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Abstract: In the present work, Cu/Cr thin films were deposited on substrates of a different nature (Si,
Glass, Bk7, and ITO) through a thermal evaporation deposition method. Non-contact atomic force
microscopy (AFM) was used to obtain 3D AFM topographical maps of the surface for the Cu/Cr
samples. Various analyses were carried out to obtain crucial parameters for the characterization of
the surface features. In particular, Minkowski functionals (including the normalized Minkowski
volume, the Minkowski boundary, and the Minkowski connectivity) and studies of the spatial
microtexture by fractal and multifractal analyses were carried out. Different roughness parameters
(including arithmetical mean height, root mean square height, skewness, kurtosis, fractal dimension,
Hurst coefficient, topographical entropy, and fractal lacunarity) were quantified in these analyses
for the comparison of the surface morphology of the different samples. All the samples displayed
non-Gaussian randomly rough surfaces, indicating the presence of multifractal features.

Keywords: AFM; Cu/Cr thin films; surface microstructure; multifractal analysis

1. Introduction

The physical properties of thin films grown by deposition layers of different natures
are directly related to their low dimensionality and multilayer structure. Over the past
few decades, the scientific community has devoted considerable efforts to exploring and
understanding the new physical phenomena arising from surface effects and interfacial
interactions in these materials [1–5]. One crucial challenge for surface engineering is finely
controlling the nanocrystalline thin film grain size and boundary to modulate the properties
for different technological requirements. In this regard, Cu thin films with high strength and
electrical and thermal conductivity are crucial for the design of micro-electro-mechanical
systems (MEMS) and electronic nanodevices [6–8]. However, these films’ tensile ductility
and thermal stability strongly depend on the grain boundaries’ volume fraction, which
can be tuned with dopant atoms (such as Cr and Pt) and alloying [9,10]. The Cu/Cr
systems usually present small solubilities (less than 0.1 at.% below 1000 ◦C) [11], and
therefore, magnetron sputtering deposition is a versatile technique for the non-equilibrium
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preparation of alloyed thin films from an immiscible element. Recently, some researchers
have reported the deposition of Cu/Cr thin films with interesting interfacial phenomena,
such as the Cu grain growth within Cr grain boundaries and vice versa [9] and the formation
of nanotwins [10]. These microstructural properties are associated with the mechanical
behavior of the film and allow tuning control of its hardness [9,10]. Furthermore, in the
study of both surface and interfacial effects, the roughness of the layers plays an essential
role, which strongly depends on the deposition parameters, including the nature of the
substrate and the deposited layers, the working pressure, the temperature, the deposition
rate, and the deposition time, among others [12–18]. For this reason, it is essential to have
accurate characterization techniques and advanced methodologies and tools for analyzing
the produced experimental data of the 3D surface morphology of thin films.

Atomic force microscopy (AFM) is a powerful characterization technique to ob-
tain three-dimensional (3D) atomic force microscope (AFM) topographical maps of sur-
faces [19,20]. Additionally, a variety of methods have emerged and consolidated during the
last decade for the analysis of the three-dimensional (3D) atomic force microscope (AFM)
maps to differentiate and quantify characteristic parameters in the determination of the
complexity of the layer surface roughness [21–29]. Such methods include the determination
of Minkowski functionals [21–23], fractal [24–26], and multifractal [27–29] analyses, among
others. The combination of these methods in the analysis of AFM images is necessary to
have a deeper understanding of the dependence of the grain size and film roughness on the
experimental deposition parameters and to clarify the interfacial and surface phenomena
that govern the physical properties of these low dimensional systems, generating new
scientific knowledge with potential technological applications.

In the present work, Cu/Cr thin films constituted by a Cr layer with a thickness of
25 nm deposited onto different kinds of substrates (Si, Glass, Bk7, and ITO) at a temperature
of 150 ◦C, and a Cu layer with a thickness of 250 nm deposited on the chromium thin film,
were prepared using the thermal evaporation deposition method. The microstructure sur-
face of these films was studied using non-contact atomic force microscopy, and the obtained
data were analyzed by applying different methods to characterize the complexity of the
surface topography with the quantification of roughness parameters for the comparison of
the studied samples.

2. Materials and Methods

Herein, we use the thermal evaporation method to prepare the Cu/Cr multiplier.
First, a chromium thin film with a thickness of 25 nm is grown on Si, Glass, Bk7, and ITO
substrates at a temperature of 150 ◦C. Then, a copper thin film with a thickness of 250 nm is
deposited on the chromium thin film deposited on the substrates at a temperature of 70 ◦C.
In this study, the process of deposition using the thermal evaporation deposition method is
such that the required working pressure is supplied by two rotary and diffusion pumps.
Then, the substrates are heated to the required temperature by the heater. Afterward,
the required electric current through the tungsten plant containing the target material
(chromium or copper with a purity of 99.99%) induces the evaporation of material molecules
to move down to the substrate due to the pressure difference between the plant, resulting
in the formation of a thin film of chromium or copper on the substrate. Thus, all deposition
parameters are kept constant, and the only difference is used during the Cu/Cr film
production. The employed parameters to prepare the films are given in Table 1.

Table 1. Parameters to prepare the films.

Target Working Pressure
(mbar)

Deposition Rate
(nm/s)

Intensity Current
(A) Thickness (nm) Working

Temperature (◦C)

Cr 8 × 10−5 0.1 25–35 25 150

Cu 8 × 10−5 3 35–40 250 70
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It should be mentioned that the deposition process is performed again to ensure
reproducibility. An overview of the deposition conditions is given in Figure 1.

Figure 1. Schematic of Cu/Cr thin film formation by TED method.

The thickness of the films is controlled using the Sigma Thickness Measurement In-
struments, SQM-160 (Sigma Instruments, Cranberry Twp., PA, USA) Thin Film Deposition
Monitor, which uses a quartz crystal sensor to measure the deposition rate and thickness
of thin films to be deposited on a substrate (more details are described in Table 1). EDS
analysis is performed by the Oxford Instruments (Abingdon, UK) EDS Microanalysis X-
MAX-80 model, being used to identify the percentage of the elements in the formed films
on the glass and silicon substrates. Moreover, a detailed study of the surface morphol-
ogy of the films is performed. Four images of each sample are obtained with 3 × 3 µm2,
(256 × 256) pixels, and all measurements are obtained at room temperature in air and
45% ± 1% relative humidity.

3. Results and Discussion
3.1. EDS Analysis

Figure 2 and Table 2 present the validations of Cr and Cu with a concrete stoichiometry
exposed from EDS with ≈100 at.%. The EDS spectra can prove the formation of the Cr and
Cu films on the substrates.

3.2. Height-Based Analysis

Three-dimensional AFM topographical maps are helpful for identifying specific spatial
patterns in thin films [30–32]. It is worth remembering that the possible errors in the
detection processes and also in the noise reduction of the surface topography measurement
are extremely important. In addition, current processing software has filters and routines
that are very useful for reducing the noise produced during measurement. AFM systems
have anti-vibration tables and specific chambers to avoid the influence of mechanical
vibrations that would create erroneous artifacts in the image. Thus, to avoid such problems,
as already mentioned, the AFM measurements were performed in non-contact mode,
indicating that the interaction between tip and surface was caused by long-range forces
acting in a regime of attractive forces. This mode can bring artifacts to the image in the
case of large scans, which is not the case in the work presented here [33,34]. The images
obtained in this work were processed using the MountainsMap software to evaluate the
height-based morphological parameters according to the ISO 25178-2: 2012 standard [35].
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In Figure 3a–d, it is clear the existence of a hierarchical structure where the roughness is
branched over multiple scales. Notably, the conformation of Cu/Cr layer-by-layer on the
BK7 substrate promoted the formation of a smoother morphology compared to the surfaces
generated on glass, ITO, and Si substrates. Previously, Mwema et al. [36] deposited pure Al
thin films on different substrates and showed that the substrate type plays an important
role in informing unique nanoscale surface aspects. In this regard, it is also possible to
conclude that the morphologies generated over BK7, glass, ITO, and Si substrates have
unique surface aspects, explicitly, different rough peaks arrangement and rough profiles.
In this regard, the substrates’ different rough profiles and morphologies are behind their
different observed morphologies.

Figure 2. EDS spectra signifying the formation of Cu/Cr thin films on Glass and Si substrates.
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Table 2. EDS spectra data for glass and Si substrates.

Sample
Element (wt%)

Cr Cu

Glass 1.38 1.3
Si 98.62 98.7

Figure 3. 3D AFM topographical maps of Cu/Cr thin films deposited on (a) BK7, (b) Glass, (c) ITO,
and (d) Si substrates. Height distribution (e) and Abbott–Firestone curves (f) of Cu/Cr films deposited
on BK7, glass, ITO, and Si substrates are also shown.

Furthermore, it is worth mentioning that although BK7 and glass are materials classi-
fied as glasses, their manufacturing process leads to the formation of surfaces with different
morphologies and roughness. Herein, we found rough surfaces of 6.77 ± 1.36 nm and
6.82 ± 2.87 nm for the BK7 and glass, respectively (Table S1). These values are significantly
higher than previously reported values of 0.40 nm (BK7) [37] and 0.5 nm (glass) [38]. More-
over, the distributions of particles on the surface of BK7 and glass exhibit different patterns,
showing that these substrates have different surface microtextures, as seen in Figure S1a,b.
However, ITO and Si substrates display different morphologies and smoother surfaces
with a roughness of 1.89 ± 0.05 nm and 0.85 ± 0.45 nm, respectively (Figure S1c,d). Then,
subtracting statistically similar surface roughness induced the growth of smoother surfaces,
with a slightly different roughness of 1.62 ± 0.28 nm and 1.90 ± 0.22 nm for the Cr/Cu



Coatings 2022, 12, 1364 6 of 13

films deposited on the BK7 and Glass (Table 3). Nevertheless, ITO and Si substrates, which
have a smoother surface compared to BK7 and glass, induced the growth of Cr/Cu films
with similar roughness of 3.20 ± 0.22 and 3.32 ± 0.42 nm (Table 3). This proves that the
roughness and morphology of the substrates are key factors that influence the formation of
the surface of Cr/Cu films deposited by the thermal evaporation method.

Table 3. Surface parameters of Cr films deposited on BK7, Si, and glass substrates, according to ISO
25178-2:2012. The average results were expressed as mean values and standard deviation.

Parameter Unit Bk7 Glass ITO Si
Sq [nm] 1.62 ± 0.28 1.90 ± 0.22 3.20 ± 0.22 3.32 ± 0.42
Sa [nm] 1.18 ± 0.20 1.40 ± 0.18 2.85 ± 0.44 2.50 ± 0.27

Ssk * [-] 0.23 ± 0.13 0.60 ± 0.35 0.36 ± 0.19 0.83 ± 0.47
Sku * [-] 5.84 ± 2.85 4.08 ± 1.54 1.24 ± 0.98 3.27 ± 1.72

* Samples without significant difference, ANOVA One-Way (p < 0.05).

Furthermore, the thermal behavior of the substrate at 150 ◦C can also play an im-
portant role in forming different morphologies and roughness of the films. It is known
that at 150 ◦C, BK7 exhibits a coefficient of thermal expansion of ~7.6 × 10−6 ◦C−1 [39],
while the value reported for single glass is ~6.45 × 10−6 ◦C−1 [40]. Likewise, ITO and Si
have different coefficients of thermal expansion, explicitly, ~5.81 × 10−6 ◦C−1 [41] and
~3.5 × 10−6 ◦C−1 [42], respectively. The roughness values are reported to be 1.62 (BK7),
1.90 (glass), 3.20 (ITO), and 3.32 nm (Si) (Table 2), confirming that the different thermal
behaviors of the substrates are also responsible for the formation of different morphologies
and roughness. This occurs because at 150 ◦C, the diffusion of heat along the surfaces
occurs differently, which allows the formation of different molds of the Cr film on the
substrates due to the different arrangement of the atoms on the surface. Further, the Cu
films are formed into the rough profile generated by displaying different morphologies and
roughness patterns.

In Figure 3e, the height histogram reveals that the roughness of the films is well-spread
around a mean value, indicating that the process of formation of the surface was well
controlled. Moreover, the quality of the surfaces is again stressed by the Abbott–Firestone
(AF) curves, where in Figure 3f, we notice a robust presence of the typical S-shape for all
the samples. The Cu/Cr surface height-based morphological parameters are summarized
in Table 3. As can be seen, the main roughness parameters Sa (arithmetical mean height)
and Sq (root mean square height) are dependent on the substrate type. This indicates that
different substrates form Cu/Cr surfaces with unique 3D spatial patterns. As a result of its
smoother morphology (Figure 3a), the surface formed over the BK7 substrate exhibits a
less rough topographic profile. Additionally, regarding the height distribution shape, we
can note that the curves shown in Figure 3e suggest that the height histograms follow a
Gaussian distribution. However, the values of skewness (Ssk) and kurtosis (Sku) presented
in Table 3 show that this hypothesis is invalid. In fact, it was not observed the combination
of Ssk ~0 and Sku ~3 [43], signals that the samples have non-Gaussian distributions. This
means that all samples have surfaces with long-range spatial correlations, confirming the
visual analysis from Figure 3a–d. Qualitatively, the Cu/Cr layer-by-layer surfaces formed
over BK7 and glass are spiky (Sku > 3) [43,44], while those generated on ITO and Si are
bumpy (Sku < 3) [45].

3.3. Minkowski Functionals

The Minkowski functionals (MFs)of the samples, which are geometrical, mathematical
approaches widely used to study irregular morphologies [46], are represented by the curves
exposed in Figure 4a–c. As can be seen, all curves exhibit the typical patterns observed
for randomly rough surfaces [47]. The normalized Minkowski volume (V) presents a
sharp decline between 10 nm < z < 25 nm, which agrees with the fast increase in the
Abbott–Firestone curve in Figure 3f around the same spatial region. In turn, the Minkowski
boundary (S) agrees with the height histogram in Figure 3e. Thus, it is evident that the
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largest increase in the V curve occurs at the thresholds close to the S curve’s mean value,
pointing out that a large part of the material is around the mean surface. Such patterns
again stress a high quality in the surface’s formation process. In addition, Figure 4c shows
that the Minkowski connectivity χ presents the deepest minimum value for the sample
deposited on the ITO substrate, indicating that isolated holes, compared to the others,
more predominantly characterize such material. This signals that the ITO substrate forms a
surface that potentially has interesting features in the context of percolation.

Figure 4. The MFs of Cu/Cr films deposited on BK7, glass, ITO, and Si substrates for (a) Minkowski
volume, (b) Minkowski boundary, and (c) Minkowski connectivity.

3.4. Analysis of the Films’ Spatial Microtexture

In Figure 5a–c, we see measures related to the fractality of the film’s surface, which
are important parameters used to identify different spatial configurations of the surface
microtexture [48,49]. In this way, Figure 5a–b displays the behavior of the fractal dimension
(FD) and Hurst coefficient (Hc), whose average values were computed to be 2.229 and 0.771
(BK7), 2.304 and 0.696 (Glass), 2.342 and 0.659 (ITO), and 2.356 and 0.645 (Si), respectively.
These results show that the Si substrate promotes the formation of Cu/Cr surfaces with the
largest FD and smallest Hc, signaling that the Si surfaces have a high spatial complexity
compared with the other samples. Such an aspect is associated with their high roughness
value recorded.
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Figure 5. Fractal-related parameters of Cu/Cr films deposited on (a) BK7, (b) Si, (c) Glass, and
(d) ITO substrates.

On the other hand, the fractal succolarity (FS) average values are 0.550 (BK7), 0.519 (glass),
0.519 (ITO), and 0.524 (Si), and their dependence on the substrate used is shown in Figure 5c.
Our observation shows that for BK7, we have the largest fractal succolarity, indicating
that such a surface has a high percolation degree, suggesting that this surface can be more
easily lubricated than others. Finally, the average values for the topographical entropy
based on information theory (E) were found to be 0.994 (BK7), 0.952 (glass), 0.979 (ITO),
and 0.966 (Si). The trend of this parameter is displayed in (Figure 5d). It reveals that
although all topographies have a high degree of uniformity [50], as their normalized
topographic entropies reached a high value (>0.95), the samples deposited on the ITO and
Si substrates have significantly higher values. In other words, this means that these samples
have the distribution of topographical heights evenly distributed along the surface, which
is a remarkable characteristic of these samples. Some previous reports have associated
the topographical uniformity of the rough profile with some physical properties, e.g.,
friction, wear, and adhesion [51–53]. A higher topographical entropy value suggests that
the possibility of material failure is minimized. Thus, the ITO and Si samples perform best
as a more uniform surface material.

Another important aspect of the surface microtexture is its homogeneity, which was
evaluated by fractal lacunarity. The linear pattern in the log-log plot depicted in Figure 6
reveals that the lacunarity behaves as a spatial power law. This indicates the functional
relationship in which the stochastic deposition of layer-by-layer Cu/Cr thin films on BK7,
Si, and glass substrates did not favor the formation of purely random interfaces. However,
it favored the emergence of surfaces with a combination of long-range correlation and a
lacunar distribution across multiple scales.
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Figure 6. Lacunarity of the fractal region obtained from lacunarity distribution of the surface of
layer-by-layer Cu/Cr thin films deposited on (a) BK7, (b) Si, (c) Glass, and (d) ITO substrates.

Such a feature is in congruence with the non-Gaussian height distribution discussed
previously. Furthermore, the lacunarity coefficients (σ) were found to be 0.329 (BK7),
0.487 (glass), 0.391 (ITO), and 0.451 (Si). A lower value of σ means that the surface micro-
texture is more homogeneous [53,54]. This indicates that the films deposited on the BK7
substrate have a more homogeneous surface microtexture than the other substrates. Despite
that, the ITO sample also has a low value compared to the glass and Si samples. Combining
this information with the topographical entropy analysis, it is possible to conclude that the
ITO sample has the most uniform and homogeneous surface microtexture, which makes it
a promising material for technological applications.

3.5. Multifractal Analysis

The multifractal analysis can provide a more comprehensive description of fractal
surfaces [55,56]. In Figure 7a, we see that all samples display multifractality since the
mass exponent τ(q) versus q deviated from a single linear trend. Such multifractality is
endorsed by the non-constant behavior of Dq versus q, shown in Figure 7b as well as by
the typical concave curve of the multifractal spectrum f(α) versus α, shown in Figure 7c,
confirming the multifractal behavior for all our samples in agreement with the long-range
correlation previously discussed. Apart from this, it is evident that Figure 7b–c reveals
that the glass samples exhibit distinguished features, as documented in Table 4, which
provides a collection of measures related to the multifractal spectra. The largest width
of the spectrum ∆α (the difference between αmax and αmin) occurs for the glass sample,
which means that their topographies have the highest degree of multifractality. The layer-
by-layer deposition of Cu/Cr on Glass occurred with a preferential growth of a hierarchical
distribution of roughness that branches across several spatial scales with a wide range
of fractal dimensions. This multiscale self-affine growth was also present for the other
substrates (Si, BK7, and ITO), but with much weaker intensity due to the inferior degree of
multifractality, as shown in Figure 7 and Table 4.
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Figure 7. (a) Mass exponent τ(q), (b) generalized dimensions Dq and (c) multifractal spectra (f(α)
versus α), as a function of the order of moments computed for BK7, glass, ITO, and Si film surface.
For clarity, the BK7, ITO, and Si mass exponent curves are shifted by −5, +5, and +10, respectively.

Table 4. Measures of multifractal spectra.

Parameter BK7 Glass ITO Si
f(αmax) −0.378 −0.356 −0.210 −0.374
f(αmin) 0.611 1.919 1.709 1.495

∆f = f(αmin) − f(αmax) 0.989 2.275 1.919 1.869
αmax 2.934 3.285 2.898 2.991
αmin 1.961 2.133 2.083 2.055

∆α = αmax − αmin 0.973 1.152 0.815 0.936

The width of the multifractal spectrum (∆α) and the spectrum arms’ heights difference
(∆f) are computed using the following expressions [55–57]:

∆α = αmax − αmin (1)

∆f = f(αmin) − f(αmax) (2)

4. Conclusions

We successfully prepared Cu/Cr thin films constituted by a Cr layer with a thickness
of 25 nm deposited onto different kinds of substrates at a temperature of 150 ◦C, and a Cu
layer with a thickness of 250 nm deposited on the chromium thin film, using the thermal
evaporation deposition method. Important differences and common properties of the
surface features of Cu/Cr thin films grown in different substrates (Si, glass, Bk7, and ITO)
were identified.

All samples exhibited non-Gaussian surfaces with a multifractal nature. The sample
grown on the Si substrate exhibited a rough surface with more complexity than the others,
as reflected in its high value of fractal dimension and the smallest Hurst coefficient.
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The sample deposited on the ITO substrate presented a low fractal succolarity with
more isolated holes and a high topographic entropy value (>0.95), which are interesting
properties from a technological point of view due to their association with percolation,
friction, wear, and adhesion.

The Cu/Cr surfaces deposited over BK7 and glass substrates were spiky (Sku > 3),
while those grown on ITO and Si substrates were bumpy (Sku < 3). The samples grown on
the BK7 substrate had the largest fractal succolarity and the smallest fractal lacunarity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12091364/s1, Figure S1: 3D AFM topographical maps
of (a) BK7, (b) Glass, (c) ITO, and (d) Si substrates; Table S1: Roughness of BK7, Si, and Glass
substrates, according to ISO 25178-2:2012. The average results were expressed as mean values and
standard deviation.
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25. Ţălu, Ş.; Matos, R.S.; Pinto, E.P.; Rezaee, S.; Mardani, M. Stereometric and fractal analysis of sputtered Ag-Cu thin films. Surf.
Interfaces 2020, 21, 100650. [CrossRef]
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