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Abstract: The check valve is the core part of high-pressure diaphragm pumps. It has complex
operation conditions and has difficulty characterizing fault states completely with its single feature.
Therefore, a fault signal diagnosis model based on the kernel extreme learning machine (KELM) was
constructed to diagnose the check valve. The model adopts a multi-feature extraction method and
reduces dimensionality through kernel partial least squares (KPLS). Firstly, we divided the check
valve vibration signal into several non-overlapping samples. Then, we extracted 16 time-domain
features, 13 frequency-domain features, 16 wavelet packet energy features, and energy entropy
features from each sample to construct a multi-feature set characterizing the operation state of the
check valve. Next, we used the KPLS method to optimize the 45 dimension multi-feature data and
employed the processed feature set to establish a KELM fault diagnosis model. Experiments showed
that the method based on KPLS optimal feature selection could fully characterize the operating
state of the equipment with an accuracy rate of 96.88%. This result indicates the high accuracy and
effectiveness of the multi-feature set constructed with the KELM fault diagnosis model.

Keywords: KPLS; KELM; fault diagnosis; check valve

1. Introduction

As the core piece of equipment in ore transportation pipelines, the check valve directly
affects the operation of pipeline systems through its operation status. Research on the
fault diagnosis method for check valves is of great significance for the development of the
pipeline transportation industry. The operating conditions of check valves are complex,
with the vibration signal being a periodic pulse signal affected by environmental noise and
other factors. When failure occurs, signal characteristics experience interference and are
challenging to extract. Thus, a single feature of a check valve cannot fully characterize the
operating state of the equipment.

Characterizing operating states extracting signal features is the basis for fault diagnosis
of mechanical equipment. Chen et al. [1] used a continuous wavelet transform (CWT)
to preprocess an original vibration signal and constructed a fused convolutional neural
network (CNN) with a square pool structure to extract signal features and to realize fault
diagnosis of mechanical equipment. Peng et al. [2] proposed a fault classification method
based on multi-feature extraction and an improved Mahalanobis–Taguchi System (MTS).
The method involves extracting multi-dimensional features using complete ensemble
empirical mode decomposition with adaptive noise (CEEMDAN) for time, frequency, and
adaptive white noise. The authors constructed a DAG-MTS multi-classification model
based on the characteristics of the MTS system and a directed acyclic graph (DAG) and
applied it to a bearing’s fault diagnosis. To solve the problem of noise in a diesel engine’s
vibration signal and address the difficulty of feature extraction, Jiang et al. [3] proposed
a diesel engine fault diagnosis method focusing on the extraction of the wavelet packet
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energy spectrum and the selection of fuzzy entropy features. The fuzzy entropy selects
components out of the feature set extracted from the wavelet packet energy spectrum and
inputs the selected features into the least squares twin support vector machine (LSSVM)
for fault diagnosis.

Constructing a feature set that characterizes the operating state of equipment and
using it to establish a fault diagnosis model is the key to the fault diagnosis of mechanical
equipment. Ding et al. [4] proposed a method for scintillation detector fault diagnosis
based on the extreme learning machine (ELM), and this method could not only classify the
faults of the failed detector but also intelligently determine the severity of various faults.
Lee et al. [5] proposed a novel remaining useful life (RUL) estimation method based on
systematic feature engineering and the extreme learning machine (ELM) for seven out of
eleven bearings; the proposed method reduced the mean absolute error (MAE), root mean
square error (RMSE), and mean absolute percentage error (MAPE) in the RUL estimation
by over 50%. Pang et al. [6] proposed an ensembled kernel extreme learning machine
that fuses multi-domain features. It selects the most suitable stacked noise reduction
autoencoder method through time-domain and frequency-domain feature extraction. It
uses a kernel extreme learning machine with deep features for rotating machinery fault
diagnosis. Wang et al. [7] proposed an ensemble extreme learning machine (EELM) that
consists of two heterogeneous ELM networks. First, it displays the target data using a
clustering algorithm. Then, it applies Gaussian-style activation between each target as an
input to the back-end classifier to propose a non-empirically specified threshold based
on the EELM multi-label classifier. Later, the multiple binary classifiers are combined for
composite fault diagnosis. Zhang et al. [8] introduced an online fault diagnosis method that
changes the fixed structure of the extreme learning machine into an elastic structure using
incremental support vector data description (ISVDD) and an extreme learning machine
with an incremental output structure (IOELM). The ISVDD is used to detect a new failure
mode, while the IOELM is used to recognize the specific failure mode. Harishvijey et al. [9]
proposed an automatic signal classification method for detecting seizures from an EEG
signal using an empirical wavelet transform (EWT) feature extraction method, K-principal
component analysis (K-PCA)-based feature reduction, and a fuzzy logic-embedded RBF
kernel-based ELM. Shen et al. [10] proposed a feature selection and fusion method based
on the poll mode and optimized WKPCA. Considering the variation in fault information
collected by different sensors, the diagnosis rate in the extreme learning machine (ELM) is
taken as the index for the evaluation of each single sensor, and then the sensitivity weight
matrix of the features extracted by multiple sensors is constructed after linear normalization.
Based on the screened temperature-sensitive points and measured thermal displacement
data, an optimized extreme learning machine based on the marine predator algorithm
(MPA-ELM) was developed to predict the thermal displacement of an electric spindles
model [11].

Huang et al. [12] introduced a kernel function into the ELM to replace the simplicity of
the hidden layer. They proposed the KELM, which significantly improves the generalization
performance of the ELM. Moreover, Huang et al.’s [13] research on the improvement of
the ELM further enhanced the stability, sparsity, and accuracy of the algorithm under
both general and specific conditions and accelerated the training speed of the ELM. Chen
et al. [14] proposed a new fault diagnosis method based on hierarchical machine learning
based on the KELM. A grid search strategy with cross-validation was used to optimize the
parameters of hierarchical machine learning (HML). It was applied to detect and identify
rotating machinery faults, obtaining excellent results. Based on the KELM, Su et al. [15]
added self-adaptive particle swarm optimization (SAPSO) to optimize its parameters and
proposed a fault diagnosis method for rotary bearings under mixed working conditions.

The fault diagnosis methods above provide a helpful reference for detecting the
operating state of a check valve. However, as check valve operating conditions are complex
due to the operating conditions of industrial production and environmental noise, the
vibration signal is affected, thus resulting in nonlinear and non-stationary signals. Due
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to these characteristics, it is difficult to extract the fault characteristics of components
comprehensively and accurately with only a single time-domain, frequency-domain/or
time-frequency-domain method. Therefore, this paper proposes a new, multi-feature fault
feature extraction method for check valves to characterize their fault state information
comprehensively.

Based on multi-feature sets that characterize the operating state of one-way valves,
a fault diagnosis model based on KELM was established. The model first constructs the
multi-feature set to determine the fault state of the one-way valve comprehensively and
accurately and then uses the multi-feature set to train the KELM model to diagnose the
check valve fault conditions.

2. Basic Principles
2.1. Feature Extraction
2.1.1. Time-Domain Features

In fault diagnosis, feature fault parameters are generally sensitive to the different
information from various states. Usually, fault feature extraction has no specific restrictions
on the number and types of feature parameters, so features with high sensitivity to fault
information differences and strong reliability are often selected as fault features [16]. The
time-domain characteristics of a signal can directly reflect the dynamic changes in the
signal’s time domain, and they can characterize the fault types of bearings and check valves.
Since there may be one or more characteristic parameters corresponding to different states,
the selection of the fault feature parameters follows the principles of high sensitivity, high
reliability, and feasibility. In this paper, 16 time-domain feature statistics were used and
shown in Table 1 below.

2.1.2. Frequency-Domain Features

To characterize the relationship between the frequency and amplitude of a vibration
signal, the signal can be transform into the frequency domain with a Fourier transform
and the frequency domain characteristics of the signal analyzed in the frequency domain.
Frequency domain analysis methods include amplitude spectrum and power spectrum
analyses. The frequency-domain characteristic statistics used in this study are shown in
Table 1 [17].

Table 1. Composition of multi-domain feature sets.

Multi-Domain Category Number Remark

Time-domain features 16

Peak value, mean value, root mean square
value, variance, standard deviation,
fourth-order center moment, peak factor,
kurtosis, pulse factor, margin, waveform
factor, the center of gravity frequency,
mean square frequency, frequency variance,
root mean square frequency, frequency
standard deviation

Frequency-domain features 13

Mean, center of gravity frequency, average
frequency, maximum value, average phase
angle, energy, power, root variance
frequency, root mean square frequency,
root variance amplitude, maximum phase
angle, phase angle range

Time-frequency-domain features 16 Wavelet packet energy features, wavelet
packet energy entropy features

Multi-domain features 45
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2.1.3. Energy Characteristics of Wavelet Packets

As a linear transformation method, wavelet packet transform [18] satisfies the law of
conservation of energy [19], which is:

∫ +∞

−∞
| f (t)|

2
dt = ∑

j
∑
k

∣∣cj, k
∣∣2 (1)

Since the wavelet packet coefficient contains the dimension of energy, it is used in
energy analysis to determine each frequency band’s energy size according to the signal’s
wavelet packet coefficient. Time-frequency-domain analysis methods include the short-time
Fourier transform, S transform, and wavelet transform methods.

2.1.4. Energy Entropy Characteristics of Wavelet Packets

Entropy is an index used to measure the degree of disorder of information. The higher
the value, the higher the disorder degree of disorder of information is and the smaller the
contribution to precision is. When the entropy is smaller, the information contribution is
more prominent, and the degree of disorder of information is lower.

If we perform layer j wavelet packet decomposition on the signal, assuming that the
decomposition sequence is Xi,j and Ei,j is the signal sequence energy, then the probability
density of the frequency band energy is:

P(Xi,j) =
Ei,j
Ej

Ej =
2j

∑
i=1

Ei,j
2j

∑
i=1

P(Xi,j) = 1 (2)

Then, the band energy entropy of the wavelet packet decomposition [20] is:

WEE = −
n

∑
i=1

p(Xi,j) log2(Xi,j) (3)

Through analysis, it can be found that the larger the band energy entropy of the
wavelet packet decomposition is, the more random the distribution of energy in each band
is. The lower the number of bands containing energy and the smaller the WEE, the more
regular the energy distribution is.

The multi-domain feature adopted in this paper contained 45 dimensions for the
feature components.

2.2. Core Extreme Learning Machine—KELM

The standard extreme learning machine [21] (ELM) is composed of three layers: the
input layer, hidden layer, and output layer, respectively. It functions based on single hidden
layer feedforward neural networks (SLFNs), but the hidden layer of the SLFN only has a
one-layer backpropagation (BP) neural network. The topological structure of the ELM is
shown in Figure 1.

As an efficient single hidden layer feedforward neural network, we assume that, for a
given n training samples X = (x1, x2, . . . , xn) ∈ Rd1×n, the labels are Y = (y1, y2, . . . , yn) ∈
Rn×d2, where d1 and d2 represent the dimensions of the input data and output data, re-
spectively. The weight W = ωij ∈ Rd1×L of the hidden layer of the ELM is randomly
selected, where L represents the number of neurons in the hidden layer. The calculation of
the hidden layer is the same as the calculation of traditional forward propagation networks
with H = g(X, W), where H ∈ Rn×L and g(·) are the activation functions.
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The learning objective of an extreme learning machine is to solve the output weight β
by minimizing the sum of prediction error loss functions. The objective function is:

minLELM =
1
2
‖β‖2 +

C
2
‖Y− Hβ‖2 (4)

where the C value directly affects the generalization performance of ELM and is a regular-
ization coefficient.

H =

 g(w1, b1, x1) · · · g(wL, bL, x1)
...

...
g(w1, b1, xN) · · · g(wL, bL, xN)


N×L

(5)

β =
[

βT
1 , βT

2 . . . , βT
L

]T

L×m
(6)

Y =
[
yT

1 , yT
2 . . . , yT

L

]T

N×m
(7)

Take the derivative β of Equation (1) and set it to 0, and the calculation formula of the
output weight β can be obtained as follows:

β =

{
( I

C +HT H)
−1

HTY, N≥L

HT( I
C +HHT)

−1
Y, N<L

(8)

where I is the identity matrix.
Compared with the ELM, the KELM introduces the kernel function [12], which replaces

the feature mapping of the hidden layer in ELM. The idea is to map the input sample data
to the high-dimensional space and replace the inner product operation in the transformed
high-dimensional space with the kernel operation in the original input space [22].

The composition of the kernel matrix ΩELM is as follows:{
ΩELM=HHT

ΩELM(i,j)=h(xi)·h(xj)=K(xi ,xj)
(9)

where xi and xj are sample input vectors, and K(xi, xj) indicates the kernel functions. When
Gaussian kernel functions are used:

K(xi, xj) = exp(−
∥∥xi − xj

∥∥
γ2

2

) (10)
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where γ is the nuclear parameter. According to the KELM formula above, the weight β of
the connection between the output function and the hidden and output layers is:

y(x) =

K(x, x1)
...

K(x, xN)


T

(1/C + ΩELM)−1T

β = (1/C + ΩELM)−1T

(11)

2.3. KPLS Kernel Partial Least Squares Regression

The essential function of PLS is dealing with linear problems. When there is a nonlinear
relationship between data, the PLS method is generally not adopted. The KPLS method
can solve nonlinear problems by selecting the kernel function.

Assuming a nonlinear mapping φ : xi ∈ Rm → φ(xi) ∈ H from original spatial vari-
ables {xi}n

i=1 to a feature space H, Rosipal and Trejo [23] used the relationship between the
reproducing kernel Hilbert space (RKHS) and the feature space and developed the linear
PLS method into KPLS. The KPLS algorithm can be expressed as follows.

The realization process of KPLS algorithm according to Rosipal and Trejo.

1. Randomly set the initial value u (u can be set to be equal to any column in the Y matrix)
2. According to wi = φT

i /
∣∣∣∣φT

i ui
∣∣∣∣, calculate the weight vector wi

3. Calculate the score vector ti according to the formulas ti = φiwi = φiφ
T
i ui/

√
uT

i φiφ
T
i and

φiφ
T
i ui/

√
uT

i φiφ
T
i = KiKi/

√
uT

i Kiui. Unify the vector ti with the formula ti/||ti||→ ti

4. According to qi = Yiti/
∣∣∣∣tT

i ti
∣∣∣∣ and ui = Yiqi/(qT

i qi), calculate the feature vectors
5. Repeat steps 2–5 until convergence
6. Calculate the matrices K and Y asKi+1=(I− titTi

tTi ti
)Ki(I− titTi

tTi ti
)

Yi+1=(I− titTi
tTi ti

)Yi
(12)

7. Repeat steps 2–7 until all feature vectors have been calculated

3. KPLS Optimal Feature Selection and KELM Fault Diagnosis Method

The specific steps of the fault diagnosis method based on multi-feature extraction and
the improved KELM proposed in this paper are as follows. The flow chart is shown in
Figure 2.

The realization process of multi-feature and improved KELM fault diagnosis

1. Collect vibration signals of various states of parts
2. Divide the collected vibration signal data, divide the non-overlapping samples into
60 segments, and extract fault features from each segment
3. Construct a high-dimensional feature space and extract 16 time-domain features,
13 frequency-domain features, 8 wavelet energy features, and 8 wavelet packet energy
entropy features
4. Input the obtained high-dimensional features into the KELM model for training and testing.
Fifty percent are selected as training samples and fifty percent as test samples
5. Adopt a multi-domain KELM fault diagnosis model to identify the fault information
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The advantages and disadvantages of different classification methods are shown in
Table 2.

Table 2. The advantages and disadvantages of the KELM and ELM.

Advantages Disadvantages

ELM 1. Fast
2. Small sample 1. Low generalization ability

KELM

1. High generalization ability
2. Introduction of kernel function to deal
with multi-classification problems
3. Faster calculation speed

The advantages and disadvantages of the partial least square (LS), max-relevance
and min-redundancy (MRMR), principal component analysis (PCA), and locally linear
embedding (LLE) dimensionality reduction methods are shown in Table 3.

Table 3. The advantages and disadvantages of dimensionality reduction methods.

Advantages Disadvantages

LS 1. Simple
2. Linear 1. Overfitting

MRMR 1. Feature selection based on maximum
statistical dependency criteria

1. Underestimates the usefulness of
features

PCA 1. Simple and quick
2. Linear methods 1.Difficult to find the right solution

LLE
1. Maintains local linear relationship of
samples
2. Low computational complexity

1. Sensitive to the selection of nearest
neighbor sample number
2. The manifold learned by the LLE
algorithm can only be non-closed

KPLS 1. Introduces kernel function to solve
nonlinear problems
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4. Experimental Simulation and Analysis
4.1. Analysis of Test Data

In this part of the study, we used bearing data from Case Western Reserve University
in the United States for bearing fault diagnosis [24] to verify the effectiveness of the method
proposed in this paper and the effectiveness of the multi-domain feature extraction. All the
experiment were implemented using MATLAB 2018A and run on the same Windows 10
machine with an Intel(R) Core (TM) I9-9880h, 2.30GHz CPU and 16GB RAM.

The ten fault states in the rolling bearing fault diagnosis were artificially added, as
shown in Table 4, and the three fault diameters of the inner ring, the outer ring, and the
rolling element were 0.07 ft, 0.014 ft, and 0.021 ft, respectively. Their time-domain waveform
is shown in Figure 3 below.
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We used the vibration signal of the fan terminal bearing at the motor speed of
1797 r/min as the experimental data, with the data description as shown in Table 4.

Table 4. Experimental bearing sample attributes.

Outer Ring (ft) Inner Ring (ft) Rolling Element (ft)

0.014 0.07 0.021

As can be seen from Figure 3, IR007, IR014, IR021, OR007, OR014, OR021, and other
signals demonstrated periodic impacts, while the signals of B007, B014, and B021 showed
no obvious periodic hints. No amplitude difference between the signals was apparent and
neither were the characteristics of the impact nor its period. Hence, the proposed mixed
domain could identify the bearing fault type and the degree of the fault.

For the multi-domain feature extraction method proposed in this paper, we divided
the vibration signals of each state into 60 non-overlapping samples with a length of 2000
and extracted multi-domain features from each sample separately.

There were thus 16 types of time-domain features and 13 types of frequency-domain
features, as shown in Table 1. For the 16 time-frequency domain features, the wavelet
packet was decomposed using the wavelet type db5, and the number of decomposed layers
was 3. Then, the energy and energy entropy features were extracted from the components
obtained by each layer of the wavelet packets. The energy entropy features of the wavelet
packets in the time-frequency domain were obtained. The obtained feature is shown in the
box diagram in Figure 4.
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After being standardized, most of these features were distributed in the range of 0.2 to
0.8. After the feature extraction, we input the extracted 45 dimension, high-dimensional
features into the KELM for fault diagnosis. To verify the effectiveness of the proposed multi-
domain features, we extracted 16 types of time-domain features, 13 types of frequency-
domain features, 16 types of time-frequency-domain features, and feature sets of the
45 multi-domain features after the dimensionality reduction by KPLS. Due to complex
operation conditions, algorithms have difficulty characterizing the fault state completely
with its single feature. The combined or multi-domain features could reveal the state
information, but there was much redundant information that reduced the accuracy and
efficiency of the diagnostic model, so extracting features with moderate dimensions and
high sensitivity to each state is the key. LS and MRMR select features that are sensitive to
faults or have large contributions, while in feature selection methods such as the Pearson
correlation coefficient, distance criterion, and information gain, the emphasis is on the
physical meaning of the original features remaining unchanged. PCA employs feature
dimension reduction to obtain a compact manifold structure based on feature mapping or
feature fusion, and it can extract nonlinear features with the variance in global distribution
information unchanged, but it cannot maintain local manifold information, so it is only
suitable for linear dimension reduction. The kernel function in KPCA maps data to high
dimensional space to obtain nonlinear principal components with higher separability, but
the kernel function has a great influence on the results. LLE determines the similarity of
neighborhood points using the Euclidean distance, but ignoring the relationship between
data leads to unreasonable neighborhood construction.

When comparing the method proposed in this paper with other dimensionality reduc-
tion methods, the results shown in Figure 5 were obtained.

The data used for training the KELM model before the dimensionality reduction can
be seen in Table 3, including the ten fault states from Figure 3. The total number of samples
was 600 × 45, and each sample contained 45 feature points, comprising 60% of the data
used for training. Thus, the number of training sets was 360 × 45, and the number of
testing sets was 240 × 45. The training accuracy was 100%, and the testing accuracy was
91.67%. The data used for the KELM are shown in Table 5.
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Figure 5. The bearing fault diagnosis accuracy for the KELM with different dimensionality reduction
methods.

Table 5. The data used for the KELM.

Total Samples
(Number)

Training Sets
(Number)

Testing Sets
(Number)

Learn
Time (s)

Training
Accuracy

Testing
Accuracy

600 × 45 360 × 45 240 × 45 0.0051 100% 91.67%

We input these feature sets into KELM for fault diagnosis analysis, and the classifica-
tion results are shown in Figure 6.
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Comparing the four graphs in Figure 6, it can be seen that the diagnostic results for
the multi-domain features of the bearing in Figure 6d are better than the time-frequency-
domain features in Figure 6c. Figure 6c shows a better diagnostic result than the frequency
domain feature from Figure 6b and the time-frequency domain feature in Figure 6a, while
Figure 6b displays a better diagnostic result than Figure 6a. The results shown in Table 6
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indicate that the proposed multi-domain feature extraction was better than the time-domain,
frequency-domain, and time-frequency-domain features and could achieve satisfactory
diagnosis results in the experiment on the bearings with ten fault states. By analyzing in
detail the diagnostic results of Figure 6d, we can see that one sample in the third type of
rolling element with 007 states was wrongly classified as the fifth type of the outer ring with
007 states. Two samples for the ninth type of the rolling element B0014 were improperly
classified as the fifth outer ring with OR007 states. One sample was also wrongly classified
into the tenth state of the rolling element with 021 states. There were four wrongly classified
samples in total. The accuracy rates for the time domain, frequency domain, time and
frequency domain, and multi-feature domain using KPLS were 30.00%, 86.67%, 91.00%,
and 97.33%, respectively. As a combination of time-domain, frequency-domain, and time-
frequency-domain features, multi-domain features can characterize a fault state fully. The
results show that the extraction of 45 multi-domain fault features proposed in this paper
had the best effect in bearing fault diagnosis.

Table 6. Diagnosis results under different feature sets.

Feature Set Diagnostic Time (Seconds) Accuracy (%)

Time domain 0.0035 30.00
Frequency domain 0.0055 86.67

Time-frequency domain 0.0037 91.00
Multi-feature via KPLS 0.0039 97.33

To eliminate contingency, and as the KELM diagnosis results are often affected by
node parameters, we conducted another bearing fault diagnosis experiment with different
hidden layer node numbers using the feature extraction method above: time domain,
frequency domain, and time-frequency multi-feature domain. The results are shown in
Figure 7.
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As shown in Figure 7, with the extraction of multi-domain features, while the KELM
hidden layer node changed from 0 to 3000 (Table 7), the average fault diagnosis accuracy
was maintained at more than 90%. When the hidden layer node value H = 1630, the fault
diagnosis accuracy was 97.333%. The results show that the proposed multi-domain feature
extraction method had the best fault diagnosis accuracy. It was superior to the time-domain,
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frequency-domain, and time-frequency-domain feature extraction methods, no matter how
the hidden layer nodes changed. At the same time, as shown in Figure 7a, when extracting
time-domain features, the average diagnostic accuracy was close to 80%.

Table 7. Corresponding results for different nodes of hidden layer H.

Number of Nodes in Hidden Layer H

H 500 820 1000 1500 1630 2130 3000

Time domain 47.65% 58.50% 70.45% 92.22% 91.66% 89.55% 91.66%
Frequency domain 45.57% 67.89% 74.76% 86.56% 83.67% 88.90% 86.43%

Time-frequency domain 65.44% 69.90% 74.34% 84.38% 80.23% 87.77% 85.57%
Multi-domain via KPLS 96.88% 93.45% 92.75% 96.88% 97.33% 93.56% 95.53%

When extracting frequency-domain features, the average diagnostic accuracy was close
to 85%. When extracting time-frequency-domain features, the average diagnostic accuracy
was close to 90%. When adopting the multi-domain feature proposed, the diagnostic
accuracy was higher than or equal to 90%, with the maximum diagnostic accuracy being
97.333%. In this scenario, the number of hidden layer nodes was 1630. The experiment
result indicates that the proposed multi-domain feature extraction method had the best
diagnostic accuracy.

4.2. Data Analysis of Diaphragm Pump Check Valve

Figure 8a,b show the sensors that were fixed on the shells of the inlet and outlet valves.
For each valve, there was one acceleration sensor of the type PCB352C33 (sensitivity:
100 mV/g) and one sound pressure sensor of the type MP021 (50 mV/Pa), respectively. The
acceleration sensor collected the shell vibration signal along the Z-axis using three channels,
while the sound pressure sensor collected the sound signal along the Y-axis direction.
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Figure 9 shows the vibration signal acquisition device for the check valve. The eight-
channel analog signal was amplified, filtered, and converted into A/D by the data acquisi-
tion card and sent to the PS PXI-3050EXT 2.7 ghz controller; then, the signal was transferred
to the PS PXIE-9108Ext eight-slot industrial computer and stored in the hard disk. When the
diaphragm pump check valve ran normally (first 500 h), eight-channel data were collected
at the sampling rate of 2560 Hz every 1 h. When the check valve was potentially damaged
(500 h~1000 h), eight-channel data were collected every 10 min. When the one-way valve
potentially underwent serious failure or damage (after 1000 h), we collected eight-channel
data every 2 min.
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Figure 9. Data acquisition device.

Due to reasons of safety and cost, specific experiments could not be carried out; the
damage states of the check valve depended on the actual working conditions. After the
check valve was replaced by technicians who work on the site, we checked the damage
and recorded the basic fault size and location. The typical damage is shown in Figure 10;
Figure 10a shows a stuck valve fault, Figure 10b shows a wear fault, and Figure 10c shows
a worn valve fault.
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Figure 10. Fault check valve.

When the check valve was in a normal state, stuck valve failure state, or wear break-
down failure state, we randomly generated a set of time-domain diagrams of vibration
signals (as shown in Figure 11). It was found that there were some fault impulses in the
middle of the time-domain graph. However, since the impulse period was not apparent, as
the noise in the local waveform was inevitable, it was difficult to analyze the type and the
cause of failure based on the time-domain waveform alone.

Therefore, the following experiment was used for the vibration signal sample and
the multi-domain feature extraction method employed to perform fault diagnosis on the
check valve. First, the vibration signal of the check valve in each state was divided into
60 non-overlapping samples, and the number of data points in each sample was 1280. For
each non-overlapping piece, we extracted 45 multi-domain features, of which samples 1
to 16 were time-domain features, samples 17 to 29 were frequency-domain features, and
samples 30 to 45 were time-frequency-domain features. Among the time-frequency-domain
features, we extracted the energy features for the first eight time-frequency-domain features
and the energy entropy features for the second eight time-frequency domain features.

The results for the multi-domain features are shown in the boxplot in Figure 12. After
normalization, most of the 45 characteristics of the check valve were distributed in the
range from 0 to 0.2. Some samples were distributed in the range from 0.2 to 0.8, and very
few were distributed in the range from 0.8 to 1.
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As the number of dimensions of the multi-domain features reached 45, we adopted
the KPLS method to reduce the dimensionality of the multi-domain features.

After the KPLS dimensionality reduction, the diagnosis accuracy rate reached more
than 95% with only eight dimensions. Figure 13 shows the accuracy results for all the
selected dimensionality reduction methods: LS, MRMR, PCA, and LLE.
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The data used for training the KELM model before the dimensionality reduction can
be seen in Table 8. We can see three fault categories in Figure 11; the total number of
samples was 180 × 45, each dataset contained 45 feature points, and 60% of the data were
used for training. Thus, the number of training sets was 108 × 45, the number of testing
sets was 72 × 45, the training accuracy was 100%, and the testing accuracy was 86.11%.

Table 8. The data used for training the KELM.

Total Samples
(Number)

Training Sets
(Number)

Testing Sets
(Number)

Learn
Time (s)

Training
Accuracy

Testing
Accuracy

180 × 45 108 × 45 72 × 45 0.0014 100% 86.11%

To verify the effectiveness of the multi-domain feature extraction results for the check
valve, we compared the fault diagnosis results with the time-domain feature, frequency
feature, and time-frequency-domain features. The results obtained by the KELM are shown
in Figure 14.
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Figure 14. Comparison of diagnostic results for the time-domain, frequency-domain, time-frequency-
domain, and multi-domain features of the check valve.

As shown in Figure 14d, four regular sample points were wrongly classified as type 2
(stuck valve failure state). When the number of hidden layer nodes was 200, the final fault
diagnosis result was 96.88%.

Compared with the time-domain features, the frequency-domain features, and the
time-frequency-domain features for the check valve—which demonstrated accuracies of
45.56%, 82.22%, and 68.89%, respectively—the fault diagnosis results obtained with the
multi-domain features, as shown in the Figure 14d, were improved to 96.88%, raising the
accuracy rate by 51.32%, 14.66%, and 27.99%. The results shown in Table 9 indicate that
the proposed multi-domain feature extraction achieved the optimal diagnosis result in the
check valve fault diagnosis experiment, which proves the proposed method’s effectiveness.
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Table 9. Diagnosis results with different feature sets.

Feature Set Diagnostic Time (s) Accuracy (%)

Time domain 0.0039 45.56
Frequency domain 0.0041 82.22

Time frequency domain 0.0039 68.89
KPLS multi-domain feature 0.0047 96.88

As the fault diagnosis of the KELM was affected by the number of hidden layer nodes,
we compared the fault diagnosis results of the check valve using KELM when the hidden
layer nodes were 0 to 3000, as shown in Figure 15 and Table 10 below.
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domain, and multi-domain features using different numbers of hidden layers in KELM.

Table 10. Corresponding results for node numbers different numbers of hidden layers.

Number of Nodes in Hidden Layer H

H 10 20 100 200 250 260 300

Time domain 49.66% 57.89% 82.22% 92.22% 85.53% 91.22% 90.32%
Frequency domain 96.59% 94.83% 95.55% 94.78% 93.68% 94.45% 96.20%

Time-frequency domain 65.45% 69.89% 72.32% 74.94% 83.83% 87.77% 87.85%
Multi-domain 92.45% 96.88% 95.56% 96.88% 93.45% 96.50% 96.23%

As shown in Figure 15d, no matter how the hidden layer nodes change, the average
diagnosis result was close to 95%, with the maximum diagnosis accuracy being 96.879%.
In this scenario, the number of nodes in the hidden layer was ten, which was better than
the fault diagnosis results for the time domain, frequency domain, and time-frequency
domain. Therefore, the multi-domain feature extraction method proposed in this paper
achieved better results in bearing and check valve fault diagnosis, proving the method’s
effectiveness.

After analyzing different feature sets, we used different classification algorithms to
conduct an experimental analysis of multi-domain feature sets. The results are shown in
Figure 16 below. It can be seen that the overall accuracy of the proposed KELM exceeded
90%, which was significantly better than the back propagation neural network (BPNN)
and ELM.
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5. Conclusions

Investigating the problem of a check valve’s fault state being difficult to classify, this
paper proposed a diagnosis method based on multi-domain features and KELM. It adopted
the method to analyze bearing test fault data and check valve fault data. The conclusions
are as follows:

1. When the time-domain, frequency-domain, and time-frequency-domain features were
used alone for bearing fault diagnosis, the diagnostic accuracies were 30.00%, 86.67%,
and 91.00%, respectively. With the multi-domain feature extraction method after KPLS
dimensionality reduction, the accuracy was improved to 97.33%;

2. When the bearing fault diagnosis test was carried out with different numbers of
hidden layer nodes, the accuracy was increased from 45.56%, 82.22%, and 68.89% to
97.33% with multi-domain features and KPLS;

3. The proposed KPLS-KELM algorithm could accurately and effectively extract the fault
information for the check valve, and the accuracy reached 95%. Compared with the
ELM method, KELM is superior for the traditional time-domain, frequency-domain,
and time-frequency-domain analysis methods and has higher accuracy.

The accuracy of KELM is affected by the kernel parameters and penalty coefficients.
Achieving fast and accurate parameters for different objects is the focus of future research.
Application of the theory in practice would be the ultimate end of this research, and online
fault diagnosis and big data analysis also need to be considered next.

Though the proposed method achieves better diagnosis results and provides superior
accuracy for feature extraction and better robustness in fault diagnosis, the stability of
the multi-feature method with coarse-grained data could be further improved. Therefore,
it needs more time for training and classification. Next, we will develop a fast training
algorithm to facilitate model training.
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