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Abstract: Carbon materials in different shapes—such as fullerene molecules (0D), nanotubes and
graphene nanoribbons (1D), graphene sheets (2D), and nanodiamonds (3D)—each have distinct elec-
trical and optical properties. All graphene-based nanostructures are expected to exhibit extraordinary
electronic, thermal, and mechanical properties. Moreover, they are therefore promising candidates for
a wide range of nanoscience and nanotechnology applications. In this work, we theoretically studied
and analyzed how an array of quantum dots affects a charged graphene plate. To that end, the array
of quantum dots was embedded on the graphene plate. Then, considering the interaction between
QDs and graphene nanoribbons, we transformed the charged plate of a graphene capacitor into a
nanotube using the bipolar-induced interaction and the application of an external electromagnetic
field. In this work, the dimensions of the graphene plate were 40 nm × 3100 nm. The bending process
of a charged graphene plate is controlled by the induced force due to the applied electromagnetic
field and the electric field induced by the quantum dots. Finally, using the predetermined frequency
and amplitude of the electromagnetic field, the graphene nanoribbon was converted into a graphene
nanotube. Since the electrical and optical properties of nanotubes are different from those of graphene
plates, this achievement has many practical potential applications in the electro-optical industry.

Keywords: nanoribbon graphene; carbon nanotubes; array of quantum dots; rolling; dipolar interaction

1. Introduction

Since the shorter bond length of nanomaterials makes the materials stiffer and stronger,
they show distinct properties [1,2]. One of the strongest bonds is carbon–carbon in the
hexagonal lattice observed in solids [3,4]. Various allotropes of carbon nanomaterials
exhibit each possible dimensionality, such as fullerene molecules (0D), nanotubes and
graphene ribbons (1D), graphite plates (2D), nanodiamonds (3D), etc. Although the elec-
tronic structure of these allotropes (except for sp3 diamond) is similar to that of graphene
(i.e., a complete unbounded single layer of sp2-bonded carbon atoms densely packed into a
benzene ring structure), confinement effects play a crucial role. The lateral confinement
of charge carriers, depending on the width of the ribbon, the nanotube diameter, and the
stacking of the carbon layers with respect to the different crystallographic orientations
involved, could create an energy gap near the Dirac point. Doping and topological defects
(including edge disorders) have also been proposed as tools to tailor the quantum conduc-
tance in these materials after reviewing the transport properties of defect-free systems [5–7].
However, because planar graphene is unstable with respect to the formation of curved
structures—such as fullerenes and nanotubes—it had been considered not to exist in a free
state. Nevertheless, recently, researchers went on to construct graphene by mechanical
exfoliation (i.e., repeated peeling or micromechanical cleavage) of bulk graphite (i.e., highly
oriented pyrolytic graphite (HOPG)) [8,9] or by epitaxial growth through thermal decompo-
sition of SiC [10]. However, the request for increasing the stability of the building element
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without an increase in the size of the element leads to the introduction of reinforcements.
This means that the structure of a single graphene sheet is more stable than that of other
reinforcements. Although creating a graphene structure with other carbon allotropes means
a less stable structure, with the advancement of technology and manufacturing theory, it
is now possible to create a graphene sheet via modern methods, such as chemical vapor
deposition (CVD). Thus, it is possible to make other allotropes without increasing their
size, reducing them to micron and even nano size, and using graphene sheets. The use of
carbon nanotubes (CNTs) for increasing the stability of materials was successfully carried
out in the last decade of the 20th century [11]. CNTs have played an important role in the
field of micro- and nano-development since their discovery, because of their outstanding
conductivity, stiffness, and high aspect ratio. Sumio Iijima, in his work [12], discovered
CNTs to be tubular carbon allotropes of graphite. The basic building block in nanotubes
relies on the theoretical significance of the graphene sheet [5,13]. CNTs, depending on the
number of graphene walls in their structure, can be categorized in two ways: single-walled
CNTs (SWCNTs) and multiwalled CNTs (MWCNTs). The SWCNT is patterned to be a
simple graphene sheet rolled to form a tubular structure. Nevertheless, an MWCNT is a
group of several concentric rolled graphene sheets with a wall separation of ~0.34 nm [14].
Because of being held together by a delocalized electron cloud along the walls due to the sp2
hybridization of carbon atoms, MWCNTs are less flexible and have more structural defects
compared to SWCNTs [15]. Moreover, Chang et al. found that upon rolling a graphene
sheet for forming a chiral SWCNT, in-plane isotropy is maintained in the SWCNT [16].
The selection of employing MWCNTs or SWCNTs mostly depends upon the sphere of
application. Most biomedical applications prefer SWCNTs, especially for drug delivery
applications, because of their efficient drug-loading capacity and ultrahigh surface area.
Engineering structures also use SWCNTs, because of their high stability compared to MWC-
NTs [11]. Since the discovery of carbon nanotubes in 1991 by Ijima et al., some researchers
around the world have extensively studied these structures. The large length of carbon
nanotubes (up to several microns) and their small diameter (several nanometers) make the
length-to-width ratio of these structures very high. The electronic, molecular, and structural
properties of carbon nanotubes are largely determined by their nearly one-dimensional
structure. Carbon nanotubes are produced in three main ways: arc discharge, laser ablation,
and chemical vapor deposition. Nevertheless, scientists are exploring more economical
ways to produce these structures. The main problem in the application of nanotubes
is their high synthesis as well as their neutralization. Many applications of nanotubes
are due to the intrinsic dimensions of nanoparticles, their high surface-to-volume ratio,
and the unique combination of their electrical, optical, thermal, and structural properties.
A.R. Kohler et al. reported some of the expected applications of nanotubes [17]. Carbon
nanotubes are used as fillers in polymer composites to increase the electrical properties,
tensile strength, durability, and conductivity of materials. Carbon nanotubes have been
used as microelectrodes in polyvinylidene fluoride (PDVF) composites [18]. They can also
potentially be used as electromagnetic interference (EMI) shields, artificial muscle, super-
conductors [19,20], hydrogen storage [21,22], fuel cells [23], fire-retardant sensors [24,25],
and field emitters [26]. On the other hand, graphene is a compound that exhibits unusual
physical properties that could be used in the future for electronics and optoelectronics.
Although several methods have been developed for the synthesis of graphene, the control
of process parameters is required to adapt the measurable energy gap with reproducible
properties [27]. Kim et al. reported carrier mobility of slightly more than 200,000 cm2/Vs
for a single layer of mechanically exfoliated graphene. In addition, they specifically mini-
mized the substrate-induced scattering by etching under the channel to produce graphene
suspended between gold contacts in their experiments [28]. At room temperature, and
with such high carrier mobility, charge transport is essentially ballistic on the micrometer
scale. Because this enables the fabrication of all-ballistic devices even at current integrated
circuit (IC) channel lengths (as low as 45 nm), it has great significance for the semiconductor
industry. Graphene possesses considerable optical properties, and it can be optically imag-
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ined, despite being only a single atom thick. The linear dispersion of the Dirac electrons
makes broadband applications possible. Storable absorption is observed as a consequence
of Pauli blocking, and the absence of equilibrium carriers results in hot luminescence.
Chemical and physical treatments can also lead to luminescence. All of these properties
make graphene an ideal photonic and optoelectronic material [27]. Chemical doping and
defects in graphene-based materials are currently being actively explored as a potential
source of innovation to tailor the electronic properties of these nanostructures. Recently,
experiments on graphene have been extended to the fabrication and study of QD–graphene
nanostructures [29,30]. The author of [30] observed that when an array of quantum dots
placed on the modified Graphene, the graphene plate bends. In this work, we analyzed the
effects of the polarization of the quantum dots’ electric field on the graphene nanoribbon,
which caused this bend. Moreover, we converted a graphene nanoribbon into a graphene
nanotube by applying electromagnetic waves. This technique helps to use one material in
two distinct structural states in electro-optical devices.

During the literature survey, we observed that the free vibration analysis of FG-CNTRC
beams using higher-order zigzag theory (HOZT) remains untouched. Moreover, the modal
stress analysis of FG-CNTRC beams under hygrothermal conditions was not explored
fully. The free vibration behavior of FG-CNTRC beams under moisture conditions also
awaits exploration. Within the study, free vibration analysis of FG-CNTRC beams was
applied under hygrothermal conditions using recently proposed finite element (FE)-based
HOZT. Hamilton’s principle was applied for determining the frequencies of the FG-CNTRC
beams under hygrothermal conditions. Temperature- and moisture-dependent material
properties were used. The influence of the volume fraction of CNT, moisture concentration,
and temperature on the free vibration and modal stress behavior of FG-CNTRC beams
was tested well. Therefore, upon boosting the behavior of those microstructures, the
material properties of nano-elements might change from one location to another, almost
like functionally graded materials (FGMs). Sandwich construction is employed widely for
constructing various structures within the aeronautics, aerospace, naval, automobile, and
civil fields, among others [31–33]. For example, because transverse, commonplace stresses
are taken into consideration in [31], functionally graded carbon-nanotube-reinforcement
(FG-CNTR) was applied to bending and free vibration analysis. Moreover, at joints, the
computational model accumulates transverse shear stress and transverse normal stress
continuously. In fact, the zero transverse shear stress condition at the underside and top
surfaces of the beam is also satisfied. As a result of the minimum energy, bending analysis
was completed, while Hamilton’s elements were adopted for free vibration analysis. The
influence of the core’s thickness on stresses and displacements was additionally critically
analyzed. It was observed that the thickness of the core and the CNT gradation law
significantly affect the mechanical behavior of the sandwich FG-CNTRC beam. The authors
of [32] aimed to conduct free vibration analysis of functionally graded single-walled carbon-
nanotube-reinforced composite (FG-CNTRC) beams under such conditions. Similar to
reference [31], C-0 finite-element-based higher-order zigzag theory was administered
as well, and was applied to five different graded CNTRC beams. Hamilton’s principle
was applied to outline the governing differential equation. Because of taking constant
temperature or moisture distribution across the thickness of the beam, moisture-dependent
material properties and temperature were used. Moreover, the modal stresses of the six
primary mode shapes were studied. Modal stresses were found to worsen with temperature
or moisture concentration as compared to the stresses observed for the essential mode
of vibration. The character of stress distribution across the beam is determined by the
gradation law together with the moisture or temperature values to which the beam is
subjected. The FG-O beam had the lowest sensitivity under thermal conditions, whereas
the FG-X beam had the highest. On the other hand, these nanomaterials are made up of
individual units between 1 and 100 nanometers in size. Furthermore, they offer a lot of
potential in many fields, such as pharmacy and biomedicine, owing to their exceptional
physicochemical properties arising from their high surface area and nanoscale size, because
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of which they have lately attracted a lot of attention. Smart engineering of nanostructures
through appropriate surface or bulk functionalization bestows them with multifunctional
capabilities and modern applications in the biomedical field, such as biosensing, drug
delivery, etc. [34–36].

This paper is arranged into five sections: In the Section 2, we briefly introduce the
geometry of SWCNTs and the crystallography of converting graphene nanoribbons to
nanotubes. In the Section 3, our theory explains the cause of polarization of quantum dot
arrays, which act as the electrostatic gate for graphene nanoribbons. This polarization exerts
a force on the graphene nanoribbon sheet and causes it to bend. Moreover, the graphene
nanoribbon plate bends to an initial point. Next, we examined how the quantum dots were
positioned correctly, the maximum and minimum distances of the quantum dots from one
another, and their number, so that by choosing the right hinge, the bending to be tubed
could be helped. Thus, we used electromagnetic waves to bend the nanoribbons from the
initial point to their endpoint, producing the structure of the graphene nanotubes, and in
this section, methods to apply the waves, amplitude size, and radiation angle are calculated
and expressed. In the Section 4, we present the results obtained. Finally, we discuss the
importance of converting graphene sheets to graphene nanotubes in nanoelectronic and
optical structures in Section 5.

2. Geometry and Crystallographic Structure of SWCNTs

Carbon nanotubes can be classified into MWCNTs and SWCNTs. An MWCNT consists
of two or more concentric cylindrical cells of graphene sheets collocated coaxially around a
central hollow, with interlayer separation, as in graphite (0.34 nm). However, an SWCNT
is made of rolled single-layer graphene. The ends of the rolled single graphene sheet are
sealed using two half-fullerene caps. The diameter of SWCNTs may vary from 0.7 to 2.5 nm.
Originally, unlimited numbers of nanotube geometries would exist, because a graphene
sheet would be rolled up at different angles. Different rolling angles result in different
chirality or helicity of SWCNTs. Carbon atoms are arranged in the form of a honeycomb
lattice in a graphene sheet. The lattice cell is defined with two primitive vectors α and β

(see Figure 1).
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Figure 1. Schematic of an unrolled graphene sheet, determinations of geometrical parameters used to
qualify a carbon nanotube, and forming an SWCNT with them [11,16].

A common approach is using a chiral vector or chiral angle to identify an SWCNT.
The chiral vector Ch in the graphene sheet can be indicated as a combination of primitive
vectors. Ch is defined as follows:

Ch = nα + mβ ≡ (n, m) (1)

where n and m are the integers. When written as (n, m), they are called a chiral index. If
the head of the vector Ch touches its tail when the graphene sheet is rolled into a tube, we
call Ch the chiral vector or roll-up vector of the nanotube [16]. Zigzag and armchair tubes
are chiral nanotubes because of their high geometric symmetry. The angle θ is used for
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determining the electrical properties of the SWCNT, and is referred to as the chiral angle
(see Figure 1). However, SWCNTs with a chiral angle of 0 < θ < π/6 are chiral nanotubes.
The chiral angle is given as follows:

θ = cos−1
(

Ch.α
|α||Ch|

)
= cos−1

(
2n + m

2
√

n2 + m2 + nm

)
(2)

The SWCNTs are of the following three types [11]:

• Armchair (A) SWCNT n = m, Ch = (n, n), θ = π/6.
• Zigzag (Z) SWCNT m = 0, Ch = (n, 0), θ = 0.
• Chiral SWCNT n 6= m 6= 0, 0 < θ < π/6.

Another important geometrical parameter of SWCNTs is the translation vector T,
directed along the SWCNT axis and perpendicular to the chiral vector Ch (see Figure 1).
The diameter of SWCNTs can be determined from the following relation:

R =
|Ch|

π
=

ac−c

π

√
3(m2 + n2 + mn) (3)

where ac−c displays the bond length between adjacent carbon atoms of a cell (ac−c ≈ 1.42 A) [11].
We can conclude in this section that in order to create an armchair nanotube from a

sheet of graphene nanoribbon, the parameters must be n = m, Ch = (n, n), and θ = π/6,
so that the vector T is on an axis that is in line with the length and will pass through the
center of the sheet of graphene nanoribbon. We deem it important that the presence of
hanging bonding on the edge of the graphene nanoribbon sheet creates the final bond
and cross-sectional formation. The cross-sectional radius is for the SWCNT. According to
Formula (3), n must be a non-integer value to create a hanging bond at the edge of the
sheet. Thus, in our work, a width of 40 nanometers was determined to be sufficient for the
graphene nanoribbon.

3. Mathematical Formalism
3.1. Interaction between Quantum Dots and the Charged Graphene Sheet

An electrostatic gate consists of two metal sheets in parallel and at an appointed
distance, which are stuffed with a dielectric material, and these sheets are connected to
a voltage source. We used a graphene nanoribbon sheet with an array of quantum dots
as a metal layer (see Figure 2). The dimensions of the graphene nanoribbon sheet were
775 nm × 40 nm, on which an array of quantum dots with a dot radius of 10 nm was placed,
with a permittivity of 12. A suitable voltage was attached to the graphene nanoribbon sheet
to keep the chemical potential at 0.3 volts and to charge the graphene nanoribbon sheet [37].
According to nanomaterial technology, graphene can be grown on dielectrics such as SiO2.
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An inactive graphene sheet has a chemical potential located at the Dirac point; the
charge-carrier density at this point is zero, and does not act as a metal with unique prop-
erties in the electro-optical field. In the electrostatic gate structure, graphene sheets are
charged after the voltage is applied. Furthermore, their chemical potential is removed from
the Dirac point [31]. In graphene, the Fermi level (Ef), also known as chemical potential (µc),
has a finite value between 1 and −1 eV. For an electrostatic gate, whenever a DC voltage
is connected to it, the charge stored inside the electrostatic capacitor is equivalent to the
doped charge state in the graphene gate, which is proportional to the density of the charge
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carriers at the Fermi level. The density of carriers at the Fermi level can be reduced to the
following form through the Fermi–Dirac distribution and the density of two-dimensional
material states [38,39]:

ns =
2

π}2v2
f

∞∫
0

E
[

fd

(
E− E f

)
− fd

(
E + E f

)]
dE =

1
π

(
µc

}v f

)2

(4)

where fd is the Fermi–Dirac distribution, which is defined by the Fermi level (Ef) and the
Boltzmann constant (KB = 8.617 × 10−5 ev·K−1). An electron moves at a velocity equal to
106 m·s−1 in a graphene structure, known as Fermi velocity (Vf). h̄ is a symbol of Planck’s
decline (h̄ = 6.5875 × 10−16 eV). Thus, the graphene sheet can be charged as much as
Q = q·ns, where q is the amount of electric charge (q = 1.6 × 10−19 C).

As shown in Figure 3, this charged sheet creates an electric field around itself, resulting
in the polarization of the QDs.
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Figure 3. Illustration of the electric field emitted from the charged sheet of graphene nanoribbon and
the polarization of QDs.

The coordinate position of each quantum particle is (xQ, zQ). If we consider that the
charged sheet of graphene nanoribbon with dimensions of 775 nm × 40 nm is on the XZ
plane, we can calculate this field using Gauss’law [40]. Therefore, the electric field emitted
by a charged sheet of graphene nanoribbon at the center of the quantum dots on it, which
polarizes the quantum dots, is equal to:

Eg
y =

q.ns

4πε0y2
((

Lx
y

)2
+
(

Lz
y

)2
+ 1
) 1

2
, y = rQD (5)

The electric field emitted from the charged sheet of graphene nanoribbons leads to the
polarization of quantum dots with εr permittivity. The polarization measure of quantum
dots is given as follows:

→
P

QD

0 = ε0(εr − 1)Eg
y ay

p̃QD
0 = |q|(εr−1)((

Lx
rQD

)2
+

(
Lz

rQD

)2
+1

) 1
2

(
µc

2πrQD}v f

)2
(6)

According to Columbus’s law, this creates an electric field around a polarized particle
that is proportional to the amount of polarization and the distance from the center of
polarization to the desired point ‘p’ (E = [3 (R·P) R/R2 − P]/4πε0R3). Thus, the total electric
field induced by the polarized particles to the desired point ‘P’ with coordinate position
(xp, yp, zp) is given as follows:



Coatings 2022, 12, 1341 7 of 16

E arry Dipolar =
3(yp−rQD) p̃QD

0
4πε0

n
∑

i=1

1
R3

i

[
(xp−xQi

)

R2
i

((
yp−rQD

R2
i

)
− 1

3(yp−rQD)

)
(zp−zQi

)

R2
i

] cos ϕ
sin ϕ

0

− sin ϕ
cos ϕ

0

0
0
1

 ar
aϕ

az


Ri =

√
(xp − xQi )

2 +
(
yp − rQD

)2
+ (zp − zQi )

2, cos ϕ =
xp√

x2
p+(yp−rQD)

2 , sin ϕ =
yp−rQD√

x2
p+(yp−rQD)

2

(7)

where Ri is the distance from the polarization center of each quantum dot to the desired
point ‘P’. The electric field induced by quantum polarized particles creates an interac-
tion between the quantum array and the charged sheet of graphene nanoribbon. The
induced electric field exerts a force on the charged graphene sheet. Therefore, this force is
proportional to the induced electric field.

→
F = q·ns·

→
E

arry Dipolar
→


Fr ∝ Er
Fϕ ∝ Eϕ

Fz ∝ Ez

(8)

3.2. Analysis and Evaluation of Torque and Bending Force to Determine the Number and
Arrangement of Quantum Dots on the Charged Sheet of Graphene Nanoribbon

It should be noted that we wanted to bend a graphene sheet. The sheet bent due to
the applied force on and the selected pivot for its torque. Here, we selected two modes of
pivot: the first case of the pivot was a point in the center of the sheet (Figure 4a), and the
second case of the pivot was axial along the length that passes through the center of the
sheet (Figure 4b). In Figure 4, the green dots represent the points that are pivots. Since our
purpose was to create a sphere from the first state and a cylindrical tube from the second
state, we determined the direction of the force applied accordingly.
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where Ri is the distance from the polarization center of each quantum dot to the desired 
point ‘P’. The electric field induced by quantum polarized particles creates an interaction 
between the quantum array and the charged sheet of graphene nanoribbon. The induced 
electric field exerts a force on the charged graphene sheet. Therefore, this force is propor-
tional to the induced electric field. 
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We present the distance of each point from the sheet to the pivot by the r vector, and F
is the vector of force that is applied to the sheet. Therefore, the torque applied to the sheet
is given by (τ = r × F) [41]. In the first case, the distance vector is equal to r = xs·ax + zs·az.
For us to create the sphere from a flat sheet, the force and torque had to be applied to the
flat sheet in all three directions of the coordinate system to obtain the desired shape. Thus:

τz = xs
(

Fr sin ϕ + Fϕ cos ϕ
)

τr = −
(
zsFϕ + xsFz sin ϕ

)
τϕ = zsFϕ − xsFz cos ϕ

(9)

where the angle ϕ represents the angle of each point from the sheet to the center of the
pivot, and each variable is with time. The same trend can be calculated for the second case.
In the second case, the distance vector is equal to r = xs·ax. In this case, there should be no
torque to create a cylindrical tube along the length. As a result:

τz = xs
(

Fr sin ϕ + Fϕ cos ϕ
)
= 0→ tan ϕ = − Fϕ

Fr
τr = −xsFz sin ϕ
τϕ = −xsFz cos ϕ

(10)
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We wanted to use this technique to create carbon nanotubes from a charged sheet of
graphene nanoribbon. The location of the quantum dot became the center of the pivot for
torque. The purpose was to determine the number of quantum dots and how they were
arranged. Based on this, it was clear that the quantum dots were aligned on the pivot axis
(Figure 4b). Each quantum dot, depending on its position, can apply a torque proportional
to Formula (9) on a charged sheet of graphene nanoribbon. This is important to create a
graphene nanotube, as shown in Figure 4b. The torque on the pivot axis must be zero,
so all of the torque values entered as the result of Equation (9) must be zero as well. The
desired point ’p’ on the axis has the coordinates (0, 0, Zp), so according to Formula (7),

Ri =
√

rQD
2 + (zg − zQi )

2, cos ϕ = 0, sin ϕ = −1. In this case, according to Equation (8)
and Formula (7), we have the following:

Fr ∝ Er =
p̃QD

0
4πε0

n
∑

i=1

1
R3

i

Fϕ ∝ Eϕ = 0

Fz ∝ Ez =
3rQD p̃QD

0
4πε0

n
∑

i=1

(zg−zQi
)

R5
i

(11)

According to Formula (9), the distance from the pivot axis—the multiplied element
with force in the z-direction—is zero, so there is no need to zero this force. However, to
zero the torque values, the only element that must be zero is the force in the r-direction. As
a result, Equation (12) is given for two consecutive quantum dots, as follows:

p̃QD
0

4πε0

n
∑

i=1

(zg−zQi )
R3

i
= 0 → (zg−zQi−1)

R3
i−1

= − (zg−zQi)
R3

i

(zg−zQi−1)
rQD

(
1 +

(
zQi−zg

rQD

)2
) 3

2
=

(zQi−zg)
rQD

(
1 +

(
zg−zQi−1

rQD

)2
) 3

2
(12)

If Zg is at the center point of the distance between the two quantum dots (zg =
zQi+zQi−1

2 ), Equation (12) is correct. Moreover, the force in the r-direction is zero.
Next, we relocate Zg from the center point of the distance between the two quantum

dots to the edge of one of the quantum dots (zg =
zQi+zQi−1

2 ± ∆max). The maximum
distance that two quantum dots can have from one another, from edge to edge, is denoted
by 2∆max. Similarly, as shown in Figure 2, we define ∆ as two quantum dots’ distance
from edge to edge—not from center to center—which is given by ∆ =

∣∣∣ zQi−zQi−1
2

∣∣∣− rQD.

Thus, ∆max is
∣∣∣ zQi−zQi−1

2

∣∣∣− rQD as well. To be able to solve Equation (12), we use variable

change (u =
zg−zQi−1

rQD
, g =

zQi−zg
rQD

). Because Zg is on the edge of one of the quantum

dots (zg =
zQi+zQi−1

2 + ∆max), ‘u’ and ‘g’ are zQi−zQi−1
rQD

+ 1 and 1, respectively. Therefore,
according to this trend, Equation (12) becomes:

u6 + 3u4 − 5u2 + 1 =
(
u2 − 1

)(
u− 2−

√
5
)2(

u− 2 +
√

5
)2

= 0

u =
zQi−zQi−1

rQD
+ 1 =


1 no
−1 no
2−
√

5 no
2 +
√

5 yes→ zQi − zQi−1 = (1 +
√

5)rQD

(13)

As a result, the maximum distance between two consecutive quantum points is equal
to (1 +

√
5)rQD. If the distance between two consecutive quantum dots is greater than this

value, then the applied force between the two quantum dots causes torque and, eventually,
the sheet bends between the two. Additionally, ∆ must always be positive, so that the
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minimum distance (∆min) of consecutive dots is equal to 2rQD. All in all, the distances that
consecutive quantum dots can have are equal to 2rQD ≤

∣∣zQi − zQi−1
∣∣ ≤ (1 +

√
5)rQD.

On the other hand, when knowing the exact distance between consecutive quantum
dots and assuming that the distance between all quantum dots is the same, their number
can be easily given, as follows:

n = =
(

Lz

rQD

)
+1, 2 <=−1 < 1 +

√
5 (14)

So far, we have been able to present how to calculate the amount of force induced on
a charged sheet of graphene nanoribbon by the array of quantum dots, as well as how to
arrange and number the quantum dots. We find the ratio of the length of the graphene
nanoribbon to the radius of the quantum dot important. Formula (7) can be converted to
an integral in the z-direction if this ratio is too large (Lz/rQD >> 1); as a result, the inductive
force on the charged sheet of graphene nanoribbon is given as follows:

→
F =

3
(
yp − rQD

)
q.p̃QD

0
4π2ε0

(
µc

}v f

)2 Lz∫
0

dz
R3

[
xp
R2

((
yp−rQD

R2

)
− 1

3(yp−rQD)

)
z

R2

]cos ϕ
sin ϕ

0

− sin ϕ
cos ϕ

0

0
0
1

 ar
aϕ

az

 (15)

where R =
√

x2
p +

(
yp − rQD

)2
+ z2 ⇒ dR = z

R dz, yp = 0, xp = xg .
The result of the integration under these conditions is the final inductive force at any

point on the charged graphene nanoribbon sheet, which follows the following equation:

→
F = D.H.

 cos ϕ
sin ϕ

0

− sin ϕ
cos ϕ

0

0
0
1

 ar
aϕ

az


D =

3q.p̃QD
0

4π2ε0

(
µc
}v f

)2
= 6|q|2(εr−1)

ε0

√
L2

x+L2
z

(
µc

2π}v f

)4

H =

[
xg LzrQD

(
3 R2|z=Lz

−L2
z

)
R3|z=Lz

(x2
g+rQD

2)
2

LzrQD
2
(

3 R2|z=Lz
−L2

z

)
R3|z=Lz

(x2
g+rQD

2)
2 −

LzrQD

3 R|z=Lz(x2
g+rQD

2)
rQD

4

(
1

(x2
g+rQD

2)
3
2
− 1

(x2
g+rQD

2+Lz)
3
2

)] (16)

where D is a coefficient proportional to the length and width of the graphene nanorib-
bon as well as the permeability of the quantum dots. Therefore, by changing D, their
physical characteristics will change. The matrix H shows the force applied to any point of
the charged graphene nanoribbon sheet in three directions x, y, and z.

3.3. Application of Electromagnetic Waves to Control the Bending Rate of the Charged Sheet of
Graphene Nanoribbon

Using an array of quantum dots with the same radius and distance from one another,
on the longitudinal axis that passes through the center of the charged sheet of graphene
nanoribbon, we were able to bend it. However, this bending must be managed in such
a way as to create a graphene nanotube (SWCNT). We performed bending management
with the help of electromagnetic wave applications. Therefore, the purpose of this section
is to design the appropriate amplitude for electromagnetic waves. The charged sheet of
graphene nanoribbon bends under force applied from the side of the quantum dot array to
a certain point (Xgi, Ygi, Zgi). According to Figure 5, to achieve the SWCNT structure, it is
necessary to design a force that can cause the sheet to bend in the path of the vector ∆L,
which indicates the length of the sheet displacement.
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Figure 5. Introduction of the vector ∆L. In addition, schematic representation of the cross-section of
the SWCNT, and visual expression of the bending management of the charged graphene nanoribbon
sheet with the help of the bending vector ∆L.

The function that follows the circular cross-section of the SWCNT is given by the
equation x2 + y2 = (Lx/2π)2. Accordingly, the displacement vector (∆L) in the bend is given
as follows:

∆
→
L =

√( Lx

2π

)2
− y2 − xg1

ax +
(
y− yg1

)
ay (17)

According to Figure 5, we can obtain the electric field emitted from the various states
(Eg

yi) of the graphene nanoribbon sheet—which varies from the initial state to the final—
using Gauss’law [41]. In the initial stages, the angle θ1 could be varied between −π

4 and
π
2 . A bending angle (θs) similar to the angle θ1 (see Figure 5) was defined for the changing
states of the charged graphene nanoribbon sheet. Ultimately, the electric field emitted
from different states of graphene nanoribbons exists in the quantum dots, and is given as
follows [41]:

Eg
yi(θs) =

Q
4πε0

(
π + 2θs

Lx
√

L2
s + r2

)
sin φ

∣∣∣∣ φ = π
2 , r = rQD

≈
(

π + 2θs

4πε0

)(
Q

LxLz

)
(18)

According to Lorentz’s force law, if we apply waves with a certain amplitude and
phase to the system, a force is applied to the charged graphene nanoribbon sheet [42]
(Zhang, 1998 #117). This force is given as follows:

→
F = Q·

→
E + Q

→
v ×

→
B (19)

Since the system does not have a closed path to establish current, the magnetic field does
not affect the operating waves of the system, and the magnitude qv × B is zero (the speed
of movement of the charged object =

→
v ). If the electric field of the applied waves is in the

direction of the SWNCT’s radius (Er = Eicos(ωt − kz), the polarization of the quantum
array changes to the following form:

p̃QD = ε0(εr − 1)
(

Eg
yi + Ei cos α

)
ay (20)

Formula (20) is obtained by assuming that the interaction of quantum arrays with one
another is not considered. The polarization of the quantum dot array must be zero before
the desired cross-sectional area of the SWCNT is created. Moreover, the array of quantum
dots should not be polarized in the x-direction with the applied waves, so ‘sinα’ is zero
at the pivot points. As a result, the electric field of the applied waves is in the y-direction.
Finally, the polarization of the quantum dots must change to neutralize the effect of the
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electric field force of the applied waves on the lateral surface of the SWCNT. As a result,
the amplitude of the applied waves is given as follows:

Ei = −
Eg

yi

ε0(εr − 1)
= −

(
π + 2θS

4πε2
0(εr − 1)

)(
Q

LxLz

)
(21)

3.4. Application of DC Voltage to Control the Bending Rate by Adjusting the Charge Rate of the
Graphene Nanoribbon Sheet

From Section 3.2, we can conclude that the force exerted by the polarization of quantum
dots causes the graphene nanoribbon sheet to bend. In Section 3.3, we attempted to direct
this bending with electromagnetic waves directed toward the nanotube. In addition, we
found the importance of the magnitude of the applied voltage to the initial bending rate. If
the charge of the graphene nanoribbon sheet increases, the field emitted from it increases
as well. Eventually, increasing the polarization rate of the quantum dot array will result
in the force applied to the surface of the graphene nanoribbon sheet being greater, and
the initial bending angle being larger. Through Equation (6), we can find the relationship
between the charge of a graphene nanoribbon sheet and the polarization of a quantum
array. Concerning Gauss’s law and Lz

rQD
, Lx

rQD
>> 1:

p̃QD =
qns(εr − 1)∆ϕ

4πLzLxrQD
, ∆ϕ = π + 2θ1 (22)

where θ1 equals cos−1 ( π√
1+π2 ) when the sheet of graphene nanoribbon is one plate. This

changes with an increase in DC voltage. Therefore, under these assumptions, the field
emitted from the quantum dots, as expressed in Equation (7), can be obtained as follows:

Earry Dipolar =
p̃QD

4πε0r3

[
sin ϕ cos ϕ − sin ϕ

] ar
aϕ

az

 (23)

On the other hand, according to the structure of Figure 1, graphene nanoribbon plates
and the material between them create a single capacitive charge that is stored on the plate,
which is equal to Q = C.VDC [40, 41]. Capacitance is determined based on the introduced
structure (C = ε0εsio2LxLz/d). Moreover, it is sometimes expressed in surface units, which
indicate the amount of charge stored per unit of area (C = ε0εsio2LxLz/d) (C = ε0εsio2/d).
Therefore, if we want to calculate the potential energy in the graphene sheet, we can use
the capacitance per unit of area, because we divide the graphene sheet into small integrated
plates with an area of 1 nm2 to calculate its displacement relative to the applied energy
from the quantum array. In this case, the surface charge of graphene is proportional to its
surface conductivity (Qs = σs). The reason for this importance is that, when the charged test
object is moved in the field by some external agent, the work done by the field on the charge
is equal to the negative of the work done by the external agent causing the displacement.
This work depends only on the particle’s initial and final coordinates. Hence, we can derive
Equation (24):

∆U =
→
F ·∆

→
R = −σ

B∫
A

→
E

arry Dipolar
·d→s (24)

where ‘F’ represents the result of forces applied to each surface unit of a graphene sheet
and displaced by ∆R, ‘A’ is the state where the graphene nanoribbon sheet is a plate shape,
and ‘B’ is when the graphene nanoribbon sheet forms the SWCNT. As a result, the potential
energy stored in the structure during the work is given as follows:

∆U ≈ 3VDC

(
σsεsio2

d·rQD(4π)ε0

)
Lz (25)
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The force applied to the graphene nanoribbon sheet’s edges is proportional to the
applied voltage. Moreover, we can adjust the force required to create the SWCNT structure
by adjusting the voltage. Thus, without applying electromagnetic waves, we can achieve
the following change in the structure of our system:

→
F ≈ 3VDC

(
σsεsio2

d·rQD(4π)ε0

)
Lz

 ∆
→
R∣∣∣∣∆→R∣∣∣∣2
, ∆

→
Redges =

(
Lx
2

)(
ax +

(
1
π

)
ay

)
(26)

4. Results and Discussion

In this work, a charged sheet of graphene nanoribbon was converted to an SWNCT
using an array of quantum dots and electromagnetic waves. Numerous applications for this
can be imagined in the field of optics. We used an array of quantum dots as a pivot in the
beginning. Experiments showed that quantum arrays on the graphene nanoribbon cause
the graphene to bend. We analyzed this using the laws of classical physics. Then, we tried to
manage the bending of the graphene nanoribbon sheet by applying electromagnetic waves
in a suitable direction and amplitude. As a result, the structure of graphene nanotubes was
theoretically obtained. We simulated the proposed structure numerically with arbitrary
values. Based on this, we can see the force that is applied to each section (z = zgi) of the
graphene nanoribbon sheet through the array of quantum dots in three directions, as shown
in Figure 6. The magnitude of this force is expressed in Equation (16).
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Figure 6. The force applied to each section (z = zgi) of the graphene nanoribbon sheet through the
quantum array in the (a) r-direction, (b) φ-direction, and (c) z-direction.

In Figure 6, the forces are symmetrical, so they cause symmetrical displacement on
both sides of the pivot axis. There is a break in Figure 6 around the pivotal axis due to
the fact that in order to create a cylindrical structure without defects, the first condition is
that the force applied to the pipe axis must be zero, so the total electric field effective on
this axis must also be zero. As we know, if the length of the cylinder is in the z-direction,
a cylinder has axes of symmetry in the plane y = 0 or x = 0. In this work, the axis of the
considered pivot was located on the plane x = 0. This indicates symmetrical bending on
both sides of the pivot. As a result, according to the diagrams presented in Figure 6, the
presented computation and design are validated theoretically [11,16]. The charged sheet
of graphene nanoribbon emits electric waves that cause the array of quantum dots to be
polarized. The polarization of the quantum dots exerts the same force on each surface unit
of a charged sheet of graphene nanoribbon with equal coordinates on the XY plane, so that
each surface unit of the sheet bends symmetrically into both pivot sides to location r at
an angle of θ. In future works, the amount of bending could be theoretically calculated
using the quantum physics of the particles and the force applied to each particle in the
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structure of the graphene nanoribbon sheet, or the amount of bending could be reported
with the help of experiments in the fabrication of this graphene hybrid state. In the next
step, we used electromagnetic waves to control the continued bending of the charged sheet
of graphene nanoribbon. In Figure 7, we can see the dependence of the amplitude of the
electromagnetic waves applied by the electric field on the angle and location of the charged
graphene nanoribbon sheet.
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Figure 7. Dependence of the amplitude of the electromagnetic waves applied by the electric field on
the bending angle.

The bending angle is the angle at which the edge of the graphene sheet meets with
its bending center. This means that each time the θs changes value, the graphene sheet
becomes more curved and induces more electric fields at the quantum dots. As a result, to
counteract this effect on the quantum dots, it is necessary to increase the amplitude of the
applied waves in the opposite direction of the electric field induced by the bent graphene
sheet. The physical references that report the electric field emitted from the charged curved
plates in their surroundings have values similar to those shown in Figure 7 at the specified
angle. For example, the location of the pivot (bent on the charged sheet) when the bending
angle is 90 degrees (a cylinder with a radius Lx

2π ) is equal.
According to the work–energy law, we can express the relation of the force exerted by

the polarization of the quantum dots in terms of externally applied voltage. Figure 8 shows
this relation.
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Figure 8. The relationship between the applied voltage and the force applied in the (a) x-direction
and (b) y-direction to a graphene nanoribbon sheet (d = 25 nm).
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As expected, the relationship between the force and the applied voltage is a quadratic
power law. This approach is correct based on the basics of physics, because the energy
stored in the capacitor is (W = (1/2)CV2).

In synthesizing graphene with excellent materials, different experimental methods
have been compared in different studies, as well as in the manufacture of carbon nanotubes.
These reports are only based on laboratory data, and we have not found any theoretical
analysis of the amount of bending. The previous samples were compared based on the
type of material, experimental technique, tensile strength, strain, etc., but unfortunately
only from a laboratory perspective [26,30]. The proposed structure in the [43] defines the
up-conversion process of the optical force proposed and designed to drive a nanoscale
optical mechanical structure. This structure is presented as an optical detector and a high
multi-wavelength conversion system. The final advantage of this system is photodetection
at room temperature even for long wavelengths. On the other hand, the main weakness of
hybrid graphene-based infrared photodetector with engineering of trap levels using organic
molecules operating at room temperature, and with a fast response time compared to other
detectors, is related to 2D electron gas located at the surface—these electrons react to the
surrounding atmosphere, and the system is affected by the surrounding gases. Therefore,
the high conductivity of graphene results in a high dark current for these detectors. The
structure of these detectors overcomes this problem [30]. Both of these structures have
been introduced to electro-optical structures using nanostructure bending that has been
practically observed in the laboratory. Therefore, the need for theoretical data to reduce the
error and the number of experiments required to achieve the desired result confirms the
value of this work.

5. Conclusions

In this work, we merged the physics of electricity, mechanics, and electromagnetics
to explain how to bend a sheet of a graphene nanoribbon using an array of quantum dots.
We charged the graphene sheet with externally applied DC voltage, causing the array of
QDs to polarize. The induced electric field from the polarized QDs forced the charged
graphene sheet to bend. To precisely form the SWCNT structure, we needed to manage the
bending correctly, which was achieved using externally applied electromagnetic waves. It
should be noted that the correct choice of the array of QDs and the presence of dangling
bonds in the graphene nanoribbon were used to create the nanotube. The main purpose of
this work was proper management of the devices at the nano scale for various optical and
electrical applications. To illustrate the idea, we used the graphene nanoribbon’s unique
properties to make SWCNTs. This is an incredibly pristine presentation that can change the
geometric structure of devices by applying electromagnetic waves. As we know, changing
the geometry of a device changes its physical properties (µ, ε, σ). Therefore, a device with
two or more applications can be designed. Furthermore, this opens new possibilities for
the design and manufacture of electro-optical and optical devices.
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