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Abstract: Valve replacement is the mainstay of treatment for end-stage valvular heart disease, but
varying degrees of defects exist in clinically applied valve implants. A mechanical heart valve requires
long-term anti-coagulation, but the formation of blood clots is still inevitable. A biological heart valve
eventually decays following calcification due to glutaraldehyde cross-linking toxicity and a lack of
regenerative capacity. The goal of tissue-engineered heart valves is to replace normal heart valves and
overcome the shortcomings of heart valve replacement commonly used in clinical practice. Surface
biofunctionalization has been widely used in various fields of research to achieve functionalization
and optimize mechanical properties. It has been applied to the study of tissue engineering in recent
years. It is proposed to improve the shortcomings of the current commercial valve, but it still faces
many challenges. This review aimed to summarize the modification strategies of biofunctionalization
of biological heart valve surfaces based on tissue engineering to eliminate adverse reactions that
occur clinically after implantation. Finally, we also proposed the current challenges and possible
directions for future research.

Keywords: coating; surface biofunctionalization; tissue engineering; valve implants

1. Introduction

Valvular replacement is the most important treatment for patients with end-stage
valvular disease [1]. More than 200,000 heart valve replacement surgeries are performed
worldwide every year, and the number is expected to increase to 850,000 per year by
2050 [2]. During surgery, a natural valve that has lost its function is replaced with an
artificial valve, either a mechanical heart valve (MHV) or a biological heart valve (BHV).
MHV is generally made of pyrolyzed carbon, various polymers, and metal alloys, whereas
BHV is generally composed of three types: (1) Chemically stable animal-derived tissue,
(2) valve transplantation from cadaveric or living donors in the heart, or (3) patients’
own valve transplantation from one location to another. Both MHV and BHV have their
advantages and disadvantages [3–5]. Patients using mechanical valves require lifelong
anticoagulation, which can lead to severe thromboembolism or bleeding complications.
While the biorepairing of heart valves has achieved clinical success in the short to medium
term, calcification leads to their eventual decay [6–9]. In addition, none of the heart valve
replacements currently in use have shown the ability to grow or regenerate, which puts
pediatric patients at risk of multiple surgeries. Therefore, creating a valve substitute with
the ability to grow, repair, and regenerate using engineered tissue seems to be the best way
to overcome many limitations at present.

The concept of tissue-engineered heart valves (TEHV) is described as the development
of a heart valve with mechanical function and bioactivity under physiological conditions
that facilitate the repair and reshaping of the scaffold [10]. TEHV generally addresses
defects in implants by causing biomaterials to interact with autologous cells to achieve
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growth and biointegration. An ideal heart valve prosthesis should be biocompatible and
durable with antithrombotic and anticalcification effects and a physiologically hemody-
namic profile [11].

This review was written to summarize the common modification strategies in de-
veloping biological valves based on engineered tissue, focusing on the development of
non-glutaraldehyde cross-linkers, hydrogel coatings, and modification of nanocomposites.
Finally, this review also proposed the current challenges and possible directions for future
research.

2. Structure of Native Heart Valves

Structurally, the adult heart valve consists of three flexible tissue valves, approximately
23–26 mm in diameter and approximately 0.5 mm thick [7,12,13]. The leaflet structure is
extremely complex, and the leaf cross-section is characterized by a three-layer structure,
including ventricles, radially arranged collagen, and elastin fibrous tissue, each with its
own extracellular matrix (ECM) protein composition and arrangement [14]. The fibrous
tissue consists of a ring-like thick collagen bundle that provides mechanical strength to
the leaflets [15]. Elastin fibrous stacks are composed of randomly oriented proteoglycans
that act as a buffer between the fibrous muscle layer and the ventricular muscle layer [16].
The ventricles consist of radial elastin fibers (mainly elastin) with radial hyperelasticity,
allowing the proper opening and closure of the valve [16]. Therefore, the heart valve leaflet
has a multi-scale hierarchical organizational structure (from microscopic to macroscopic).
Two main cell types are distributed in leaflets: Valve endothelial cells and valve stromal
cells (VIC). Located at each layer of the ECM, VIC plays an important role in maintaining
valve structure and function due to its ability to synthesize and remodel ECM [17–19]. In
addition, the circumferential and radial arrangement of ECM proteins in the fibrous and
ventricular layers imparts structural and mechanical properties to the anisotropy of the
heart valve lobes [20]. These two important features of the heart valve lobe pose a major
challenge to the use of traditional tissue-engineered stents in summarizing the structural
characteristics of the valve and promoting the development of a new generation of bionic
TEHV stents. The structure of a native heart valve is shown in Figure 1.
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Figure 1. Photographs of human semilunar heart valves: Aortic (A) and pulmonary (B). (C) Detailed
heart valve structure. It comprises three inner layers (ventricularis, spongiosa, and fibrosa) and an
outer layer formed by valvular endothelial cells. The three inner layers contain mainly proteoglycans,
glycosaminoglycans, collagen type I and type III, elastin, and valvular interstitial cells (adapted from
Ref. [21]).

3. Surface Modification Methods

The advantages of surface modification compared with other technological methods
lie in the simplicity and flexibility of the procedure, which does not change the properties of
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the base material. Various physical and chemical modification techniques can be integrated
to improve the overall effect [22,23]. The study of the materials’ surface characteristics has
also shown that the practical applicability of materials is, to some extent, influenced and
limited by their surface features. Although the emergence of new materials is gradually
filling gaps in certain areas as science and methodological design progress, it is impossible
to synthesize new base materials for all applications [24]. It may therefore be quicker and
more effective to modify some of the properties of existing materials to improve their
performance or expand their applications, while increasing research into new materials.
The usual methods of surface modification can be classified as physical and chemical
methods. Physical material modification can be carried out by physical methods, such as
physical adsorption or coating, to give the surface a certain roughness or pattern [25–27].
In addition, chemical surface modification generally utilizes a number of classical chemical
reactions that result in binding to groups on the material surface. In contrast to physical
methods, chemical methods use a chemical reaction in which the polymer is often bonded
to the surface of the material in a chemical way. It is well known that chemical bonds are
much stronger than intermolecular effects. As a result, the grafted layer can be more firmly
bonded to the surface of the material by chemical reaction [28].

4. Biofunctionalization of the tissue Engineered Heart Valves
4.1. Non-Glutaraldehyde Cross-Linking

Glutaraldehyde (GLUT) is an aliphatic dialdehyde that can be attached to an amine
functional group on collagen by the Schiff alkali reaction [29]; it has been shown to be
reversible with easy hydrolysis [29,30]. GLUT or the presence of some groups such as
aldehyde groups are highly cytotoxic and do not facilitate cell adhesion and growth on the
valve, further leading to valve calcification [31,32]. In addition, GLUT can cause a strong
immune response in the body, which leads to valve degeneration through the activation
of macrophages, phagocytes, and T lymphocytes, and the aggregation of platelets [33–35].
Due to the defects in GLUT cross-linking, the implanted BHV is susceptible to structural
damage and loss of function, resulting in a reduction in its durability and the need for
reoperation in approximately only 15 years [36,37].

An ideal biomaterial cross-linker should be cytotoxic and less expensive. It can im-
prove the mechanical properties of the material and inhibit calcification. Many fixed
ECM-derived scaffolds of cross-linking agents are available, which can be divided into
(1) chemical cross-linking agents and (2) natural cross-linking agents. Chemical cross-
linkers include carbodiimide [1-ethyl-3-(3-dimethylaminopropyl)-carbondiimide (EDC)],
epoxy compounds, six methylene diisocyanates, glycerin, and alginate [38–41]. Natural
cross-linkers mainly include genipin, nordihydroguaiaretic acid, tannic acid, and proantho-
cyanidins [42]. Besides the aforementioned cross-linking agents, researchers have devel-
oped many uncommon cross-linking agents, and their effect is also worth looking forward
to. Guo et al. [43,44] and Xu et al. [45] explored the comprehensive properties of the pre-
pared BHV by radical polymerization and cross-linking, respectively. The results showed
that the free radical polymerization cross-linking treatment had similar ECM stability and
biaxial mechanical properties to the GLUT treatment. Furthermore, the samples showed
better cytocompatibility, endothelialization potential, and anti-calcification potential and
lower immune response in vivo after the free radical polymerization cross-linking treat-
ment (Figure 2). Curcumin, quercetin, and other polyphenols have calcification inhibition
potential similar to that of proanthocyanidins in cross-linked collagen and elastin scaf-
folds [46,47]. Curcumin [48] and quercetin [49] were developed as cross-linking reagents for
valve materials. The cross-linked samples were superior to GLUT in terms of mechanical
properties, blood compatibility, and cell compatibility.
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Figure 2. Schematic illustrations of the presumable cross-linking mechanism for RPC-PP. (A) Syn-
thesis of PPMA. (B) Cross-linking of PPMA. PP, porcine pericardium; PPMA, porcine pericardium
methacryloyl; RPC-PP, radical polymerization cross-linking-treated PP (adapted from Ref. [44]).

The focus of research on the bioprocessing of BHV involves the improvement of tradi-
tional GLUT cross-linking methods and the design of novel cross-linking methods. The
special treatment employed by some researchers of BHVs cross-linked with ethanol, metal
ions, -amino-oleic acid, and some other substances has effectively delayed the calcification
of BHVs [50–54]. However, these methods still have many shortcomings. For example,
epoxy cross-linked ECM-derived scaffolds are white, soft, and nonshrinking, with colla-
gen remaining loose and natural [55]. Linear epoxy compounds exhibit low cross-linking
and are also poorly stable due to their resistance to the degradability of collagen [55]. In
addition, the epoxy compounds in the cross-linked extracellular matrix-derived scaffolds
showed a degree of toxicity, leading to an immune response and eventual calcification
failure [54,56,57]. The scaffold obtained by EDC cross-linking does not effectively inhibit cal-
cification, which determines whether it can be used in the field of cardiovascular grafts [52].
The current substitution effect of cross-linkers has not been verified in the clinical stage.
Therefore, although the development results of many cross-linkers are exciting, the ulti-
mate success is yet to be achieved. Table 1 shows the basic research on non-glutaraldehyde
cross-linking in the past 20 years.
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Table 1. Application of different cross-linking agents in the study of tissue-engineered heart valves.

Cross-Linking Agent Advantages Compared with
GLUT Treatment

Cross-Linking
Mechanisms Reference

Methacrylic anhydride Improve the biocompatibility and
anti-calcification performance

Radicals react with vinyl on
collagen [43–45]

Procyanidins Anti-calcification Hydrogen bond [46,47]
Curcumin Anti-calcification Hydrogen bond [48]

Quercetin
Increasing

significantly the ultimate tensile
strength and anti-calcification

Hydrogen bond [49]

1-Ethyl-3-(3-
dimethylaminopropyl)carbodiimide Improving the biocompatibility

Amide and ester bond
formation

of side groups
[58]

(3-glycidyloxypropyl)
trimethoxysilane

Improving the cytocompatibility,
endothelialization,

hemocompatibility, and
anti-calcification properties

Epoxy reacts with amino
groups; inorganic
polymerization

[59]

Dialdehyde pectin Enhancing anti-calcification and
anti- coagulation Schiff base reaction [60]

Alginate (oxidized alginate)
Improving the cytocompatibility,

hemocompatibility, and
anti-calcification properties

Amino reaction with carboxyl
groups [61]

Rose Bengal Less cytotoxicity and
better endothelialization potential Photoinduced cross-linking [62]

Triglycidyl amine Anti-calcification Reactive epoxy reacts with
amine groups [63–66]

4.2. Modification Strategies after Decellularization

The decellularized porcine aortic valve is a promising alternative to the ideal tissue-
engineered valve scaffold [67–70]. Pretreatment of the porcine aortic valve with fixatives
and detergents can greatly stabilize xenografts, improve their persistence, and reduce
immunogenic updates. However, biofunctionalized decellularized porcine valves, such
as Synerggraft, have failed due to decreased mechanical properties and poor cell aggrega-
tion [71]. Therefore, surface biofunction has attracted widespread attention as an important
means to improve the performance of decellularized valves.

4.2.1. Hydrogel Coating

Physical coatings can give the substrate an ideal morphology and corresponding
biological function, which is simple, fast, and efficient compared with chemical modifica-
tion. In recent years, hydrogels have been widely used in engineered tissue due to their
good biocompatibility and adjustable mechanical properties, but their application has been
limited due to poor mechanical durability. Therefore, hydrogel coatings based on decellu-
larized scaffolds have been developed by many researchers. These coatings provide good
biocompatibility and function as carriers for decellularized scaffolds, while decellularized
scaffolds provide sufficient mechanical properties. A variety of hydrogels, including natural
(e.g., collagen [52], fibrin [72,73], and hyaluronic acid [73,74]), synthetic (e.g., polyethylene
glycol [75,76] and polyvinyl alcohol [77]), and composite hydrogels (e.g., type I collagen
with chondroitin sulfate [78]), have been developed, which provide good biocompatibility
and bioactivity for engineered tissue applications. Synthetic hydrogels are composed of
synthetic polymers, which have the advantages of adjustable mechanical properties and
structure and easy control of chemical composition compared with natural hydrogels.
Taking enhanced endothelialization as an example, the researchers seemed to prefer to load
vascular endothelial growth factor (VEGF) into hydrogels as a core factor and coat decel-
lularized scaffolds using natural hydrogels such as hyaluronic acid [79], elastin [80], and
alginate [81]. The types and functions of synthetic hydrogels are much more complex. They
not only focus on solving the side effects of heart valve implants but also make more de-
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tailed adjustments to the mechanical properties and fatigue resistance of the hybrid scaffold.
Luo et al. used methacrylic anhydride to modify the decellularized heart valves and ap-
plied a mixed hydrogel made of sulfa methacrylate and hyaluronic acid methacrylate to the
surface to improve the anti-calcification performance of BHVs. This strategy could achieve
both endothelialization and anti-calcification, thus helping improve the main drawbacks
of the existing commercial BHV products [82]. In addition, Jahnavi et al. [83] developed
a biological hybrid scaffold with a natural structure of non-cross-linked decellularized
bovine pericardium coated with a layer of polycaprolactone-chitosan nanofibers, showing
superior mechanical properties. These synthetic hydrogels solved individual problems to
varying degrees, but for hydrogels, most of the studies did not take into account their own
problems, that is, poor fatigue resistance, which leads to rapid damage during circulating
hydrodynamic stress. Strengthening the mechanical properties of the overmolded hydrogel
is a necessary condition for long-term protection. A dual-network hard hydrogel was
developed in response to the anti-fatigue properties of single-mesh hydrogels. This gel
penetrated and anchored the matrix of the decellularized porcine pericardium to form a
strong and stable conformal coating, reduce immunogenicity, improve antithrombosis, and
accelerate endothelialization (a schematic diagram is shown in Figure 3) [84]. In the last
decade, researchers seem to have focused on the use of hydrogels in tissue-engineered
heart valves, and as research continues to grow, various potential hydrogels have been
proposed (Table 2). Hydrogel coatings are now gaining attention in this field, but most of
these studies are currently in the initial research phase and have not reached the clinical
stage. Hydrogel coatings still have a long way to go in this field, but the proposal of many
research concepts has provided more ideas and perspectives for future researchers.
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Table 2. Application of hydrogels in the study of tissue-engineered heart valves.

Composition of Hydrogels Advantages of Hydrogels Mechanism Reference

VEGF-Loaded hyaluronic acid
hydrogel

Improve adhesion and growth
potential, with less platelet

adhesion and less calcification

Cross-linking
the hydroxyl group of hyaluronic

acid with the epoxide of BDDE
[79]

VEGF-loaded elastin hydrogel Improve endothelialization
potential

Cross-linking reaction between
the amine groups of soluble
elastin and hexamethylene

diisocyanate

[80]

Sulfobetaine methacrylate and
methacrylated hyaluronic acid

Improve
endothelialization and

anti-calcification properties
Radical polymerization [82]

Hyaluronic acid and
hydrophilic polyacrylamide

Improve endothelialization,
biocompatibility, and

anticalcifification properties

Ionic and chemical
Cross-linking [84]

SDF-1a-loaded MMP degradable
hydrogel

Promote cell
growth and mediate the tissue

remodeling
Michael-type addition reaction [85]

Polyhedral oligomeric
silsesquioxane–polyethylene

glycol hybrid hydrogel
Have anti-calcification potential

Formation of hydrogel network
connecting POSS and MMP

peptide using four-arm PEG-MAL
[86]

Chondroitin
sulfate hydrogel

Improve endothelialization and
shield against deterioration Polymerization under UV lamps [87]

4.2.2. Cross-Linked with Nanocomposite

The advent of nanotechnology has made anti-tumor interventions possible. It also
provides new ideas for TEHV. The nanoparticles have good biocompatibility. Furthermore,
their surfaces have a variety of active groups, and researchers can modify them accord-
ing to their purpose [88]. Common nanoparticles include lipids [89,90], polymers [91],
inorganics [92,93], metals [94], and so forth. Nanoparticles are used in tissue-engineered
heart valves mainly for gene transmission or the transmission of biologically active fac-
tors. This can effectively solve the limitation of cell seeding before TEHV implantation.
A polyethylene glycol nanoparticle containing transforming growth factor-β1 was devel-
oped through a carbon diimide-modified fibrous valve scaffold that improved the ECM
microenvironment of the tissue-engineered heart valves [95]. Based on this concept, we
encapsulated VEGF in polycaprolactone (PCL) nanoparticles (Figure 4). Then, using the
Michael addition reaction, PCL nanoparticles were introduced to the decellularized aortic
valve, and a hybrid valve was prepared. The results showed that the mixed valve could
effectively accelerate endothelialization [96]. A large number of nanoparticles used in
tissue-engineered heart valves in recent years are biocompatible polymers, such as PEGs,
PCL, and so forth. Recently, Hu et al. [97] were inspired by the natural biological systems
and reported a new approach for cross-linking amino and carboxyl groups. The heart
valves with erythrocyte membrane bionic drug-carrier nanoparticles were modified using
amino and carboxyl groups remaining after GLUT cross-linking. This modified heart
valve not only preserved the structural integrity, stability, and mechanical properties of
GLUT-treated BHV but also significantly improved anticoagulation, anti-inflammatory,
anti-calcification, and endothelialization properties.

An inorganic nanoparticle, mesoporous silica, has attracted much attention because
of its advantages of good compatibility and adjustable particle size, pore size, and struc-
ture [98,99]. Pinese et al. [100] applied MSNs to tissue engineering and prepared siRNA/
MSNPEI complexes for siRNA delivery. The results showed that siRNA/MSNPEI com-
plexes were more efficient and less toxic than the traditional silencing methods. However,
MSN has not been used in decellularized tissue engineering so far. Hence, this may be
one of the key directions to be explored by researchers. Many metal nanoparticles, such as
gold, silver, and titanium nanoparticles, have been widely examined in other fields. Their
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future performance in TEHV based on their basic properties is also worth examining. These
nanoparticles can be used as a functional platform to achieve the transmission of a certain
substance (Table 3 lists the basic research of nanocomplexes applied to tissue-engineered
heart valves in the last 15 years). However, they seem to be more flexible in terms of modi-
fication and function and can even be used as a cross-linking agent to make the structure
more stable.
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Anti-calcification Michael addition reaction [101] 
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Figure 4. Preparation scheme of VEGF-loaded nanoparticles and endothelialization of the hybrid
valve (adapted from Ref. [96]).

Table 3. Application of different nanocomposites in the study of tissue-engineered heart valves.

Composition of Nanocomposite Advantages of Nanocomposite Mechanism Reference

TGF-β1-loaded polyethylene glycol
nanoparticles Advantageous biocompatibility Combining with PEG

nanoparticles by carbodiimide [95]

VEGF-loaded polycaprolactone
nanoparticles Acceleration of endothelialization Michael addition reaction [96]

RBC-based rapamycin and
atorvastatin calcium-loaded
poly(lactic-co-glycolic) acid

nanoparticles

Anticoagulation,
anti-inflammation,

anti-calcification, and
endothelialization properties

Amidation reaction [97]

OPG-loaded polycaprolactone
nanoparticles Anti-calcification Michael addition reaction [101]

Rivaroxaban-loaded nanogels Acceleration of endothelialization
and antithrombogenicity Self-assembly [102]

Polyhedral oligomeric silsesquioxane-
nanocomposite

Acceleration of endothelialization
potential

Reaction of the silanol groups
of

cyclohexanechlorohydrine-
functionalized POSS with

isocyanate

[103–105]

5. Summary and Future Perspectives

Recent advances in surface biofunctionalization enable the functionalization of TEHVs
to improve their performance in biomedical applications at the interface of biological
macromolecules, cells, tissues, and biomaterials. This review summarized the common
modification strategies in developing biological heart valves based on tissue engineering,
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focusing on the development of non-glutaraldehyde cross-linkers, hydrogel coatings, and
the modification of nanocomposites. Of the three research directions mentioned earlier, non-
glutaraldehyde cross-linkers were first explored. However, the modification of coatings
and nanocomposites is the most complex and flexible method for TEHV.

Tissue engineering can make substantial progress with a certain degree of biological
function to accommodate the unique challenges inherent in valve design. Notably, this
requirement is the most acute among children, whose options are currently quite limited.
Moreover, although the TEHV studies cited in this review provided some understanding of
surface biofunctionalization during the development of TEHV, our efforts to date have been
largely empirical, and hence the mechanisms influencing the maturation process remain
unknown. The challenges faced by researchers involved in engineering heart valves are
significant and comprehensively address many areas of expertise (Figure 5).

Coatings 2022, 12, x FOR PEER REVIEW 9 of 14 
 

 

5. Summary and Future Perspectives 

Recent advances in surface biofunctionalization enable the functionalization of 

TEHVs to improve their performance in biomedical applications at the interface of biolog-

ical macromolecules, cells, tissues, and biomaterials. This review summarized the com-

mon modification strategies in developing biological heart valves based on tissue engi-

neering, focusing on the development of non-glutaraldehyde cross-linkers, hydrogel coat-

ings, and the modification of nanocomposites. Of the three research directions mentioned 

earlier, non-glutaraldehyde cross-linkers were first explored. However, the modification 

of coatings and nanocomposites is the most complex and flexible method for TEHV. 

Tissue engineering can make substantial progress with a certain degree of biological 

function to accommodate the unique challenges inherent in valve design. Notably, this 

requirement is the most acute among children, whose options are currently quite limited. 

Moreover, although the TEHV studies cited in this review provided some understanding 

of surface biofunctionalization during the development of TEHV, our efforts to date have 

been largely empirical, and hence the mechanisms influencing the maturation process re-

main unknown. The challenges faced by researchers involved in engineering heart valves 

are significant and comprehensively address many areas of expertise (Figure 5). 

The chemical surface modification of polymer biomaterials has received widespread 

attention, due to the global emphasis on medical implants and devices, and hence its fu-

ture seems promising. Although previous research has primarily stayed in the laboratory 

stage, technology can be extended to the industrial level by employing strategies to mod-

ify polymer biomaterials, thus opening the door to a wider range of biomedical applica-

tions. We have reason to believe that the successful pursuit of various biomedical appli-

cations can eventually be achieved with the continuous development of chemical surface 

modification technology for polymer biomaterials. 

 

Figure 5. Key factors of TEHV development and strategies to retard TEHV. 

Author Contributions: Methodology, J.Z. and J.L.; writing—original draft preparation, W.Y.; writ-

ing—review and editing, Y.J. and F.L. All authors have read and agreed to the published version of 

the manuscript. 

Funding: This work was funded by the Natural Science Foundation of Jiangxi Province (grant No. 

20204BCJ22028), the National Natural Science Foundation of China (grant No. 81860079, 81770388), 

and the Natural Science Foundation of Jiangxi, China (No. 20192BAB205004, No. 20192ACBL20036). 

Institutional Review Board Statement: Not applicable. 

Figure 5. Key factors of TEHV development and strategies to retard TEHV.

The chemical surface modification of polymer biomaterials has received widespread
attention, due to the global emphasis on medical implants and devices, and hence its
future seems promising. Although previous research has primarily stayed in the laboratory
stage, technology can be extended to the industrial level by employing strategies to modify
polymer biomaterials, thus opening the door to a wider range of biomedical applications.
We have reason to believe that the successful pursuit of various biomedical applications can
eventually be achieved with the continuous development of chemical surface modification
technology for polymer biomaterials.
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