2 0 3
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o 60

E = | 18 0 5 0 1
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© 1 0 3 0 2 42
0

1 2 3 4 5 6

Predicted label

Figure 16. RF-SVM.

FS-RF-SVM Confusion matrix
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Figure 17. FS-RE-SVM.

RF-DFP-SVM Confusion matrix
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Figure 18. RE-DFP-SVM.
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FS-RF-DFP-SVM Confusion matrix
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Figure 19. FS-RF-DFP-SVM.
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Figure 20. RF-PSO-SVM.
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Figure 22. RF-BP.
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Figure 23. FS-RF-BP.
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Figure 24. RF-SMA-SVM.
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Figure 25. FS-RF-SMA-SVM.

From Figures 16-25, it can be seen that for the five classifier models, the confusion
matrix graph of classification results shows that the number of correct samples for the
improved random forest algorithm feature selection is more than that for the random
forest algorithm. For the confusion matrix graph of classification results of the same kind
of feature data, it can be reflected that the correct number of samples classified by the
SMA-SVM classification model is more than that classified by the traditional SVM classifier.
The literature [13] proposed a support vector machine classification model optimized by
differential flower pollination (DFP-SVM), and the literature [31] proposed a support vector
machine classification model with particle population optimization (PSO-SVM), and the
literature [32], BP network classification model, from which the correct number of samples
can be obtained. In this paper, the random forest algorithm improved by the feature
simplification algorithm and the SVM classification model improved by the myxobacteria
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optimization algorithm can improve the accuracy of identifying the characteristics of the
damage image on the inner wall of pipelines.

The image characteristics of six different types of pipeline wall damage samples are
compared under the improved random forest algorithm and the improved SVM classifica-
tion model. As shown in Table 5, the number of normal pipeline samples in the test set is
126, the number of color-order corroded pipeline samples is 66, the number of texture-order
corroded pipeline samples is 90, the number of point-type corroded pipeline samples is
30, and the number of local corroded pipeline samples is 37. There are 48 global corrosion
pipeline samples and 397 total test set samples.

Table 5. Comparison of test classification results for the six types of pipe damage sample sets.

Pipeline Category SVM Literature [13]  Literature [31]  Literature [32]  Algorithms in This Paper
Normal pipeline (126) 123 (97.2%) 116 (92.1%) 116 (92.1%) 125 (99.21%) 125 (99.21%)
Color order corrosion (66) 61 (92.42%) 62 (93.94%) 62 (93.94%) 63 (95.45%) 62 (93.94%)
Texture order corrosion (90) 75 (83.33%) 86 (95.55%) 85 (94.44%) 85 (94.44%) 82 (91.11%)
Pitting corrosion (30) 24 (80.00%) 23 (76.67%) 22 (73.33%) 26 (86.67%) 27 (90.00%)
Localized corrosion (37) 27 (72.97%) 30 (81.08%) 28 (75.67%) 30 (81.08%) 35 (94.59%)
Global corrosion (48) 47 (97.92%) 47 (97.92%) 47 (97.92%) 45 (93.75%) 45 (93.75%)
Total number of correct (397) 357 364 360 374 376
Classification accuracy 89.924% 91.687% 90.680% 94.207% 94.710%

For normal pipeline, pitting pipeline, and locally corroded pipeline, the classification
result of this algorithm is the best, with accuracy of 99.21%, 90.00%, and 94.59%, respectively.
Although the algorithm is not optimal for color-order corrosion, texture-order corrosion,
and global corrosion pipelines, there is little difference between the classification results
and the optimal algorithm. Therefore, from the viewpoint of the classification results of
individual pipe damage image categories, the classification results of the above algorithms
are not significantly different. Still, from the overall classification results, the classification
results of this algorithm are the best and are relatively stable, with 376 correct samples
classified—an accuracy rate of 94.710%. Therefore, in summary, this improved algorithm’s
recognition and classification results are better than other classification algorithms and
have high generalizability.

Next, the overall performance of several classification models after feature selection of
the traditional random forest algorithm and the improved random forest algorithm was
analyzed in terms of algorithm accuracy (Accuracy), precision (Precision), recall (Recall),
F1-score and mean square error (RMSE.) [33]. Table 6 shows the results, and to show more
graphically the change curves of the classification results of the improved algorithm in
this paper with those of the traditional algorithm and other optimization algorithms under
these evaluation parameters, Figure 12 compares the results using a bar chart.

Table 6. Comparison of test classification results for the pipeline damage sample set.

Parametric Algorithms Precision Recall F1-Score RMSE. Accuracy
SVM 0.835 0.740 0.785 16.093 79.345%

Literature 13 0.910 0.884 0.897 7.245 90.176%

RF Literature 31 0.882 0.837 0.859 8.631 88.161%
Literature 32 0.925 0911 0.918 5.598 91.940%

SMA-SVM 0.931 0.918 0.924 5.385 92.947%

SVM 0.925 0.874 0.899 8.124 89.924%

Literature 13 0.918 0.895 0.906 6.205 91.688%

FS-RF Literature 31 0.913 0.879 0.896 6.916 90.680%
Literature 32 0.941 0.918 0.929 4.103 94.207%

SMA-SVM 0.954 0.937 0.945 4.143 94.710%
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From the experimental results in Table 6 and Figure 26, it can be seen that by comparing
the recognition and classification results of the BP neural network, SVM, and optimized
SVM classification algorithm models, the accuracy, recall, F1 score, and accuracy of the
algorithm proposed in this paper are higher than those of other algorithms, and the mean
square error index value also has good results. Therefore, the improved classification
algorithm in this paper has a good classification effect and practicability. At the same
time, by comparing the classification results of the improved random forest algorithm
and the random forest algorithm, it can be seen that the values of the five evaluation
indicators of the improved RF classification results are better than the RF classification
results, which verifies the effectiveness of the improved feature selection algorithm in this
paper. Combined with Table 6, it can be concluded that the SVM classification model
optimized by SMA has better classification results for normal pipes, pitting corrosion, and
locally corroded pipes and the classification results for other pipes are less different from its
optimal algorithm. In summary, the analysis can be concluded that the FS-RF-SMA-SVM
model algorithm can provide technical support for pipe damage detection.

18

1.00F [EW Precision XX Recall NN Fl-score

B Accuracy =@=RMSE
115

12

Indicator value
o
Mean Square Error Value

SVM Literature 13 Literature 31 Literature 32 SMA-SVM SVM Literature 13 Literature 31 Literature 32 SMA-SVM

RFAlgorithms FS-RF Algorithms

Comparison of the classification results of different algorithms

Figure 26. Comparison of test classification results for the pipeline damage sample set.

5. Conclusions

This study first proposes a feature selection random forest algorithm based on feature
simplification, which solves the problem of the reliability of attribute weights when tra-
ditional random forest algorithms partition more feature data, considers the influence of
correlation between feature variables on recognition accuracy and reduces the influence of
redundant features on the algorithm. Then slime mold algorithm is used to optimize the
kernel function parameters and penalty factors of the SVM model. Finally, the proposed
model is applied to the classification and prediction of pipeline corrosion damage data
sets. Experimental results show that the classification accuracy of the SMA-SVM algorithm
based on FS-RF feature selection proposed in this paper is better than other literature
algorithms. Test samples (399) were divided into 376 pairs, and the accuracy was 94.710%,
4.786%, 3.023%, 4.03%, and 0.503% higher than that of traditional SVM, DFP-SVM, PSO-
SVM, and BP neural network, respectively. The experimental results meet the expected
requirements, which provides a new idea for the damage detection of the inner wall of the
water supply pipeline.

However, with the development of society and the increase in market demand, the
requirements for pipeline detection technology will become higher and higher in the
future. Therefore, the work of this paper still needs to be improved. In future research, the
following aspects can be strengthened.

(1) Interms of feature dimensionality reduction, this paper uses an improvement of the
traditional random forest algorithm, which has good results for the feature data in this
paper. However, the classification effect on the new feature data set still needs to be
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studied; therefore, further improving the generality of the algorithm and overcoming
the limitations of the feature data are the key points to be learned in the future.

(2) In terms of research objects, this paper only studied the common damage (corrosion)
on the inner wall of the pipeline, and further research is needed to identify other
damage categories, such as pipeline cracks, pipeline fractures, etc.

(3) From the aspect of damage identification and classification, the popular depth learning
technology can be used to realize the identification of pipe wall damage, and further
improve the accuracy of identification.
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