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Abstract: Dye-sensitized solar cells (DSSCs) were developed by exploiting the photovoltaic effect to
convert solar energy into electrical energy. The photoanode layer thickness significantly affects the
semiconductor film’s ability to carry electronic charges, adsorb sensitizing dye molecules, and lower
the recombination of photo-excited electrons injected into the semiconductor. This study investigated
the dependence of the zinc oxide (ZnO) photoanode thin-film thickness and the film soaking time in
N719 dye on the photocurrent–voltage characteristics. The ZnO photoanode was applied to glass
using the doctor blade method. The thickness was varied by changing the scotch tape layers. The
ZnO-based DSSC attained an efficiency of 2.77% with three-layered photoanodes soaked in the dye
for three hours, compared to a maximum efficiency of 0.68% that was achieved with three cycles using
the dip-coating method in other research. The layer thickness of the ZnO photoanode and its optimal
adsorption time for the dye are important parameters that determine the efficiency of the DSSC.
Therefore, this work provides important insights to further improve the performance of DSSCs.

Keywords: zinc oxide; dye-sensitized solar cell; N719 dye; adsorption time; photoanode thickness;
doctor blade method; renewable energy; solar cells

1. Introduction

The rising energy demand has raised awareness among researchers of the need to find
ceaseless energy sources. Solar cells that use the sun’s infinite energy have become the
center of attention. Utilizing the photovoltaic effect (PV), electron–hole pairs are generated
as photon energy from the sun striking the solar cells [1]. Thus, in developing a PV cell,
considerations of the material’s optical and electrical properties are needed, such as the band
gap (as it needs to cover a wide light spectrum for photon conversion) and high electron
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mobility to minimize the recombination and increase the carrier collection at the electrode
to ensure good-efficiency output. Photovoltaic technology can be categorized into four
main generations because of the introduction of numerous unconventional manufacturing
techniques for creating functional solar cells. The first generation was wafer-based solar
cells [2,3], followed by the second generation of thin-film solar cells [4,5]. The third
generation was the emerging photovoltaic cell [6,7], and the fourth generation was hybrid
PV technology [8,9]. Bulk silicon was used to create the first generation of solar cells in 1940,
followed by the second generation of thin-film solar cells [10,11]. In 1991, the breakthrough
by Grätzel resulted in the creation of the third generation of solar cells: dye-sensitized
solar cells (DSSCs) [12]. Due to their minimal production cost and ease of fabrication,
dye-sensitized solar cells (DSSCs) have gained wide recognition as a promising solution
to the coming energy crisis [7,13]. Compared to conventional solar cells, which are costly
to produce, the DSSC is well known for its simple yet efficient fabrication [14]. The DSSC
photoanode consists of a substrate of transparent conductive oxide (TCO) with a thin
layer of semiconductor materials such as titanium dioxide (TiO2), zinc oxide (ZnO), and
tin oxide (SnO2) and is impregnated with dye [15–20]. The most commonly used metal
oxide in DSSCs is TiO2, with an efficiency of 13% [21]. Nevertheless, DSSCs made of ZnO
semiconductors have recently received considerable attention [22]. Zinc oxide is considered
an excellent photoanode material for DSSCs because it is cost-effective, environmentally
friendly, optically and chemically stable, and recyclable [23,24]. The band gap of ZnO
material (3.37 eV) [25] is very similar to that of TiO2 (3.2 eV) [26]. The energy levels of the
conduction band edge lie at the same levels as TiO2, with similar electronic structures [27,28].
ZnO has immense exciton binding energy (60 meV) [29], higher electron mobility (100 times
larger than TiO2), and a longer electron lifetime [30,31]. Research on the ZnO photoanode
has progressed rapidly, and significant efforts have been made to increase the device’s
efficiency to 8.03%, which is required for commercial use [28].

The DSSC’s efficiency is affected by several factors, including the counter-electrode
materials, dye species, electrolyte type, and photoanode morphology and structure [32].
One of the most crucial factors is the structure of the photoanode, such as the photoanode
layer thickness, which controls the collection and transportation of photo-excited electrons
from dye molecules to the external circuit [33,34]. Thus, the modification of the ZnO
photoanode thin-film layer thickness is one of the essential strategies to improve the
efficiency of DSSCs [17,35]. The photoanode thickness can improve the adsorption of
sensitizing dye molecules within the semiconducting film, transport electronic charge
through the film, and reduce the recombination of photo-excited electrons injected into
the semiconductor [36,37]. However, thicker films of ZnO aggravate the recombination of
unwanted charges and impose more mass-transfer restrictions [38]. It also affects electron
injection and causes a high electron loss due to recombination [39]. Hence, this phenomenon
reduces the open-circuit voltage (Voc), leading to a decline in the efficiency of DSSCs [40].
Therefore, this work investigates the influence of the photoanode layer thickness on the
optical and electrical performance of DSSCs.

2. Materials and Methods
2.1. Materials and Chemicals

In this work, fluorine-doped tin oxide-coated glass (FTO) 7Ω/sq, zinc oxide nanopow-
der 99.5% (ZnO, Nanoshel, Punjab, India), Triton X-100 (Sigma Aldrich, St. Louis, MO,
USA), N719 dye (Sigma Aldrich), ethanol 96% (EtOH, Altia, Colorado Springs, CO, USA),
nitric acid ACS reagent (HNO3, Sigma Aldrich), deionized water, and scotch tape were
used in the preparation of the photoanode. The iodide electrolyte was prepared by using an
iodine solution (I2, Sigma Aldrich), an ethylene glycol solution (C2H6O2, Sigma Aldrich),
and potassium iodide 99.5% (KI, Sigma Aldrich). Platinum (pt) sputtering of the target and
paraffin film were also used in this research work.
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2.2. ZnO Electrode Preparation

The FTO glass was cleaned in an ultrasonic bath with DI water, ethanol, and acetone
for ten minutes. After cleaning, the glass was dried using a hot-air blower. An amount of
1 g of ZnO nanopowder was mixed with 6 mL of ethanolic solution (mixture of DI water
and ethanol) in a mortar. Then, 0.5 mL of nitric acid (0.1 M) was added as an additive
to improve the homogeneity of the particles and connectivity between the particles [41],
followed by 0.5 mL of Triton X-100, which serves as a binder to prevent the congregation of
ZnO particles and improve the contact between the ZnO film and the glass substrate [38].
The mixture was ground into a paste. The paste was then applied on the conductive side of
the FTO glass using the doctor blade method. Using this method, scotch tape was applied
on the edges of the glass substrate to leave the active area uncovered for the deposition
of the ZnO paste. After applying the paste, a glass rod was used to spread the paste
uniformly across the substrate, as shown in Figure 1. The tapes were removed before
the sintering process.
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Figure 1. ZnO paste application by doctor blade method.

Five different photoanode layers (1, 2, 3, 4, and 5 layers) were used for the study
parameters. The first layer of the ZnO photoanode was prepared based on the method
explained above. For a two-layered photoanode sample, the first layer of the ZnO photoan-
ode film was soft-baked at 150 ◦C for 10 min before the second layer of paste was applied.
The two-layered ZnO photoanode was then hard-baked for an hour at 450 ◦C. The process
was repeated for the subsequent layered samples. Then, all five prepared samples were
soaked in 0.3 mM N719 dye in dark conditions before the dye-sensitized solar cell was
fabricated. Any excessive dye was cleaned using a cotton bud.

2.3. Fabrication of DSSC

For the assembly process, the photoanode in Figure 2a was sandwiched on the
platinum-coated counter electrode in Figure 2b. The platinum layer was deposited onto
the surface of the FTO glass by sputtering. Then, they were sealed by using a paraffin film.
Then, the iodide electrolyte was added through the counter electrode’s hole (Figure 2c,d). In
order to prevent the electrolyte from leaking, the hole was sealed with scotch tape. Finally,
the assembled cells were tested for their performance.
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(d) assembly of cell and insertion of electrolyte.

2.4. Characterization

The fabricated DSSC samples were characterized using a scanning electron microscope
(SEM-EDX, JOEL JSM-6010LV, Oxford Instrument, Tokyo, Japan), X-ray diffraction (XRD,
D2 Phase, Bruker, Billerica, MA, USA), UV–visible spectrophotometry (UV-Vis, Lambda
950, Perkin Elmer, Glenside, PA, USA), and a J-V solar simulator (SMU 2450, Keithley,
Glenside, PA, USA). SEM was used to analyze the ZnO photoanode’s surface morphology
and thickness. The crystalline structure of the ZnO photoanode was identified using X-
ray diffraction at a diffraction angle, 2θ, of 20–80◦. Based on the XRD data, the average
crystallite size was estimated using Scherrer’s equation [42]:

D =
0.89λ

Bcosθ
(1)

where 0.89 is the Debye–Scherrer constant, λ is the X-ray wavelength (0.15406 nm), B
is the full width at half maximum, and θ is the Bragg’s angle (measured in radians) at
which the peak is observed [43]. UV–visible spectrophotometry was used to measure the
absorbance of the ZnO photoanode. In order to calculate the band-gap energy, a graph is
plotted between photon energy and (αhν)2. Tauc’s plot is applied to determine the optical
band-gap energy:

αhν = A(hν − Eg)
n (2)
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where α, Eg, and hν are the absorption coefficient, band-gap energy, and photon energy,
respectively [44]. The current–voltage characteristics were identified using the J-V solar
simulator in one-sun AM 1.5 G simulated light with a density of 100 mW/cm2. Then, the
efficiency of the fabricated DSSC was calculated using the efficiency equation:

η =
Jsc × Voc × FF

Pin
× 100 % (3)

where Jsc is the short-circuit current, Voc is the open-circuit voltage, FF is the fill factor, Pin
is the power input, and η is the cell’s overall efficiency [45].

3. Results
3.1. Structural Properties

Figure 3 shows the XRD patterns of the ZnO photoanode with different layer thick-
nesses. All samples exhibited similar patterns, except for the peak intensity differences. The
Bragg diffractions observed at 2θ degrees of 26.82◦, 34.04◦, 38.05◦, 51.80◦, 54.94◦, 61.83◦,
and 65.82◦ correspond to (110), (011), (020), (121), (220), (130), and (031) of FTO with a
tin oxide crystal structure, according to JSCPDS card no. 98-006-3707 [46]. In addition to
those associated with the FTO substrate, diffraction peaks at 31.75◦, 34.44◦, 36.25◦, 50.14◦,
61.87◦, 67.91◦, 72.61◦, and 76.95◦ refer to hexagonal wurtzite ZnO (JCPDS 36-1451) [47].
These peaks correspond to (002), (101), (103), (004), and (202) of the ZnO crystal structure.
There were no new diffraction peaks, proving that the ZnO films are in the pure wurtzite
phase [48] and that no phase transformations occur during heat treatment and layering [49].
The intensity of the ZnO peaks increased with the layer thickness. In contrast, the intensity
of the peaks of FTO glass decreased when the ZnO film thickness became thicker.
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The average crystallite size was calculated using the aforementioned Equation (1)
and XRD data. The crystallite size for all of the layers was almost the same and in the
65–73 nm range. Since the ZnO powder used was a commercially available powder, and all
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of the ZnO paste preparation techniques were consistent across all of the different layered
photoanodes, the results demonstrate that the number of layers added has no discernible
impact on the crystallite size [37,49,50].

The cross-section of ZnO photoanodes with different layers is shown in Figure 4. The
film thickness of ZnO with one layer is 7.52 µm, two layers are 12.37 µm, three layers
are 18.41 µm, four layers are 33.58 µm, and five layers are 42.82 µm. All samples were
manufactured using the doctor blade method and annealed at 450 ◦C; hence, there were no
discernible changes in the morphology of the ZnO surface in the samples.

Coatings 2023, 13, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 4. Cross-section of ZnO photoanodes on FTO glass: (a) 1 layer, (b) 2 layers, (c) 3 layers, (d) 4 

layers, and (e) 5 layers. 

Figure 5 shows the effect of the number of layers on the thickness measurement of 

the ZnO film layer. The graph shows a linear increase in the thickness measurement when 

the number of layers applied increased. This proves the basic theory of the doctor blade 

coating technique, where the thickness of the film increases with the number of coatings 

applied. 

Figure 4. Cross-section of ZnO photoanodes on FTO glass: (a) 1 layer, (b) 2 layers, (c) 3 layers,
(d) 4 layers, and (e) 5 layers.



Coatings 2023, 13, 20 7 of 16

Figure 5 shows the effect of the number of layers on the thickness measurement of the
ZnO film layer. The graph shows a linear increase in the thickness measurement when the
number of layers applied increased. This proves the basic theory of the doctor blade coating
technique, where the thickness of the film increases with the number of coatings applied.
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3.2. Optical Properties

Figure 6 shows the optical absorption of the different layer thicknesses of the ZnO
photoanode at wavelengths of 300–800 nm. Two regions can be seen in this graph: a signifi-
cant absorption region (≤370 nm) and a significant transmittance region (≥450 nm). The
absorption wavelength shifts to a larger wavelength when the number of layers increases in
the absorption region. Generally, the transmittance is influenced by the optical depth and
absorbance, including the attenuation cross-section, the number density, the attenuation
coefficient and concentration of the attenuating species, and the path length of the radiation
beam through the materials [51]. The transmittance decreases with the increasing layer
thickness since the transmittance is inversely proportional to the absorbance [52]. In this
work, the transmittance region ≥ 450 nm of the photoanode reflects that the sunlight in the
visible range and above is being transmitted to the dye for electron–hole pair generation,
which directly impacts the photon-to-electricity conversion. A good photoanode should
absorb less and transmit more to the dye, but at the same time, it needs to have high
electron mobility as the charge carrier.
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Figure 6. The absorbance of the ZnO photoanode without dye.

In order to calculate the band-gap energy, a graph is plotted between photon energy
and (αhν)2. The band-gap energies of one, two, three, four, and five layers of ZnO photoan-
odes are 3.18 eV, 3.10 eV, 3.09 eV, 3.06 eV, and 2.94 eV, respectively, as shown in Figure 7. The
band-gap values decrease with the increasing layer thickness. This is due to the increased
local levels within the band gap as the thickness of the thin film increases [53]. Hence,
the energy band gap of the thin film decreases. A reduction in the band gap increases the
conductivity of ZnO since the electrons will require less energy to travel from the valence to
the conduction band of ZnO [54]. The calculated band-gap value is lower than the reported
band-gap value (3.37 eV). This may be related to the thermal stress effects of the annealing
process of the films [55]. The energy band gap of ZnO is 3.37 eV at room temperature. For
the DSSC, the ZnO photoanode underwent heat treatment, increasing the photoanode’s
temperature. The increase in temperature expanded the crystal lattice and weakened the
interatomic bonds. The weaker interatomic bonds require less energy to break and move
electrons into the conduction band, which reduces the band gap of the photoanode.
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Figure 8 shows the absorbance of photoanodes soaked in N719 dye: one layer for one
hour, two layers for two hours, three layers for three hours, and four layers and five layers
for four hours. The absorbance of one, two, and three layers soaked in the dye for one, two,
and three hours was higher than that of photoanodes with four and five layers in the dye for
four hours. This result corresponds to the efficiency of the DSSC, where the three-layered
ZnO DSSC has the highest efficiency. As the thickness of the photoanodes increases, the
absorbance peak shifts slightly to the visible region. The thickest ZnO film (five layers)
absorbs light at around the 350–420 nm wavelength. This phenomenon is known as the
bathochromic shift (redshift). It is an effect due to which the absorption maximum is shifted
towards a longer wavelength [55–57]. Compared to the N719 dye dissolved in ethanol (high
polarity), when N719 is absorbed on the nonpolar ZnO photoanode, the bathochromic shift
(redshift) occurs and can be seen clearly in the absorbance graph. ZnO is nonpolar, and the
redshift occurs when the polarity is decreased or when there is none. The redshift is also
caused by the crystallinity of the film. When the layers increase, the crystallinity of the film
is improved. Hence, the wavelength becomes greater, which causes the redshift [58].
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Figure 8. The absorbance spectrum of ZnO film with different layer thicknesses soaked in dye for
different soaking times.

3.3. Electrical Properties

The performance of the synthesized DSSCs was assessed in one-sun AM 1.5 G sim-
ulated light. The photovoltaic characteristics of the manufactured DSSCs with various
thicknesses and dye soaking times were measured. ZnO photoanodes with different layer
thicknesses were each soaked for a different soaking time in N719 dye. Table 1 shows the
detailed results.

Table 1. One- to five-layered ZnO photoanodes soaked in N719 dye for different soaking times.

No. of Layers Dye Soaking Time Jsc (mA/cm2) Voc (V) FF η (%)

1 layer

1 h
2 h
3 h
4 h

24 h

8.16
4.42
3.54
2.37
0.58

0.41
0.37
0.40
0.38
0.38

0.51
0.46
0.47
0.50
0.46

1.71
0.75
0.67
0.45
0.10

2 layers

1 h
2 h
3 h
4 h

24 h

5.92
12.87
8.97
7.71
1.55

0.37
0.37
0.41
0.37
0.40

0.44
0.42
0.44
0.41
0.34

0.97
2.01
1.61
1.18
0.21
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Table 1. Cont.

No. of Layers Dye Soaking Time Jsc (mA/cm2) Voc (V) FF η (%)

3 layers

1 h
2 h
3 h
4 h

24 h

4.49
9.55

13.82
10.08
2.21

0.41
0.41
0.43
0.40
0.42

0.43
0.40
0.46
0.40
0.46

0.79
1.57
2.77
1.59
0.43

4 layers

1 h
2 h
3 h
4 h

24 h

4.14
5.17
9.77

10.56
2.07

0.41
0.41
0.42
0.41
0.41

0.39
0.44
0.42
0.44
0.32

0.67
0.92
1.72
1.87
0.27

5 layers

1 h
2 h
3 h
4 h

24 h

2.66
4.35
7.10
9.11
2.01

0.41
0.40
0.42
0.40
0.42

0.36
0.38
0.45
0.42
0.39

0.04
0.66
1.34
1.53
0.32

Figure 9a–d show the relationship between photovoltaic parameters such as the
short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of
the ZnO DSSC for different dye soaking times and the photoanode layer thickness. As
shown in Figure 9a, the Jsc value for the one-layer thickness decreased from 8.6 mA/cm2

to 0.58 mA/cm2 after soaking in the dye for 24 h. The Jsc value increased from 5.92 to
12.87 mA/cm2 after two hours of soaking for the two-layer-thick photoanode. However,
the Jsc value decreased to 1.55 mA/cm2 when the soaking time was extended to 24 h.
A similar trend can be observed for the three-, four-, and five-layer thicknesses of the
photoanode, where the Jsc value increased to maxima of 13.82 mA/cm2, 10.56 mA/cm2,
and 9.11 mA/cm2, respectively, until the specific dye soaking time and decreased when
reaching 24 h of soaking. This situation is explained by the acidic group of N719 dye, which
leads to the strong reaction with Zn2+ ions and the formation of complexes. Prolonged
immersion in N719 dye can dissolve the ZnO surface [56].

According to the UV-Vis absorption graph in Figure 8, the light absorption of four-
and five-layered ZnO photoanodes was much lower than the other layers. The electrode
thickness will also impact the ability to absorb dye. A thicker photoanode has a higher Jsc
due to its increased capacity to absorb photons. Suppose that the electrode thickness is
greater than the depth of light penetration; in that case, the number of photons useful for
electron photogeneration will be constrained. Therefore, Jsc cannot be further increased.

Figure 9b compares the Voc value for the fabricated ZnO DSSCs with different thick-
nesses. No clear trend was noticeable in the Voc values for the layered ZnO photoanode
at different soaking times. The highest Voc was achieved when the three-layered ZnO
photoanode was soaked in N719 dye for 3 h. The fill factor (FF) values shown in Figure 9c
also do not exhibit any apparent trends, and the FF values vary between 0.32 and 0.51. The
conversion efficiency at various dye absorption times and photoanode thicknesses was
calculated using Equation (3).

The Jsc and efficiency plots in Figure 9d have similar trends and peak values at the
same dye adsorption time. Due to the dye adsorption time’s significantly greater impact
on Jsc than other photovoltaic parameters, Jsc is the parameter that determines efficiency.
There is a specific optimal dye adsorption time for each photoanode thickness at which
the conversion efficiency is at its highest. The best dye adsorption period identified at a
specific photoanode thickness does not apply to other thicknesses. The three-layered ZnO
photoanode was submerged in the dye for three hours, yielding a 2.77% efficiency, the
highest efficiency recorded. Each cell has different readings of Jsc, Voc, FF, and η, which
demonstrates how the thickness of the ZnO photoanode is affected by the dye loading time.
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Figure 9. Relationship between the photovoltaic parameters of the ZnO DSSC on dye soaking time
and the photoanode thickness: (a) Jsc (b) Voc (c) FF, and (d) efficiency.

The highest efficiency, 1.71%, was achieved by soaking the one-layered ZnO photoan-
ode in the dye for an hour. In contrast, the highest efficiency, 2.77%, was achieved by
soaking the three-layered ZnO photoanode in the dye for three hours, as shown in Table 2.

Table 2. Photo-voltage characteristics for the cell at optimal dye soaking time for each layer.

No. of
Layers

Dye Soaking
Time Jsc (mA/cm2) Voc (V) Fill Factor

(FF) η (%)

1 1 h 8.16 0.41 0.51 1.71
2 2 h 12.87 0.37 0.42 2.01
3 3 h 13.82 0.43 0.46 2.77
4 4 h 10.56 0.41 0.44 1.87
5 4 h 9.11 0.40 0.42 1.53

The best dye adsorption time reported at a particular thickness does not apply to other
thicknesses because the dye absorption time is either too short or too long for alternative
film thicknesses, which affects the cell’s efficiency differently. For example, when a 3 h dye
soaking time (optimal for the three-layered ZnO photoanode) was applied for one-, two-,
four-, and five-layered ZnO photoanodes, the conversion efficiency dropped from the peak
value of 2.77% to approximately 0.67%, 1.61%, 1.72%, and 1.34%, respectively. A prolonged
dye adsorption time causes dye aggregation and the etching of the ZnO surface, resulting
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in the performance deterioration of ZnO photoanodes. Table 2 and Figure 10 summarize
each layer’s optimal dye soaking time.
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Similar work was reported by Kouhestanian et al. [35], where the thickness of the ZnO
photoanode layer was modified by using the doctor blade method. They used synthesized
ZnO with particle sizes of 30–350 nm, and the ZnO paste was prepared according to the Ito
method. The platinum counter electrode in their research was made via drop coating. In
our research, we successfully achieved a higher fill factor (FF) of around 0.42–0.51 compared
to other research works. Kouhestanian et al. reported FFs of around 0.34–0.43, and May
et al. [33] reported FFs of 0.34–0.47. Increasing the shunt resistance (Rsh) and decreasing the
series resistance (Rs) lead to a higher fill factor, thus resulting in greater efficiency. Shunt
resistance (Rsh) is due to the leakage across the interface between photoelectrodes and
the dye and the presence of crystal defects in the interface region. Series resistance (Rs) is
mainly caused by the bulk resistance of semiconductor materials and the contact resistance
between the metallic contacts and the semiconductor.

4. Conclusions

This study has shown that the photovoltaic properties of DSSCs depend significantly
on the ZnO photoanode thickness and the dye adsorption time. In this work, the DSSC with
a three-layer ZnO photoanode achieved a maximum efficiency of 2.77%. The short-circuit
current mainly determines the efficiency of the DSSC. Increasing the thickness of the ZnO
photoanode to its optimal point improves the absorption of the dye, which increases the
light absorption and translates into an increase in device efficiency. However, a continuous
process of dye immersion may dissolve the ZnO photoanode and decrease the device’s
performance. In this work, it is predicted that the decrease in efficiency with a higher
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thickness of the photoanode is due to a longer immersion time in the acidic N719 dye and
the longer path length for electron transport.
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