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Abstract: Polytetrafluoroethylene (PTFE) ions were deposited on titanium substrate by using a 1.5 kJ
Mather plasma focus device in argon, equipped with a PTFE source. The PTFE and argon ions
generated during different number of shots of dense plasma focus (DPF) resulted in deposition of
PTFE on the Ti surface. Prepared samples were characterized for structural properties, elemental
composition, surface morphology, wear resistance and frictional behavior by X-ray diffraction, energy
dispersive X-ray, scanning electron microscope and pin on disc test, respectively. The area of the
coherent X-ray scattering region of PTFE coated on Ti estimated by XRD is 9 nm. Both XRD and
SEM show that the area of the coherent X-ray scattering region increases with the increase in the
number of focus shots. The EDX results confirmed that the concentration of carbon and fluorine on
the Ti substrate increases with the increase in energy of ion flux. Finally, the pin on disc test confirms
that PTFE ion plasma coating on the Ti surface reduces the friction up to 35% and enhances wear
resistance of the Ti surface up to 89%. The above analysis reflects that PTFE coating shows remarkable
tribological behavior with low value of friction coefficient and enhanced value of wear resistance.
Moreover, this study provides an intuition for organizing the design of self-lubricating and effective
wear-resistant coatings.

Keywords: titanium; plasma focus; PTFE ion plasma coating; surface morphology

1. Introduction

The most commonly used solid lubricants in mechanical lubrication devices comprise
graphite, molybdenum disulfide (MoS2), hexagonal boron nitride and polytetrafluoroethy-
lene (PTFE) [1–3]. PTFE exhibits good chemical stability along with thermal stability and
outstanding lubricating behavior in a quite wide temperature span and nearly in the en-
tire ambient atmosphere [4]. The self-lubricating characteristic of PTFE is explored in
a broad variety of applications in ice-making machines, rubber ink stamps, ultra-high
vacuum bearings used in high-speed rotating drives, in the masking material in the micro-
electromechanical system (MEMS) fabrication process and ball retainers used in liquid
oxygen turbo pump bearings of a space shuttle’s foremost engine [5].

In a lot of stirring mechanical assemblies such as space mechanism assemblies, MEMS
devices or common gliding components, there is not only a lower friction coefficient
but collective effect of the low friction coefficient and high wear resistive sliding is also
often required, for enhancement of wear lives of mechanical components. Unfortunately,
it is difficult to attain a material with a low value of friction and high wear-resistive
characteristics simultaneously [6]. Ti, a silvery ductile metal, with high strength–density
ratio and remarkable corrosion resistance, exhibits tremendous applications in various
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fields, particularly aerospace and medical sciences [7–9]. The poor tribological behavior of
Ti limits its application in severe environmental and load-bearing locations [1,10]. In this
regard, further improvement in the chemical and mechanical properties of Ti is required.
Thus, emerging appropriate surface modification procedures to progress the tribological
behavior are a vital step to develop the applications of titanium alloys. Hard protective
coatings significantly contribute to enhancing wear resistance and corrosion prevention of
Ti and its alloys [11]. Recently, the most commonly used techniques to augment the surface
behavior of titanium and its alloys have comprised chemical vapor deposition [12], physical
vapor deposition [13], ion plasma coating [14], plasma electrolytic deposition [15], plasma
electrolytic oxidation (PEO) [2], thermal spraying [16], magnetron sputtering (MS) [17] and
hybrid deposition [18]. Among such techniques, ion plasma coating is a more simple and
environmentally friendly technique for ion deposition on the titanium surface. The dense
plasma focus (DPF) device is the potential candidate and it offers deposition of thin films
possessing, enhanced adhesion on the surface of the substrate, more effective in a wide
energy range of its ions.

DPF has been studied for ion implantation of nitrogen into pure titanium, implantation
of carbon ions in titanium for TiC formation and enhancing crystallinity of PTFE, for
the significant improvement in wear performance of stainless steel and Ti. It is also
used for reduction in the wear rate of stainless steel [19]. Fluorocarbon films, deposited
by plasma, have been proposed as low-friction coating; previously, a 35 nm thick film
showed 25% plastic deformation. PTFE-based self-lubricating coating on the steel reduces
friction, the stable coefficient of friction of 0.2 is maintained till the coating is damaged [20].
Although previous studies reflect that TiO2/diamond-like carbon (DLC) composite coating
developed tribological characteristics with a low value of friction coefficient along with
high wear resistance, DLC coating is expensive and requires a time-consuming process [21].
We use DPF for ion plasma coating of PTFE due to its desirable bulk and surface properties
such as high anti-corrosion resistance, good thermal stability, ultra-hydrophobicity and low
coefficient of friction [22].

In this work, we study PTFE ion plasma coating on the surface of Ti samples, fab-
ricated by Mather DPF operated with argon, for different numbers of focus shots. The
untreated and PTFE ion-treated samples are characterized by X-ray diffraction (XRD) for
structural properties, scanning electron microscopy (SEM) for surface morphology, pin
on disc test for tribological behavior and energy dispersive X-ray spectroscopy (EDX) for
elemental analysis.

2. Experimental

The experimental setup and sample preparation technique are given in this section.

2.1. Experimental Setup

A Mather plasma focus (UNU/ICTP 1.5 kJ, Kuala Lumpur, Malaysia) was used for
PTFE coating of Ti samples with a capacitor bank of 9 µF at a peak current of about 160 kA
and charged at 18 kV. Figure 1 illustrates the schematic experimental setup which consists
of six symmetric copper rods surrounding a central copper rod.

The central rod acts as an anode and six equidistant surrounding rods are used as a
cathode. For enhancement of X-rays, ions and electrons emission from the focus region, the
anode is slightly tampered.

2.2. Sample Preparation

The square type samples with 10 × 10 mm2 area and thickness of 2 mm are prepared
by cutting a pure Ti sheet with a METKON FINOCUT cutter (Bursa, Turkey). A METKON
GRIPCO2V polishing machine (Bursa, Turkey) is used for mirror finish mechanical pol-
ishing of samples. Samples are cleaned ultrasonically in acetone for 30 min. The samples
are then held on a substrate holder, axially at a distance of 8 cm from the tip of the anode,
behind a moveable aluminum shutter. This specimen distance ensures the prevention of
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sample damage by the high-energy ion beam. The aluminum shutter covers the sample so
that the ion beam, emitted for the few conditioning shots, will not affect the samples.
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Reprinted from reference [23] with permission from Elsevier.

When the final focus phase is achieved, the interaction of the current sheath and
bombardment of high-energy electrons and ions on the surface of electrodes results in
emission of vapors from the anode [23]. The anode tip is engraved up to 10 mm deep to
reduce copper impurities. The PTFE material is placed in the anode. By using a rotary van
pump, the chamber is evacuated up to 10−2 mbar, then the chamber is filled with high-
purity argon gas. The impurities are minimized by purging out argon gas several times.
Electrical breakdown occurs along the insulator sleeve due to the application of capacitor
voltage across the electrodes immersed inside the low-pressure gas. High current builds
up along the current sheath of the highly ionized plasma which is accelerated towards
the tip by self-generated magnetic force J × B. The radial current sheath collapses when it
reaches the tip of the anode. It generates a highly dense (1025–1026 m−3) transient plasma
column, with electron temperature ranging from 1–2 KeV [24]. At this instant, magnetic
hydrodynamic instabilities grow. As a result of instabilities, the electron temperature
increases and an intense electric field develops. Due to the quick development of sausage
instability at the necking of the column, plasma focus occurs, leading to its disruption.
Instantly after disruption, beams of ions as well as electrons are emitted. The plasma
column collapses due to enhanced electric field, coupled with magnetic field, and ions
move away axially and electrons towards the tip of the anode. PTFE ionizes due to this
stream of electrons. To monitor the focusing efficiency, a Rogowski coil and high-voltage
probe are used. The intense voltage spike across the high-voltage probe and steep current
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along the Rogowski coil are the confirmation of strong focusing and ensure the transferring
of efficient energy and heating of plasma focus. Impurities are extracted when the system is
operated in gas flow mode. It is observed that for argon gas at 0.7 mbar pressure and 18 kV
capacitor bank applied voltage, efficient focusing is obtained. Optimum filling pressure and
charging voltage are maintained throughout the experiment, to ensure energetic ion flux for
the exposure of the sample. A GaAs detector is used to measure ion energy on the surface
of the substrate. The detector is placed at a distance of 8 cm from the anode tip with biasing
voltage of 300 V. A four-channel Gould 4074A (Champaign, IL, USA) digital oscilloscope
is used to record the ion beam signal. Several focus shots are carried out to obtain strong
focusing on each loading of a new sample. Ions are emitted in several bunches for a single
focus shot with a duration of a few nanoseconds from the pinched region. The substrate
surface is etched, cleaned and heated by the ions emitted from the first bunch. A thin
layer of PTFE at an elevated temperature is deposited on the substrate surface and thus
the separate heating of samples is avoided. The consequent beam of ions is responsible
for PTFE coating on Ti. The residual plasma impinges on the high-temperature Ti surface.
The high temperature of the substrate surface helps the PTFE ions to diffuse deeply into
the surface.

3. Results and Discussion

This section contains the results drawn on the basis of characterization of samples for
structural, mechanical and surface properties. The detailed discussion and interpretation
of the results are also given in this section.

3.1. Structural Properties

The structural properties are characterized by a X-ray Diffractometer (PW3040/60
X’pert PRO, PANalytical, Malvern, UK). PTFE-treated samples, for different focus shots,
are analyzed for structural change. The XRD spectra present clear peaks of PTFE in all the
treated samples. X-ray diffraction analysis is performed using a flat camera and 40 kev Cu
Kα (λ = 1.54 Å) radiation. The samples are scanned from 10◦ to 80◦ at 2θ. The XRD pattern
of untreated and PTFE-treated samples, for different focus shots, is presented in Figure 2.
The peaks corresponding to 2θ = 38.66◦, 2θ = 40.44◦, 2θ = 53.22◦, 2θ = 63.25◦, 2θ = 70.89◦,
2θ = 76.61◦ and 2θ = 77.73◦ are presented in the spectra of untreated Ti samples [25,26].

The main peaks corresponding to PTFE are located at 2θ = 41.80◦ and 2θ = 48.90◦.
Peaks, due to titanium and PTFE, are observed at 2θ = 70.89◦ and 2θ = 76.61◦ simultane-
ously [27]. PTFE peaks for two shots are broader and do not resolve precisely. Initially, for
a smaller number of shots, smaller PTFE clusters are induced in the Ti matrix. The results
can be easily seen in the spectra of the samples exposed for 2, 4, 6, 8 and 10 focus shots. The
relative intensity of the PTFE peak is the maximum for 10 shots, as shown in Figure 3.

PTFE precipitates grow with increasing dose of ions. As a result, the following focus
shots achieve coalescence and, due to migration of PTFE atoms, clusters are formed in Ti. It
is assumed that Ti is in a liquid phase when the secondary ion beam penetrates into deeper
layers. The PTFE surface thickness is estimated to be about 299 nm by SRIM [28]. The
Scherrer formula is used to calculate the area of the coherent X-ray scattering region [29].

Area of the coherent X − ray scattering region = Kλ/(FWHM)cos θ (1)

Here, K is the Scherrer constant (~0.99); λ = 0.15406 nm for Cu Kα; and FWHM is
full width half maxima of the peak which is taken in radians. Applying this formula,
the average area of the coherent X-ray scattering region of PTFE film is calculated as
approximately 9 ± 1 nm, as shown in Figure 4.
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The area of the coherent X-ray scattering region depends upon the temperature of the
substrate and flux of ion energy. The PTFE peaks’ heights increase for a larger number of
focus shots. Highly energetic PTFE ion radiation damages the Ti surface which is due to
the stress component.

3.2. Tribological Behaviors

Tribological properties were characterized by a pin on disc test. The friction coefficient
of PTFE is measured in air at room temperature by a pin on disc tribometer (CETR-UMT
2ASTM G99-95, Campbell, CA, USA), using an indexable 3 mm high-strength steel ball by
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the ASTM G99-95a method. The pin on disc wear test is performed by using 8500 pin cycles
and fixed load of 6 N at an angular velocity of 3 cm·s−1 for 30 min. Friction coefficients
for untreated and treated eight-shot samples are 0.564 and 0.369, respectively, indicating
that the coefficient of friction reduces by 35%. Additionally, the wear rate for untreated and
treated eight-shot samples is 0.00029 g/min and 0.00003 g/min, respectively, indicating
that wear rate decreases by 89%. Recent studies have shown that a decrease in the friction
is linked with surface hardening [30,31]. Recently, Wang et al. fabricated a lubricant
composite coating on the surface of Ti6Al4V alloy by micro-arc oxidation as well as grafting
hydrophilic polymer [32]. The results showed that the composite coating revealed the low
friction coefficient and promising wear resistance in water under a low contact stress of
1.52 MPa. This represents considerable wear resistance enhancement and adhesion strength
of PTFE with Ti.

3.3. Surface Properties

Surface properties were characterized by a scanning electron microscope (SEM, JEOL,
JASM-6490A, Tokyo, Japan) and energy dispersive X-ray (EDX) analysis.

3.3.1. Scanning Electron Microscope (SEM)

SEM micrographs of untreated and treated samples exhibit the surface morphology.
On examination, a clear difference in the surface appearance of untreated Ti and PTFE-
treated Ti is observed. The surface of untreated samples is shiny and a silvery gray color, as
shown in Figure 5a. The PTFE-treated samples have a white–gray appearance, as illustrated
in Figure 5b–f. PTFE has vibrant viscosity in an ionic state and PTFE ions filled as well as
covered most of the polishing surface of Ti [33–35]. The micrographs of the PTFE-coated
sample surface presents a smooth layer of smaller grain. The ion bombardment results in
restructuring of the surface of Ti due to cascaded collisions. The reaction of Ti ablated or
sputtered with gas phase PTFE ions results in the deposition of PTFE on the Ti substrate as
a layer.

The micrographs at 2500× and 250× magnifications confirm PTFE deposition due to
bombardment of ions. At 250× magnification, as shown in Figure 5f, the PTFE layer is
uniform over the surface of the substrate whereas, at magnification of 2500×, point-like
structures of clusters/flakes of different sizes are shown in Figure 5g. With the increase in
focus shots, the cluster size is increased. When thin film growth is associated with ions of
low energy, then the area of the coherent X-ray scattering region usually decreases.

The ion bombardment decreases the area of the coherent X-ray scattering region,
assisted by nucleation rate enhancement at the time of film growth. In some specific cases,
the area of the coherent X-ray scattering region increases by the ion bombardment. In
such situations, crystal growth might be favored by high strain energy and increase in
adatom mobility, caused by high local temperature. During ion bombardment in thin film
deposition, the area of the coherent X-ray scattering region depends upon energy of the
ion beam. Ions, with energy less than 10 kev, usually favor a small area of the coherent
X-ray scattering region whereas beam energies, in the range of a few tens of kev, enhance
this scattering region. High-energy ions penetrate deeper and affect recrystallization and
motion of the grain boundary in buried regions where an increase in the area of the coherent
X-ray scattering region may occur. The clusters/flakes of different size are associated with
wide energy spectra of the ion beam (25 kev to 8 Mev) emitted from DPF. Figure 5a–g
demonstrate the surface profile of Ti and PTFE film deposition by operating a UNU/ICTP
device at an axial position of 8 cm. The film surface has uniform thickness, non-porous
cracks and free granular morphology. With excessive energy deposition on the substrate,
the damaged surface is more significant. Microscopic damage is caused by the transient
temperature rise of the substrate surface. The thickness of the modified layer is not uniform
along the grain boundaries and in Ti grains. The sample treated for 8 focus shots shows
a smooth surface with closely arranged grains and this is due to appropriate ion energy
flux for the grain growth. The rougher surface of samples treated with 10 focus shots with
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micro-cracks is illustrated in Figure 5g, which is because of high dose of PTFE ions results
in inflammation of the substrate surface, increasing its roughness as in the case of nitriding
of Ti [36–38]. It is considered that high-energy ion flux, as for 10 shots, produced during
steady and robust focusing action, carries too much energy flux to the substrate, causing
sputtering as well as etching which causes the damage along with roughness of the surface.
Due to highly energetic ions, the partial melting and quick re-solidification after cooling
down are another reason for the surface roughness. The creation of micro-cracks may
also be a result of thermal shock, taking place due to the incident ion beam’s fast heating
and strong temperature gradients. It is concluded that PTFE crystallites form and grow
as a function of ion dose and ion energy up to 8 focus shots, which are appropriate for
surface smoothness. This is in good agreement with the XRD results. We may say that
micro-structural changes depend upon the ion dose and energy delivered to the sample
surface by the plasma focus system.
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shows a smooth surface with closely arranged grains and this is due to appropriate ion 
energy flux for the grain growth. The rougher surface of samples treated with 10 focus 
shots with micro-cracks is illustrated in Figure 5g, which is because of high dose of PTFE 
ions results in inflammation of the substrate surface, increasing its roughness as in the 
case of nitriding of Ti [36–38]. It is considered that high-energy ion flux, as for 10 shots, 
produced during steady and robust focusing action, carries too much energy flux to the 
substrate, causing sputtering as well as etching which causes the damage along with 
roughness of the surface. Due to highly energetic ions, the partial melting and quick re-
solidification after cooling down are another reason for the surface roughness. The crea-
tion of micro-cracks may also be a result of thermal shock, taking place due to the incident 
ion beam’s fast heating and strong temperature gradients. It is concluded that PTFE crys-
tallites form and grow as a function of ion dose and ion energy up to 8 focus shots, which 
are appropriate for surface smoothness. This is in good agreement with the XRD results. 

Figure 5. SEM micrograph of samples in the form of (a) untreated, (b) 2 shots, (c) 4 shots, (d) 6 shots,
(e) 8 shots and (f) 10 shots. (g) Comparison of samples with 8 shots (left) and 10 shots (right) at
magnification of 2500×.

3.3.2. Energy Dispersive X-ray (EDX) Analysis

The elemental composition of samples is estimated by EDX (40 keV). All the treated
samples give similar spectra but with variation in relative intensities of peaks, showing
carbon, fluorine and Ti concentrations in the samples with an increasing number of focus
shots. The peak intensity is minimum at two shots and maximum at 10 shots. Figure 6
illustrates a typical EDX image along with film elemental maps at 8 cm by a UNU/ICTP
device for 10 shots. The EDX maps of the film imaging filters are used to show the spatial
distribution of elements in the coating. The film is found to be homogeneous regarding
the elemental distribution of fluorine and carbon. The variation in Ti concentration in
the ion-treated samples is attributed to the increase in carbon and fluorine concentration.
Table 1 presents the EDX data of Ti, C and F concentration (at.%). The maximum C and
F distributions are found to be 14.16 at.% and 7.21 at.% in the film surface deposited for
10 shots.
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Table 1. EDX elemental composition of the samples.

Shots F
(X) S =

∑
(

X−¯
x
)2

n−1

C
(Y) S =

∑
(

Y−¯
y
)2

n−1

Ti
(Z) S =

∑
(

Z−¯
z
)2

n−1

2 2.63 1.750 3.25 6.574 94.12 15.10
4 3.41 0.870 3.49 5.973 93.10 11.404
6 6.08 0.161 9.32 0.221 84.60 0.762
8 7.05 0.786 11.67 2.709 81.28 1.604

10 7.21 0.935 14.16 8.357 78.63 14.884

In PTFE coatings, the levels of C, F and Ti were found to be in the range of 3.25%–14.16%,
2.63%–7.21% and 94.12%–78.63%, respectively. The reduced level of at.% of Ti detected
in these samples, compared to the untreated Ti substrate, is indicative of a high degree of
coating of PTFE for all Ti samples.

4. Conclusions and Future Prospects

• This study established that PTFE coating on Ti by plasma focus enhances wear resis-
tance when compared to untreated Ti.

• The friction coefficient reduces up to 35% and wear rate decreases by 89% as shown
by a pin on disc test.

• The morphology of the film surface shows smoothening of Ti substrate by PTFE
content scattered consistently on the Ti surface.

• The XRD analysis is consistent with the composition analysis by EDX.
• It is concluded that PTFE crystallites grow as a function of ion dose.
• The quantitative EDX analysis specifies that the carbon and fluorine content in the

PTFE-coated layer is mainly dependent on ion energy flux.
• This plasma ion coating would be very appropriate for studies aiming to use and tailor

this new coating material for applications in future sensitive rotatory devices.
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