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Abstract: Halide perovskite has remarkable optoelectronic properties, such as high atomic number,
large carrier mobility-lifetime product, high X-ray attenuation coefficient, and simple and low-cost
synthesis process, and has gradually developed into the next-generation X-ray detection materials.
Halide perovskite-based X-ray detectors can improve the sensitivity and reduce the detectable X-ray
dose, which is applied in imaging, nondestructive industrial inspection, security screening, and
scientific research. In this article, we introduce the fabrication methods of halide perovskite film
and the classification and progress of halide perovskite-based X-ray detectors. Finally, the existing
challenges are discussed, and the possible directions for future applications are explored. We hope
this review can stimulate the further improvement of perovskite-based X-ray detectors.
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1. Introduction

X-ray detectors are commonly used in medical imaging, nondestructive industrial in-
spection, safety screening, and scientific research [1–3]. High sensitivity and high detection
efficiency are believed to be critical figures of merit for X-ray detectors because weak X-ray
signals can be detected, which greatly reduces the risk of medical examination [4–6]. The
performance is closely related to the features of X-ray detection semiconductor materials
including atomic number, charge carrier mobility, and carrier lifetime [7–9]. Various semi-
conductor materials have been utilized in X-ray detectors, such as silicon (Si), amorphous
selenium (α-Se), germanium (Ge), and cadmium zinc telluride (CdZnTe). In addition,
diamond is considered the elective material for X-ray detection and has a wide range of
applications in the radiotherapy field mainly due to its “tissue equivalence” characteris-
tic [10–13]. However, traditional materials such as α-Se, Ge, and CdZnTe suffer from many
issues, including relatively small atomic numbers, the low attenuation coefficient of X-rays,
and complex and costly fabrication processes [14–16]. Thus, it is necessary to explore new
materials to replace the traditional materials for X-ray detectors.

Halide perovskites with a formula of ABX3 (where A = CH3NH3
+ (MA+), HC(NH2)2

+

(FA+) and Cs+; B = Pb2+ or Sn2+; X = halides) are emerging candidates in X-ray detection.
They have very high X-ray attenuation coefficients, a large carrier mobility-lifetime product
(µτ product), a high atomic number, and a simple and low-cost synthesis process [17,18].
The summarization of the parameters of the materials for X-ray detectors is shown in
Table 1. X-ray detectors employing organic–inorganic hybrid perovskite materials such as
MAPbI3 and MAPbBr3 and all-inorganic perovskite materials such as CsPbBr3 have been
reported. According to the structural dimensionalities of halide perovskites, various types
of materials with different characteristics of three-dimensional, low-dimensional, and three-
dimensional/low-dimensional hybrid perovskite appear successively. Moreover, different
techniques are used for the fabrication of high-quality halide perovskite films, which is
the premise for achieving useful X-ray detectors. However, reviews that comprehensively
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summarize the fabrication methods of halide perovskite films and the features of halide
perovskite-based X-ray detectors with different structural dimensionalities and different
organic and inorganic components are relatively rare.

Table 1. The summarization of the parameters of the materials for X-ray detectors.

Material Atomic
Number

Density
(g cm−3)

Band Gap
(eV)

µτ Product
(cm2 V−1)

Resistivity
(Ω cm) Ref.

Si 14 2.33 1.12 >1 104 [19]
α-Se 34 4.3 2.1–2.2 10−7 104–105 [20]
CdTe 48, 52 6.2 1.44 1.5 × 104 108–109 [21]

Cd0.9Zn0.1Te 48, 30, 52 5.78 1.57 10−2 1011 [21,22]
PbI2 82, 53 6.2 2.3–2.6 10−5 1013 [20]
HgI2 80, 53 6.4 2.13 10−4 1013 [23]
Ge 32 5.33 1.57 >1 50 [24]

CsPbBr3 56.4 4.55 2.2–2.33 1.3 × 10−2 8.5 × 109 [25]
MAPbI3 35.6 4.3 1.5–1.6 10−4–10−7 - [26]

MAPbBr3 35, 82 3.45 2.2–2.3 - - [5]
Diamond 12 3.52 5.25–5.5 - - [10–13,20]

This review introduces in detail the fabrication methods of halide perovskite films
and then summarizes the progress of research and development of halide perovskite-based
X-ray detectors. Figure 1 shows the main fabrication methods and types of detectors
introduced in this review. Finally, according to the progress of halide perovskite-based
X-ray detectors, the existing problems are discussed, and the possible directions for future
applications are explored.
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2. Halide Perovskite Film Fabrication Methods

The quality of the film is the key factor to determine the performance of perovskite-
based X-ray detectors. Fabrication methods are classified as a spin-coating process, dissolu-
tion and recrystallization method, spray deposition process, aerosol–liquid–solid method,
solution growth method, scraper method, inkjet printing method, and laser direct writ-
ing and melt and crystallization. In the following, we describe these methods, introduce
representative works, and analyze their features.
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2.1. Spin-Coating Process

Spin coating is an early and widely used technology in perovskite film processing
due to its simple and easy operation process. The process is mainly divided into two
steps: dropping the solution on the cleaned substrate and accelerating the rotating plate
to a required velocity. A uniform film is formed on the substrate because of the solution
diffusion and solvent evaporation at high speed. The thickness of the film depends on
the concentration, density, and spin velocity of the solution. In 2015, Yakunin et al. fabri-
cated an X-ray detector based on methylammonium lead iodide perovskite (CH3NH3PbI3)
perovskite materials through the spin-coating process [27]. Uniform perovskite films
deposited onto patterned electrode structures are accomplished through spin-coating tech-
nology (Figure 2a). Although the achievable film quality is high, the spin-coating process
suffers from the difficulty of scaling up to large-area substrates. In addition, the rotational
speed, solution concentration, etc., of different solutions need to be reexplored to obtain
the desired thickness.
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Reprinted with permission from Ref. [27]. 2015, Springer Nature. (b) CsPbBr3 thick film preparation
and repair process diagram. Reprinted with permission from Ref. [26]. 2019, Wiley. (c) SEM images
of (i) the original CsPbBr3 thick film, and the treated thick films with (ii) 5, (iii) 10, and (iv) 20 times
dissolution and recrystallization. Reprinted with permission from Ref. [26]. 2019, Wiley. (d) Spraying
device for depositing double-layer perovskite film. Reprinted with permission from Ref. [28]. 2020,
Optica. (e) SEM cross-sections of different layers of perovskite solar cells. Reprinted with permission
from Ref. [28]. 2020, Optica. (f) Comparison of traditional solution-based approach to film production
(left) and the aerosol–liquid–solid method (right). This highlights the latter’s unique ability to
manufacture high-quality thick perovskite films. Reprinted with permission from Ref. [29]. 2021,
Cell Press. (g) Cross-section (upper) and top-view SEM images (lower) of perovskite films fabricated
by the aerosol–liquid–solid method after 4 (left) and 100 growth cycles (right). Reprinted with
permission from Ref. [29]. 2021, Cell Press.
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2.2. Dissolution and Recrystallization Method

The dissolution and recrystallization process is an efficient method for the preparation
of high-quality perovskite films. During many dissolution and recrystallization processes,
the sharp portion of the surface particles of the film is dissolved in the original perovskite
solution. This dissolved material recrystallizes at the right temperature, filling the holes in
the surface. After this repeated process, smooth and dense thick perovskite films can be
obtained. In 2019, Zongyan Gou et al. ameliorated the film of the CsPbBr3 microcrystalline
after many dissolutions and recrystallizations, laying a good foundation for obtaining a
high-performance X-ray detector (Figure 2b) [26]. The scanning electron microscope (SEM)
images of the CsPbBr3 films after repairing at different times are shown in Figure 2c. The
surface of the original membrane is rough and full of holes. With the increase in dissolution
and recrystallization times, the surface of the CsPbBr3 film becomes microporous and
smooth. This indicates that the rigid part of the CsPbBr3 crystal on the surface of the film
gradually dissolves into the original perovskite solution, leading to the filling of the holes.

2.3. Spray Deposition Process

The spray deposition process is one of the low-cost and large-scale production manu-
facturing methods for perovskite films (Figure 2d). The perovskite can be easily modified
into ink to form a uniform perovskite film by a spray deposition process. In 2020, Koth
Amratisha et al. developed the continuous spray deposition technique to realize the layer-
by-layer stacking structure of different perovskite materials (Figure 2e) [28]. The perovskite
film stability can be well maintained in a humid environment owing to the spray deposi-
tion preparation method. Sequential spray deposition technology opens up a new way for
perovskite film stacking design and mass production under economical ambient conditions.

2.4. Aerosol–Liquid–Solid Method

The aerosol–liquid–solid method is a streamlined circulation from aerosol to liquid to
solid, which can be used for the preparation of perovskite film. A suite of technological
parameters including temperature, aerosol supply rate, and composition can be precisely
controlled for aerosol–liquid–solid method technology. Due to surface tension and viscosity
limitations, it is tough to deposit very thick wet films on the substrate through traditional
solution methods such as spin-coating methods; however, the aerosol–liquid–solid method
could achieve dense, high crystallinity, low defect density thick perovskite film around 1
mm (Figure 2f). In 2021, Wei Qian et al. demonstrated aerosol–liquid–solid methods to
enable the continued growth of homogeneous perovskite films [29]. The thickness and
grain size of the film increase gradually with the increase in growth time, as shown in
Figure 2g.

2.5. Solution Growth Method

The solution growth method has the advantages of a low-cost, large-scale, and fast
growth rate, which is suitable for the growth of perovskite single crystal. In 2016, Haotong
Wei et al. successfully fabricated solution-grown MAPbBr3 single crystals with extraordi-
nary optoelectronic properties [30]. In 2020, Xin Wang et al. achieved the solution-processed
epitaxial growth of MAPbX3 organic–inorganic hybrid perovskite single crystal with dif-
ferent halide components and no lattice mismatch [31]. Figure 3a shows the SEM images
of the cross-section and surface characterization of the solution-processed epitaxial layer,
revealing the growth of a single-crystal film from a small island into a flat film.

2.6. Scraper Method

The scraper method is one of the crafts for producing films. In 1952, a scraper method
patent was obtained by scraping water-based and non-water-based slurry onto moving
plasterboard. Recently, the scraper method has been applied in the fabrication of perovskite
films. When a constant relative motion is established between the blade and the substrate,
the perovskite slurry is spread over the substrate to form a thin perovskite film. The scraper
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can run at a speed of several meters/per min. This operation mode is suitable for coating
wet perovskite films with a thickness of tens of microns to hundreds of microns [32,33]. In
2017, Yong Churl Kim et al. used a scraper method to fabricate an 830 µm-thick polycrys-
talline MAPbI3 layer [34]. In 2022, Mengling Xia et al. applied a combination of the scraper
method and a soft pressure-assisted cryogenic solution treatment to make high-quality
films for thin-film transistor (TFT) integration (Figure 3b) [35]. The method realizes the
compatibility between the perovskite material and the TFT substrate and helps to achieve
compact perovskite films with a smooth surface and passivated grain boundaries.

2.7. Inkjet Printing Method

Inkjet printing technology represents a highly established method for thin-film manu-
facturing with applications in electronics, optics, bioengineering, and other fields [36]. This
technology has the advantages of low manufacturing costs, a simple and flexible process,
and no mask plate and lithography, which can be widely used in perovskite solution print-
ing [37,38]. Figure 3c illustrates the basic components of an inkjet printer including an ink
chamber, conducting nozzle, substrate, and translational stage [39]. When a voltage is ap-
plied between the substrate and the nozzle, a curved liquid surface is formed at the nozzle
under the action of the induced electric field force [40]. As the voltage gradually increases,
small droplets are formed and ejected onto the substrate (Figure 3d) [41]. The movement
of the nozzle and the mode of the applied voltage can control the pattern printed on the
substrate [39–41]. In 2019, Jingying Liu et al. homogeneously prepared perovskite films
on different nature substrates by the inexpensive inkjet printing method (Figure 3e) [42].
The cheap and simple inkjet printing method enables the large-scale manufacturing of
multi-channel arrays of perovskite-based X-ray detectors.

2.8. Laser Direct Writing

Laser direct writing is a common method for preparing nanostructured graphics.
Laser direct writing technology is widely used in all-inorganic halide perovskite colloidal
quantum dots. In 2017, Chen Jun et al. proposed a rapid preparation method of per-
ovskite colloidal quantum-dot film based on laser direct writing. It is simple, fast, and
does not require a mask [43]. It includes three steps: spin-coating perovskite colloidal
quantum dots, laser writing, and solvent washing (Figure 3f). Moreover, a large-scale
(100 mm × 100 mm) perovskite colloidal quantum-dot patterning is demonstrated by the
laser direct writing technology.

2.9. Melt and Crystallization

Perovskite has various forms such as nanocrystals, nanowires, and polycrystalline
films, among which perovskite single crystal is the more stable form. Melt and crystal-
lization are the preferred methods to obtain perovskite crystals. In this way, high-quality
perovskite single crystals can be grown from the melt, which can meet the requirements of
large diameters and cause less pollution during the synthesis process. In 2022, Andrii Kanak
et al. studied the melting and crystallization process of all-organic perovskite CsPbBr3,
obtained massive single crystals from the melt, discussed the phase transition mechanism of
the whole process, and proposed the two-stage melting mechanism of CsPbBr3 perovskite.
The effect of heating and cooling conditions on the crystallization process of large particle
CsPbBr3 was studied. This study is helpful to further understanding the crystal structure
and crystallization mechanism of perovskite. It is important for understanding the growth
and high-quality preparation of perovskite crystals and massive perovskite materials [44].
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pressure-assisted cryogenic solution treatment. Reprinted with permission from Ref. [35]. 2022, Wiley.
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modeling process and mechanism of perovskite colloidal quantum dots. Reprinted with permission
from Ref. [43]. 2017, Wiley.
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3. Halide Perovskite-Based X-ray Detector

Recently, there have been many high-impact review papers on introducing perovskite-
based X-ray detectors. Zhizai Li et al. reviewed the current research progress on halide
perovskite-based X-ray detectors [45]. Joydip Ghosh et al. summarized recent efforts on
lead-free double perovskite-based X-ray detectors [46]. Haodi Wu et al. advised scalable
fabrication of metal halide perovskite-based X-ray detectors [47].

Halide perovskite as an emerging X-ray detection material has a long carrier lifetime,
large atomic numbers, and high X-ray attenuation coefficient [23,48]. An X-ray detector
based on halide perovskite material possesses high detection sensitivity, which is crucial for
detecting weak X-ray dose rates and greatly reducing the risk of medical examination [45].
Moreover, the synthesis process of halide perovskite is simple and low-cost as previously
mentioned, which could form large-area flat panel detector arrays at low cost. Halide
perovskite-based X-ray detector with high sensitivity and low cost has great application
prospects in security, defense, medical imaging, industrial materials inspection, and nuclear
power plants [49–51].

There are various structural dimensionalities of perovskites by controlling appro-
priate organic and inorganic components, such as 3D and low-dimensional (2D, 1D, 0D)
perovskites. In recent years, various halide perovskite-based X-ray detectors have been
developed by utilizing different dimensional perovskites. The three main types of halide
perovskite-based X-ray detectors are described in detail below, including 3D, low, and
3D/low-dimensional mixed perovskite-based X-ray detectors. The summarization of the
performance of X-ray detectors based on halide perovskite materials is shown in Table 2.

3.1. 3D Perovskites-Based X-ray Detectors

3D perovskites have a universal formula of ABX3 (where A is a monovalent organic
or inorganic cation, B is a divalent cation, and X is halide anion) and are composed of
continuous corner-sharing metal halide [BX6]4− octahedra [52]. According to the organic
and inorganic components, 3D perovskites-based X-ray detectors are mainly divided
into two representative types: organic–inorganic hybrid perovskites and all-inorganic
perovskites-based X-ray detectors.

3.1.1. Organic–Inorganic Hybrid Perovskites-Based X-ray Detectors

Organic–inorganic hybrid perovskites have been shown to have good optoelectronic
properties for X-ray detection, including a large appropriate band gap (1.6–3.0 eV) and a
large µτ product on the order of ~10−2 cm2 V−1 [53]. In 2017, Wei Wei et al. fabricated
a MAPbBr3 single-crystal X-ray detector and integrated it onto the Si substrates. This
allows the electrical signal to be read directly from the Si (Figure 4a) [53]. The brominated
(3-amino-propyl) triethoxy-silane (NH3Br) end molecular layer is used to mechanically
and electrically connect the MAPbBr3 single crystals to the Si. No lattice matching with
the Si substrate is required. The sensitivity of the MAPbBr3 single-crystal X-ray detector
is 2.1 × 104 µC Gyair

−1 cm−2 under 8 keV X-ray radiation, which is more than 1000 times
that of the commercially available amorphous α-Se detector. As shown in Figure 4b, it is
possible to achieve X-ray imaging at a low X-ray (8 keV) dose rate of <0.1 µGyair s−1.

Although halide perovskite X-ray detectors have had great success, the high concen-
tration of Pb in perovskite poses a serious threat to human and biological systems due
to its high water solubility. “Green” bi-element with the same electronic structure as the
Pb attracts wide attention. In 2017, Weicheng Pan et al. demonstrated sensitive X-ray
detectors using solution-processed double perovskite Cs2AgBiBr6 single crystals [54]. The
Cs2AgBiBr6 single crystals use one Ag+ and one Bi3+ to substitute two toxic Pb2+ in CsPbBr3,
which are very friendly to humans and biological systems (Figure 4c,d). In addition, after
heat annealing and surface treatment, the Ag+/Bi3+ disordering is eliminated and the
crystal resistivity is enhanced. The Cs2AgBiBr6 single crystals exhibit a higher resistivity
(109–1011 Ω cm) than MAPbX3 (X = Cl, Br, I; 107–108 Ω cm). As a result, the Cs2AgBiBr6
single-crystal X-ray detectors possess a low minimum dose rate of 59.7 nGyair s−1 under
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5 V and a high sensitivity of 8 µC Gyair
−1 cm−2 (1 V bias) to 30 keV X-ray photons and

105 µC Gyair
−1 cm−2 at 50 V (Figure 4e).
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Figure 4. 3D organic–inorganic hybrid perovskites-based X-ray detectors. (a) Preparation diagram
of Si-integrated MAPbBr3 single crystal. Reprinted with permission from Ref. [53]. 2017, Springer
Nature. (b) This device was used for the X-ray imaging in stacked glass coverslips; a stainless-steel
plate with etched-through lines, a wrapped metal spring, a section of the tail fin, and an “N” copper
sign gave a dose rate of 247 nGyair s−1. Reprinted with permission from Ref. [53]. 2017, Springer
Nature. (c) X-ray diffraction of Cs2AgBiBr6 single crystal. Illustration: Crystal structure. The small
wine ball represents Br−, the large khaki ball represents Cs+, and the light green and purple octahedra
represent the AgBr6 and BiBr6 octahedra, respectively. Reprinted with permission from Ref. [54].
2017, Springer Nature. (d) Thermogravimetric analysis of Cs2AgBiBr6. Included is a photograph
of a solution-processed Cs2AgBiBr6 single crystal. Reprinted with permission from Ref. [54]. 2017,
Springer Nature. (e) The signal-to-noise ratio of the device is calculated from the standard deviation
of the X-ray photocurrent. The red dashed line represents a signal-to-noise ratio of 3, and thus the
detection limit is 59.7 nGyair s−1 at 5 V bias; it is represented by purple stars surrounded by red
dotted circles. Reprinted with permission from Ref. [54]. 2017, Springer Nature.
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3.1.2. All-Inorganic Perovskites-Based X-ray Detectors

Although the hybrid organic–inorganic perovskite-based X-ray detectors have realized
outstanding performance, the stability of hybrid organic–inorganic perovskite is poor. This
has an impact on their actual use, hindering their use in practical applications. The
environmental conditions of their storage, fabrication, and device operation are very strict
due to the extreme sensitivity to both oxygen and moisture. In addition, they are also
unstable to light and heat due to the influence of organic groups. All-inorganic cesium
halide lead perovskite (CsPbX3) without organic components is considered to be the next
generation of X-ray detector materials due to its superior stability to hybrid perovskite.

In 2018, Jin Hyuck Heo et al. prepared a CsPbX3 perovskite nanocrystalline X-ray
detector that is easy to commercialize and cost-effective (Figure 5a) [55]. The acquired
X-ray detectors exhibit high stability over X-ray irradiation of 40 Gyair s−1. Moreover,
the X-ray imaging possesses an excellent spatial resolution of 9.8 lp mm−1 at modula-
tion transfer function (MTF) = 0.2 and 12.5–8.9 lp mm−1 for a linear line chart, which is
higher than commercial terbium-doped gadolinium oxysulfide (GOS) detectors of spatial
resolution = 6.2 lp mm−1 at MTF = 0.2 and 6.3 lp mm−1 for a linear line chart (Figure 5b,c).

In 2019, Zongyan Gou et al. fabricated X-ray detectors based on the CsPbX3 micro-
crystal thick film. The multi-dissolution and recrystallization method is used to further
improve the photoelectric performance of the detector (Figure 5d) [26]. The sensitivity of
CsPbX3-based X-ray detectors is 470 µC Gyair

−1 cm−2 at zero bias under a remarkably low
dose rate (0.053 µGyair s−1), which is over 20 times higher than that of α-Se X-ray detectors
working at a much higher field of 10 V µm−1 (Figure 5e,f).

3.2. Low-Dimensional Perovskites-Based X-ray Detectors

Although 3D perovskites-based X-ray detectors achieve high sensitivity, the phase
transformation and instability of 3D perovskites limit their development. To address
these issues of 3D perovskites, low-dimensional perovskites have been developed and
high-performance low-dimensional perovskites-based X-ray detectors have been realized.

3.2.1. Organic–Inorganic Hybrid Perovskites-Based X-ray Detectors

(NH4)3Bi2I9 belongs to organic–inorganic hybrid perovskite-related materials A3M2X9
(A = Cs, Rb, NH4; M = Bi, Sb; X = Br, I). The (NH4)3Bi2I9 has a 2D layered structure where
the BiI6 octahedra corners share each other and are stacked in a close-packed fashion
in the (001) plane (Figure 6a) [56]. In 2019, Renzhong Zhuang et al. verified the 2D
(NH4)3Bi2I9 without toxic elements is a suitable material to obtain a high-performance
X-ray detector [56]. Layered (NH4)3Bi2I9 grows easily in low-temperature solutions and can
be cut along cleavage planes (Figure 6b,c). Two types of (NH4)3Bi2I9-based X-ray detectors
with parallel and perpendicular device structures were proposed, as shown in Figure 6d.
The devices were exposed to a source with X-ray photon energy up to 50 keV and with
a peak intensity of 22 keV. The sensitivity of the parallel direction device is high at 8.2 ×
103 µC Gyair

−1 cm−2, which is higher than that of the perpendicular one (803 µC Gyair
−1

cm−2). Moreover, the perpendicular direction device possesses a lower detection limit of
55 nGyair s−1 compared to the parallel one of 210 nGyair s−1 (Figure 6e).

3.2.2. All-Inorganic Perovskites-Based X-ray Detectors

0D perovskite quantum dots are ideal candidates for X-ray detectors and large-area
flat or flexible panels with great application potential. CsPbBr3 materials as a typical all
inorganic perovskite possess superior stability and excellent optoelectronic properties.
In 2019, Jingying Liu et al. synthesized 0D high-quality colloidal CsPbBr3 perovskite
quantum dots via the hot injection method at room temperature and demonstrated a
flexible, printable CsPbBr3-based X-ray detector (Figure 7a–c) [42]. Perovskite quantum-dot
films are printed evenly on a variety of substrates using an inexpensive inkjet printing
method to demonstrate large-scale manufacturing of X-ray detector arrays. The device was
exposed to a synchrotron soft X-ray beamline with photon energies ranging from 0.1 to 2.5
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keV. The detector has a sensitivity of 1450 µGyairs−1 cm−2 at 0.0172 mGyairs−1 X-ray dose
rate and a bias voltage of only 0.1 V, which is 70 times more sensitive than the α-Se device.
Moreover, the CsPbBr3 quantum-dot-based X-ray detectors possess outstanding flexibility
and durability (Figure 7d–f).
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Figure 5. 3D all-inorganic perovskites-based X-ray detectors. (a) Schematic diagram of the structure
of a CsPbBr3 perovskite nanocrystalline scintillation X-ray detector. Reprinted with permission from
Ref. [55]. 2018, Wiley. (b) Photographic and X-ray images for nondestructive inspection. Images of a
normal ballpoint pen (left) and defective ballpoint pen (right) with identical appearance, ballpoint
pen X-ray images from conventional GOS scintillator X-ray detectors, ballpoint pen X-ray images from
CsPbBr3 scintillator X-ray detectors, ballpoint pen X-ray images from GOS and CsPbBr3 scintillator
X-ray detectors with X-ray dose rates, line plots taken by GOS and CsPbBr3 scintillation X-ray
detectors. Reprinted with permission from Ref. [55]. 2018, Wiley. (c) MTF of the original silicon-based
detector, CsPbBr3, and conventional GOS scintillation X-ray detector. Reprinted with permission
from Ref. [55]. 2018, Wiley. (d) Thick film radiation detector structure. The charge-producing region
lies inside the thick film and is used for X-ray excitation. Reprinted with permission from Ref. [26].
2019, Wiley. (e) Zero bias light response of raw and treated film at different dose rates. Reprinted with
permission from Ref. [26]. 2019, Wiley. (f) The sensitivity of a device under different bias voltages
and fixed emissivity (0.053 µGyair s−1). Reprinted with permission from Ref. [26]. 2019, Wiley.
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Figure 6. Low-dimensional organic–inorganic hybrid perovskites-based X-ray detectors. Reprinted
with permission from Ref. [56]. 2019, Springer Nature. (a) Crystal structure of (NH4)3Bi2l9 along
the c and b axes. (b) Photograph of a bulk (NH4)3Bi2I9 single crystal. (c) Procedure for crystal
growth. (d) Illustration of parallel and perpendicular device structures. (e) The signal-to-noise ratio
of the device in directions parallel to and perpendicular to the (001) surface. The dashed blue line
indicates a signal-to-noise ratio of 3, so the detection limits are 210 nGyair s−1 for parallel devices and
55 nGyair s−1 for vertical devices.

3.3. Three-Dimensional/Low-Dimensional Hybrid Perovskites-Based X-ray Detectors

3D perovskites such as MAPbI3, MAPbBr3, and CsPbBr3 are conducive to achieving
high sensitivity due to their long carrier lifetime. However, baseline drifting problems
arising from ion migration in the 3D perovskite material prevent accurate signal record-
ing, hindering practical applications. Low-dimensional perovskites such as 2D BDAPbI4
(BDA = NH3C4H8NH3) and (NH4)3Bi2I9 can effectively solve the baseline drifting prob-
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lems. However, the sensitivity of low-dimensional perovskite is limited by its poor carrier
transport performance. Thus, the combination of the 3D and low-dimensional perovskites
could be an effective choice beyond the performance of X-ray detection with individual
dimension perovskites.
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Figure 7. Low-dimensional all-inorganic perovskites-based X-ray detectors. Reprinted with permis-
sion from Ref. [42]. 2019, Wiley. (a) Schematic diagram of a perovskite-based device manufactured by
inkjet printing. (b) Photography of an X-ray detector array on a 4-inch wafer. (c) Optical imaging
equipment with the printing of quantum-dot film. Scale: 5 µm. Illustration: Low-power image. Scale:
50 µm. (d) Chemical reactions of flexible perovskite-based X-ray detector arrays on polyethylene
terephthalate (PET) substrates. (e) Photography of flexible devices under bending. (f) Current and
voltage curves of flexible device arrays at different bending angles under X-ray irradiation with
7.33 mGyairs−1 and 0.1 V bias voltages. Inset: Real device showing 120◦ bending.

In 2021, Xiuwen Xu et al. developed a double-layer perovskite film with a prop-
erly aligned energy level, where 2D (PEA)2MA3Pb4I13 (PEA = 2-phenylethylammonium,
MA = methylammonium) is cascaded with vertically crystallized 3D MAPbI3 (Figure 8a–d) [57].
Combining the fast carrier transport of the 3D layer and mitigated ion migration of the
2D layer, X-ray detectors provide high sensitivity and very stable baselines. Moreover, the
2D layer increases the film resistivity and enlarges the energy barrier for the hole injection
without compromising carrier extraction (Figure 8e–g). As a result, the obtained double-
layer perovskite detector exhibits a high sensitivity (1.95 × 104 µC Gyair

−1 cm−2) and a low
detection limit (480 nGyair s−1) (Figure 8h). The double-layer perovskite detector exhibits
excellent stability and a highly repeatable X-ray response when the X-ray is periodically
on/off (Figure 8i). X-ray images of the printed circuit boards obtained with a double-layer
perovskite detector with an active area of 3 mm × 3 mm are shown in Figure 8j.
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double-layer perovskite thin film, where gradient 2D perovskite was prepared from a precursor 
solution with the nominal component (PEA)2MA3Pb4I13. (b–d) SEM image of double-layer perov-
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Figure 8. Three-dimensional/low-dimensional hybrid perovskites-based X-ray detectors. Reprinted
with permission from Ref. [57]. 2021, Wiley. (a) Schematic diagram illustrating the structure of a
double-layer perovskite thin film, where gradient 2D perovskite was prepared from a precursor
solution with the nominal component (PEA)2MA3Pb4I13. (b–d) SEM image of double-layer per-
ovskite film, shown in (b) is the grain size distribution. (e) Double-layer perovskite X-ray detector
equipment configuration: Carbon electrodes were exposed to incident X-ray photons and negatively
biased, whereas gradient 2D perovskite was prepared from a precursor solution with the designated
component (PEA)2MA3Pb4I13. (f) Control the interfacial level alignment of a device made of a
double-layer perovskite film. (g) Band edge position diagram of two-dimensional perovskite and
three-dimensional MAPbI3 with respect to fluorine-doped SnO2 (FTO) and carbon. (h) The dose-
rate-dependent signal-to-noise ratio of control and double-layer perovskite detectors. (i) Stability
test of double-layer perovskite detector under different dose rate X-ray irradiation. (j) A digital
photograph of the printed circuit board (size: 5.1 cm × 5.1 cm) and X-ray images of a printed circuit
board obtained with a double-layer perovskite detector with an active area of 3 mm × 3 mm.

Table 2. The summarization of the performance of halide perovskite-based X-ray detectors.

Type Material Fabrication
Method

Film Thickness
(µm)

Sensor Area
(mm2)

Sensitivity
(µC Gyair−1 cm−2)

Minimum
Detectable Dose
Rate (µGyairs−1)

Ref.

3D perovskites-based
X-ray detectors

MAPbBr3

Solution-processed
molecular

bonding method
150 0.044 21,000 <0.1 (−1 V) [53]

Solution
growth method 2000 - 80 0.5 (−0.1 V) [30]

Cs2AgBiBr6
Solution-processed

method 1180 3.14 105 (50 V) 0.0597 (5 V) [54]

CsPbBr3

Laser direct writing - 10,000 - - [43]

Dissolution and
recrystallization

method
18 50 470 0.053 (2 V) [26]

Melt and
crystallization - - - - [44]
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Table 2. Cont.

Type Material Fabrication
Method

Film Thickness
(µm)

Sensor Area
(mm2)

Sensitivity
(µC Gyair−1 cm−2)

Minimum
Detectable Dose
Rate (µGyairs−1)

Ref.

CH3NH3PbI3
Spin-coating

process 10–100 - - - [27]

CsPbI2Br Aerosol–liquid–
solid method

One micrometer-
hundreds of
micrometers

10,000 148,000 0.28 (0.125 V µm−1) [29]

MAPbI3 Scraper method 400 78,400 17,432 (500 V
mm−1) 0.067 (5 V mm−1) [35]

Low-dimensional
perovskites-based

X-ray detectors

(NH4)3Bi2I9
Solution

growth method
4900 (parallel);

1500 (perpendicular)
6.75 (parallel);

22 (perpendicular)
8200 (parallel);

803 (perpendicular)

0.21 (parallel 1 V);
0.055 (perpendicular

10 V)
[56]

CsPbBr3
Inkjet

printing method 0.6 0.06 1450 17.2 (0.1 V) [42]

3D/low-
dimensional hybrid
perovskites-based

X-ray detectors

2D
(PEA)2MA3Pb4I13

/3D MAPbI3

Spray
deposition process 0.5 9 19,500 0.48 (<25 V mm−1) [57]

4. Challenges and Perspectives

A variety of materials have been studied for X-ray detection because X-ray detectors
have a wide range of applications including medical imaging, nondestructive industrial
inspection, and safety screening. Diamond is considered the elective material for X-ray
detection, mainly due to its “tissue equivalence” [10–13]. Recently, halide perovskites are
emerging candidates in X-ray detection owing to the high X-ray attenuation coefficients,
large µτ product, high atomic number, and the simple and low-cost synthesis process.
Although halide perovskite-based X-ray detectors have made many remarkable signs of
progress in the past few years, there are still some important problems that need further
consideration to meet application requirements. The existing challenges are discussed, and
the possible directions for future applications are explored in the following.

Firstly, compared with traditional materials such as Si, α-Se, and Ge, the stability of
perovskite materials is still relatively poor, which seriously restricts their practical appli-
cation. Therefore, more attention should be paid to improving the stability of perovskite
materials in future research.

Secondly, the thickness of perovskite films with hundreds of micrometers is the prereq-
uisite for complete X-ray attenuation. However, the fabrication of a thick perovskite film
with good uniformity is still a challenge. Moreover, the cost of preparation of perovskite-
based X-ray detectors should be further reduced. Hence, developing new preparation
methods or optimizing the original methods is the future development trend.

Thirdly, the sensitivity and minimum detectable X-ray dose rate of perovskite-based
X-ray detectors are not good enough for practical use. It is necessary to develop high-
performance perovskite-based X-ray detectors with high sensitivity and low detection limits.

Finally, the development of large-area flexible next-generation X-ray detection and
imaging technology based on perovskite is the future research direction.
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