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It is well known that micro/nanomaterials exhibit many physical properties in the
fields of heat transfer, energy conversion and storage, and also have great prospects in
nanoelectronics, sensors, photonic devices and biomedical applications. As carbon dioxide
emissions continue to rise and fossil energy supplies shrink, there is a great demand for
clean and renewable energy technologies.

The purpose of this Special Issue is to provide a platform for publishing and sharing
the latest advances in micro/nanomaterials for heat transfer, energy storage and conversion,
and to promote further research on energy storage, heat transfer enhancement, solar energy
harvesting, radiative cooling, two-dimensional materials, etc., so as to reflect the latest
developments and advances in all aspects.

Solar energy is the main type of renewable energy and the efficient use of solar energy
is considered an effective way to solve the problems caused by the burning of fossil fuels,
by creating nanoparticles, metamaterials for perfect absorbers and, finally, achieve efficient
absorption. Energy storage and conversion can be achieved by directly converting heat
energy into electricity using thermal photovoltaic technology. At the same time, waste
heat can be recovered using thermoelectric generators (TEGs) to directly convert heat
into electricity, and the latest high-performance thermoelectric (TE) materials improve the
efficiency of TEG conversion. It has also been proved that near-field radiative heat transfer
(NFRHT) can exceed the blackbody limit, which greatly promotes the development of
energy harvesting and conversion. This Special Issue focuses on the application of micro-
and nanomaterials in different aspects to achieve heat transfer, energy storage and energy
conversion applications and improve the utilization of solar energy.

Wang et al. carried out extensive work related to a perfect solar absorber [1], which
was based on both nanoparticles [2] and metamaterials [3]. First, the surrounding medium,
material, geometry and morphology of those nanostructures made a significant difference
in their solar-absorption efficiencies [1,2,4]. In addition, multiple materials working with
special structures could arouse both electric and magnetic polaritons [5,6], which also
contributed to the perfect broadband absorption for solar energy harvesting. Further-
more, compound materials with absorptive nanoparticles, such as carbon nanoparticles [7],
achieved broadband absorption.

Furthermore, the applications of perfect solar absorbers strongly depend on the fab-
ricated devices [8]. Typically, the specially designed metamaterial absorber with nanos-
tructures can be fabricated by ion-beam sputtering, atomic-layer deposition, electron-beam
lithography, thermal evaporation/electron-beam evaporation, and lift-off [9,10]. However,
such a kind of manufacturing process costs too much, no matter the time or money, which
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is only suitable for laboratory exploration. With the fast development of the 3D-printing
technique [11], various new solar evaporators are being proposed, which are cheap but
with integrated functions [12–14] for high-efficiency solar vapor generation, promising
applications of desalination, sterilization, wastewater treatment and so on [15].

Wang et al. carried out extensive work related to micro-nanomaterials in the field
of hybrid PV/T systems [16,17]. They designed nanofluid and TiO2/SiO2 nanofilms as
spectral-beam splitting (SBS) devices, which could split sunlight into specific wavelength
bands: sunlight with photon energy at and close to the band-gap of PV cells was allocated
to PV for producing electricity, while the remaining sunlight was allocated to thermal
absorbers for producing thermal energy [18]. Recently, they designed and fabricated a
novel thin-film solar cell with a serrated groove structure at the bottom, which could
convert 400~800 nm sunlight to electricity and focus 800~2500 nm sunlight to produce
high-temperature thermal energy [19].

Another application for micro-nanomaterials is radiative cooling (RC) [20]. Wang et al. [21]
prepared high-transmittance RC-coating-embedded SiO2 microparticles with optimized
volumetric fractions and diameters. The coating achieved a transmittance of 91.3% in
the visible-light band and emissivity of 93.7% in the “atmospheric window” band. In
addition, inspired by the human skin wrinkle structure, they proposed and prepared a
biomimetic radiative cooling (Bio-RC) coating with a biomimetic skin natural wrinkle
structure, containing BaSO4 and SiO2 micro-nanoparticles [22]. The naturally wrinkled
surface enhanced the control of the dual-band radiative properties of the Bio-RC coating in
the solar band and the “atmospheric window” band. Overall, the method of combining
micro-nanomaterials with the surface microstructure established by Wang’s group could
provide guidance for designing radiative cooling coatings.

With regard to the theme of this Special Issue, we note a variety of novel micro/nanomaterials
is currently studied for the use of TPV technology. Since it was initially proposed in the
1950–1960s [23], thermophotovoltaics (TPVs), which converts heat into electricity via the
photovoltaic (PV) effect, has been a long-lasting topic of research in the fields of thermal
radiation, thermal energy conversion, solar energy, etc. [24]. A thermophotovoltaic (TPV)
system is an efficient technology that converts thermal energy into electricity directly. It
has wide applications due to the fact that various heat sources, e.g., solar energy, chemical
energy, nuclear energy and industrial waste heat, can be utilized.

The emitter, a key component in the TPV system, absorbs energy from the heat source
and emits radiative energy into the TPV cell for thermoelectric conversion. To improve
the TPV system efficiency, the emitter should be spectrally selective, i.e., achieving high
emittances in the convertible waveband of the TPV cell while exhibiting low emittances
in the non-convertible waveband. To promote the development of the TPV system, Cai
et al. focused on the problems of the mechanism and practical application of the system,
especially in the aspects of metamaterial-emitter-based near-field TPV systems and thermal
degradation of the TPV emitter [25–31].

Photonic crystals, metamaterials and meta-surfaces, which are artificial materials
composed of micro/nanoscale building blocks, can be designed to demonstrate spectrally
selective emissivity, that is, to enhance the emissivity at super bandgap wavelengths of the
PV cell and suppress the sub-bandgap emissivity [32,33]. In addition, there is a trade-off
between the output power density and conversion efficiency with respect to the high-
emissivity bandwidth [34]. In the last few decades, there has been a continuing burst in the
study of such selective thermal emitters for TPV, both theoretically and experimentally [33].
Nevertheless, we should be aware of the fact that, despite all the claimed high performance
of many selective emitters, for practical applications, the long-time thermal stability at
elevated temperatures (~1200K or even higher) and resistance against thermal shocks
are of the most importance. Considerable attention has been paid to this subject in recent
years [35–37]. Another promising area is the development of high-efficiency TPV cells using
two-dimensional (2D) materials, for instance, van der Waals (vdW) bilayer antimonene [38]
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and Sb/InSe vdW heterostructure [39], while experimental works in this subject matter are
yet to be conducted.

In the last few decades, there have been up and downs for the research and develop-
ment of TPV [40,41]. Recently, there has been a resurgence of interest in this technology.
There are several possible reasons. Firstly, the rapid development of nanofabrication leads
to the invention of high-performance selective emitters, filters and back-surface reflectors,
which enables a delicate control of the thermal emission spectrum, resulting in excellent
spectral efficiency [42,43]. Secondly, low-bandgap TPV cells, especially III-V semiconductor
cells, have also witnessed significant progress, which, nowadays, can achieve near-ideal
quantum efficiencies and effective carrier-management capability [42,44]. Thirdly, there is a
growing demand for developing high-efficiency, solid-state thermal-to-electrical energy con-
version technologies in the current world towards the goal of carbon neutrality [45], which
show important applications in wearable electronic devices [46], solar energy harvest [47]
and so on. We can note that, currently, it seems to be quite demanding for thermoelectrics to
further improve its conversion efficiency in a significant manner [48], while TPV is promis-
ing with potential high efficiency approaching the Carnot limit and a recent experimentally
demonstrated world record, over 40% [49].

Thermoelectric generators (TEGs) can recover waste heat and directly convert heat
to electricity. The recent development of high-performance thermoelectric (TE) mate-
rial improves the converting efficiency of TEGs and greatly promotes the applications
of thermoelectric devices. The ZT value achieved 2.8 in n-type SnSe crystals and bulk
Cu1.94Al0.02Se materials were prepared, whose ZT value of 2.62 was obtained [50,51].
TEGs are applied for recovering heat from automotive, ships, industrial, geothermal well
and solar radiation [52–54]. In addition, TEGs have been applied in space to provide power
to satellites for decades [55].

To enhance the efficiency of TE devices, not only the development of high-performance
TE materials, but also geometry optimization and system configuration design need to
be analyzed. Geometry analysis concerning the TE module and TE system optimizes the
module height, module number, heat exchanger to maximize power output and their
economic feasibility [56–58]. A proper design of a converging configuration or an annular
shape improves the efficiency of the TE system [59,60]. In addition to output performance
analysis, the aging effects in TEGs are worth analyzing in the future. Large thermal stress
results from thermal expansion mismatch at the junction, severely damaging the lifespan
of TEGs [61]. Performance degradation also occurs during working cycles due to increased
internal resistance at the joint of different materials in TEGs [62]. The selection of stable
heat source, thermal management and better welding techniques is also vital in achieving
better TEG performance.

Due to the coupling effect of evanescent waves, the near-field radiative heat trans-
fer (NFRHT) between two objects can exceed the blackbody limit, which has attracted
widespread attention and driven the development of fields, such as energy harvesting and
conversion [63,64]. Hyperbolic materials (HMs) [65,66], whose components of the dielectric
constant tensor have opposite signs, can excite hyperbolic phonon polaritons (HPPs) in a
wide frequency range to further enhance the NFRHT [67]. However, most HMs studied
previously are artificial structures constructed with periodically stacked subwavelength
metallic and dielectric layers, whose hyperbolic properties are limited by the tangential
wavevector component [68]. In comparison, the lattice constants of natural HMs are sub-
nanometer in size and there is no need to consider this limitation. Therefore, it is of great
significance to investigate the NFRHT between natural HMs. In recent years, Professor Wu
investigated the NFRHT between natural HMs, including hBN and α-MoO3 [69–71].

Research on these topics has predicted theoretically and demonstrated experimen-
tally a huge enhancement in NFRHT associated with excited surface polaritons, such as
surface plasmon polaritons [72–75], volume-hyperbolic polaritons (v-HPs) and surface-
hyperbolic polaritons (s-HPs) [76–78]. In general, these related surface polaritons are
supported by 2D materials, hyperbolic metamaterials and natural hyperbolic materials.
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These materials are deeply investigated and demonstrated by excited polaritons in the
angular frequency region within a negative real component of the permittivity (Re[ε] < 0)
in many studies [79]. It has greatly promoted the application of near-field thermal radia-
tion in thermal rectifications [80], thermal transistors [81], thermal modulators [82,83] and
near-field thermophotovoltaics [84–87].

The previous paragraphs in this paper introduced the application of micro- and nano-
materials in different technologies. Energy storage, heat transfer and energy conversion
can be realized by using different technologies, which greatly improve the reuse rate of
energy. The use of fossil fuels has aroused global concern about the security of energy
supply and the increase in energy demand. Therefore, people are turning their attention to
non-fossil fuels and the efficient use of fossil fuels. Near-field-radiation heat transfer can
efficiently and rapidly transmit thermal radiation energy, which can be used to improve
the energy utilization efficiency of micro-energy systems and implement flexible, accurate
and efficient thermal management for micro-electronic devices. The thermal photovoltaic
system, which directly converts thermal energy into electricity, has been tested in all major
energy sectors, such as solar and biofuels, as well as the efficient use of fossil fuels.
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