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Abstract: In water-based coatings, the addition of tung oil microcapsules coated with urea formalde-
hyde resin (UF) can effectively repair the microcracks in the coating film on the surface of wood.
The tung oil as a repairing agent plays an important role in the preparation of microcapsules. In
this paper, Span-80, SDBS, OP-10, Tween-80 and SDS were used as five emulsifiers to study the
influence of different emulsifiers on the preparation of tung oil microcapsules, and the properties of
the coating film added to the waterborne coatings. According to the coating process of three bottoms
and three sides, tung oil microcapsules were added to the water-based paint with a content of 12%
and coated on the wood surface. The appearance and microstructure of the microcapsules, as well as
the mechanical, optical and self-repairing properties of the paint film were analyzed to find out the
best emulsifier suitable for the core material. The tung oil microcapsules prepared by Tween-80 have
the best morphology, concentrated particle size distribution, particle size of 6–15 µm, and spherical
morphology. The film with the microcapsules prepared by Tween-80 had the best performance, small
color difference, high gloss, hardness of 5H, adhesion grade 1, elongation at break of 47.23%, impact
resistance of 20 kg·cm, and good toughness. At the same time, the repair rate reached 37.9%. The
results provide the application reference for the use of self-repairing microcapsules in coatings.

Keywords: emulsifier; film properties; microcapsules; self repair

1. Introduction

To suppress the surface cracks of wooden furniture [1,2], the common method in the
market is to brush a layer of protective paint on the surface of furniture [3–5], which can
prevent the furniture surface from making contact with the air to protect the furniture.
Among them, water-based coatings are widely used because of their fast drying speed,
environmental protection, pollution resistance and other advantages [6,7]. The water-based
paint on the surface of furniture can greatly increase the service life of furniture and beautify
the furniture. However, the water-based coating film is affected by environmental factors
and other factors in long-term use, which will lead to its own unstable performance and
micro cracks [8]. If the coating film is not repaired in time, it will affect the overall structure
of the film, which is also an urgent problem to be solved at present [9].

The microcapsules are a kind of encapsulation technology, which are widely used
in biomedicine, coatings, building materials, etc. [10–13]. The core repair agent of self-
repairing microcapsules is encapsulated by wall materials and directly buried in water-based
coatings to protect the film. The vegetable oil microcapsules prepared by Song et al. [14]
can protect the coating and realize repeated self-repair. The anti-corrosion self-healing
coating developed by Han et al. [15] can significantly prolong the service life of the coating.
The tung oil is a kind of green vegetable oil, which contains a lot of unsaturated fatty
acids. The highly unsaturated conjugated system makes tung oil easy to oxidize into
film [16,17]. Li et al. [18] confirmed the self-healing performance of microcapsules prepared
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from tung oil in scratch experiments. Ismail et al. [19] used tung oil to modify the self-
healing performance of intelligent polymer coatings. The tung oil is an excellent choice for
the core material of self-repairing microcapsules because of its fast drying, light specific
gravity, good gloss, strong adhesion, heat resistance, acid resistance, corrosion resistance
and good thermal stability [20]. Through the rupture of the capsule wall, the tung oil repair
agent of the core material is promoted to flow to heal the crack in time and achieve the
purpose of self-repair. Whether the core material can be successfully coated by the wall
material is related to the emulsification process of the core material [21]. The core material
is dispersed into tiny droplets by emulsification, and the size of droplets also determines
the size of microcapsules. Therefore, the type and dosage of emulsifier play a vital role in
the emulsification process of microcapsule core material [22], which affects the stability of
microcapsule preparation process and the particle size of microcapsule.

As a surfactant, the emulsifier in microcapsules has both hydrophilic polar groups
and lipophilic nonpolar groups [23,24]. Therefore, it can be adsorbed at the oil/water
interface to form an interface facial mask with a certain strength. It has a protective effect
on dispersed phase droplets, so that the dispersed phase droplets are not easy to coalesce
when they collide with each other [25]. The key to the preparation of stable emulsion is to
choose a suitable emulsifier, which is conducive to the preparation of microcapsules with
uniform particle size and good surface morphology. Mao et al. [26] selected three different
emulsifiers, OP-10, SDS and SDBS to prepare different microcapsules. The results showed
that when SDBS was used as emulsifier, the microcapsules prepared were uniform in size
and had good thermal stability. When the temperature reaches 265 ◦C, the core material
will be released for effective repair and can be completely preserved in cement-based
composites. Chung et al. [27] used Pluronic F-127, Tween-80 and SLS as different emulsifiers
to prepare thyme oil microcapsules, and evaluated the influence of emulsifier and storage
temperature on the release performance of microcapsules. The research showed that the
type of emulsifier significantly affected the loading efficiency of thyme oil. The composite
emulsifier prepared by Ma and others [28] can better control the particle size distribution
and microstructure of microcapsules and achieve excellent anti-corrosion and antifouling
functions. Tao et al. [29] coated shellac with melamine to prepare self-healing microcapsules.
It was found that the hydrophilic lipophilic balance (HLB) value of emulsifier would affect
the morphology, coating rate and performance of microcapsules. Yakdhane et al. [30] used
the emulsifier Tween-80 to prepare flaxseed oil microcapsules in some cases, which will
promote the development of functional foods and biopharmaceuticals. Therefore, in the
preparation of microcapsules, the different emulsifiers need to be selected for different
core materials to improve the output of microcapsules and enhance the performance
of microcapsules.

To prepare microcapsules with good performance, the self-repairing tung oil micro-
capsules were prepared by in situ polymerization by changing the types of emulsifiers,
comparing the types of different emulsifiers and HLB values. Therefore, five kinds of
emulsifiers with different HLB values and types were selected with emulsifiers as changing
factors. In this experiment, Span-80, SDBS, OP-10, Tween-80 and SDS were used as five
different emulsifiers to study the emulsification process of core materials, the morphology
and microstructure of microcapsules, and the performance of coating film to explore the ef-
fect of emulsifiers on microcapsules and the properties of film [31,32]. Through the analysis
of the optical, the mechanical and the self-healing properties of the prepared microcapsules,
the suitable emulsifiers were obtained. This study provides a basis for the further study of
self-repairing microcapsules to improve the self-healing ability of tung oil microcapsules
and broaden the application prospect.

2. Materials and Methods
2.1. Experimental Materials

The materials used in the preparation of microcapsules and paint films are shown in
Table 1. The instruments used in the experiment are shown in Table 2. The viscosity of ethyl
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cellulose is 45.0–55.0 MPa·s, the loss on drying is ≤3.0 wt.% and the chloride is ≤0.1 wt.%.
It is white or light brown powder under normal temperature. The waterborne primer is
mainly composed of waterborne acrylic acid, copolymer dispersion dimmer additive and
water, and the solid content is about 30.0%. The waterborne topcoat is mainly composed of
waterborne acrylic acid, polyurethane synthetic additives and water, with a solid content
of about 26.5%.

Table 1. List of experimental materials.

Reagent Name Specification Manufactor

ethyl cellulose 99.7% Hebei Jinzhong cellulose Technology Co., Ltd.,
Nanning, China

37% formaldehyde solution analytical purity Nanjing Chemical Reagent Factory, Nanjing, China
urea analytical purity Nanjing Panfeng Chemical Co., Ltd., Nanjing, China

n-octanol analytical purity Jiangsu Anyi Chemical Co., Ltd., Nantong, China
citric acid monohydrate analytical purity Shandong lemon Biochemical Co., Ltd., Weifang, China

triethanolamine analytical purity Suqian Yongsheng fine chemical company, Suqian, China
sodium dodecyl benzene sulfonate (SDBS) analytical purity Tianjin Beichen Fangzheng reagent factory, Tianjin, China

sodium dodecyl sulfate (SDS) analytical purity Hebei kelondo Biotechnology Co., Ltd., Handan, China
Span-80 analytical purity Shandong Zibo Haijie Chemical Co., Ltd., Zibo, China

Tween-80 analytical purity Linyi younit Biotechnology Co., Ltd., Linyi, China
OP-10 analytical purity Jinan Wilke Chemical Co., Ltd., Jinan, China

tung oil analytical purity Guangzhou Chaoya Chemical Co., Ltd.,
Guangzhou, China

dulux waterborne wood primer - Dulux Co., Ltd., Shanghai, China
dulux waterborne wood finish - Dulux Co., Ltd., Shanghai, China

board - Beijing Tiantan Furniture Co., Ltd., Beijing, China

Table 2. List of equipment in test.

Instrument Specification Manufactor

electronic balance HZY-1202/2202 Huazhi Electronic Technology Co., Ltd.,
Fujian, China

magnetic stirrer JZ-101S Jiangsu Changchun Chemical Co., Ltd.,
Suzhou, China

circulating water
multipurpose vacuum pump SHB-III Nanjing Panfeng Chemical Co., Ltd.,

Nanjing, China

tetrahedral film preparer SZQ-4 Yunfan Instrument Co., Ltd.,
Tianjin, China

electric constant temperature
blast drying oven CK09-5E-DHG6310 Beijing haifuda Technology Co., Ltd.,

Beijing, China

2.2. Preparation Methods of Microcapsules with Different Emulsifiers

Cellulose modified urea formaldehyde resin wall material: 2.0 g of cellulose and 50 mL
of water were mixed for use [33]. The 20.0 g urea and 27.0 g 37% formaldehyde water
solution were proportioned in a 1:1 molar ratio and stirred with a magnetic stirrer. The
temperature was controlled at 70 ◦C and the rotating speed was adjusted to 600 rpm/min.
The triethanolamine was added dropwise during the reaction to adjust the pH value of the
solution to 8. After 1 h of reaction, the cellulose solution was added to UF and dispersed by
ultrasound for 30 min.

Preparation of tung oil for core material: the core wall ratio was fixed at 0.78:1, tung
oil was weighed at 24.96 g, and the type of emulsifier was changed. The type of emulsifier
and HLB value are shown in Table 3. Sample 1 was prepared with 2.496 g Span-80 and
247.104 g ethanol, and the content of the emulsifier was 1.0%. Sample 2 was mixed with
2.496 g SDBS as emulsifier and 247.104 g deionized water to obtain an emulsifier solution
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with a concentration of 1.0%. The preparation method of samples 3–5 was the same as that
of sample 2. The main parameter of the experimental process is that the concentration of
fixed emulsifier was 1.0%. The prepared emulsifier solution was added to the core material.
The temperature of the magnetic stirrer was set to 45 ◦C, and the speed was adjusted to
1000 r/min. The tung oil can be fully emulsified for 30 min.

Table 3. Different emulsifier types and HLB values.

Sample (#) Emulsifier HLB Value Emulsifier Type Function

1 Span-80 4.3 nonionic type It is oil soluble in liquid and insoluble in water, suitable
for use as emulsifier of W/O emulsion.

2 SDBS 10.638 anionic type It has the functions of dispersion and penetration. It can
maintain the stability of the suspension.

3 OP-10 14.5 nonionic type
It is a commonly used non-ionic surfactant. When the
water is added, it forms a large hydrophilic group to

improve its hydrophilic ability.

4 Tween-80 15.0 nonionic type It is a non-ionic surfactant with strong hydrophilicity. It
is an excellent O/W emulsifier.

5 SDS 40.638 anionic type
It is an excellent anionic surfactant, soluble in water, and
has good emulsifying, penetrating, decontaminating and

dispersing properties.

Microencapsulation: The wall material mixed solution was slowly added to the core
material solution. The citric acid monohydrate is mixed with deionized water to form a
citric acid monohydrate solution with a concentration of 1.0% to adjust the solution of
pH value to 3–4. The solution reaction temperature was 30 ◦C, the rotation speed was
900 r/min, and the reaction time was 2 h.

2.3. Preparation Method of Waterborne Coating Films

The coating process of three bottoms and three sides was adopted. The additional
content of the water-based primer was 15.54 g, and the content of the tung oil microcapsule
was 2.16 g, which was added to the water-based paint at the content of 12.0%. The primer
was painted 3 times in total. The additional content of the water-based topcoat was the same
as that of primer. It was added to the water-based paint and coated on the wood surface
with a SZQ four-sided film preparer. Then it was put into the oven, and the temperature
was set to 30 ◦C. After drying for 20 min, it was taken out and cooled to room temperature.
It was polished with 800# sandpaper. The same operation was repeated three times. The
primer had been completed. The finish paint was completed in the same way [34,35]. The
preparation of water-based paint film was completed.

2.4. Testing and Characterization

Micro morphology test: Quanta-200 scanning electron microscope (SEM) (Fei, Oregon,
OR, USA) and Zeiss sigma 300 optical microscope (OM) (Carl Zeiss, Oberkohen, Germany)
are used to observe the micro morphology of microcapsules and paint films. The particle
size of the SEM image of microcapsules was analyzed by Nano measurer software (V1.2).

Chemical composition test: The chemical composition of microcapsules is measured by
vertex 80V infrared spectrometer (Brooke instruments, Shanghai, China). The transparent
film is formed by pressing, and the absorption peaks are analyzed.

Paint film hardness test: QHQ pencil hardness tester (Shenzhen Forest Precision
Instrument Co., Ltd., Guangzhou, China) is used to measure the hardness of paint film.
According to GB/T 6739-2006 “Pencil Method for Determination of Film Hardness”, the
pencil of 6H-6B measures the hardness of the film. The included angle between the pencil
and the film is 45◦, and the pencil scratches a 3 mm long position on the surface of the film
under the load of 1.0 kg. The scratch results are observed with a magnifying glass. The
hardness of the pencil indicates the hardness of the coating.
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Impact resistance test of paint film: QCJ-120 impact testing machine (Shenzhen sanuo
Experimental Equipment Co., Ltd., Shenzhen, China) is used to measure the impact re-
sistance of the paint film. According to GB/T 4893.9-2013 “Determination of Impact
Resistance”, the impact tip of the QCJ-120 impact testing machine is in the shape of a ball.
The height of the ball hammer is fixed by screws, and the impact marks and cracks of the
sample at the impact of the ball hammer are observed. The height of the ball hammer
is recorded when the crack occurs. The impact strength of the film is expressed by the
maximum height of 1.0 kg ball hammer impacting the film without causing damage.

Elongation at break test of paint film: The paint film is coated on the glass plate
according to the coating process. After the paint film is dry, it is removed from the
glass plate. Then MTest-I universal mechanical testing machine (Shanghai Yinti Precision
Machinery Technology Co., Ltd., Shanghai, China) was used to test the elongation at
break of the coating. The elongation at break of the paint film is calculated according to
Formula (1). L0 is the original length of the paint film, L is the length of the paint film when
it breaks, and e is the elongation at break of the paint film [36].

e = (L − L0)/L0 × 100% (1)

Paint film adhesion test: QFH adhesion scriber tester (Hebei Zhongke Beigong Test In-
strument Co., Ltd., Cangzhou, China) is used to test the adhesion of the coating. According
to the national standard GB/T 4893.4-2013 “Determination of Adhesion by Cross Cutting”,
the hand-held cutter cuts at about 45◦ to the wood surface, with a spacing of 1 ± 0.01 mm,
and the incision is as deep as the basswood. Then rotate the plate by 90◦ and cut it once
to form a grid pattern. The grid is pasted with adhesive tape, and the adhesive tape is
removed smoothly within 0.5–1.0 s at an angle of 60◦. The adhesion of paint film is judged
according to the grade standard.

Paint film roughness test: a Byes-3200 precision roughness tester (Shanghai Bangyi
Precision Meter Co., Ltd., Shanghai, China) is used to test the roughness of paint film. The
smoother the surface of the paint film, the smaller the Ra value.

Paint film color difference test: an HP-2136 Portable Colorimeter (Shanghai nocai
Trading Co., Ltd., Shanghai, China) was used to test the color difference of the coating.
The light source of color difference meter is D65. The lab color space is composed of
brightness (L) and color channels (a) and (b). The L refers to lightness, and the larger the
value, the brighter the surface chromaticity of the tested film; on the contrary, it is dark.
The a indicates that the chromaticity changes from red to green, positive value indicates
that the chromaticity is red; on the contrary, it is green. The b indicates that the chromaticity
changes from yellow to blue, positive value indicates that the chromaticity is yellow; on
the contrary, it is blue. The c is color saturation. Through the test of two places of the paint
film, two sets of data are tested, which are ∆L, ∆a and ∆b, respectively. The calculation
Formula (2) is as follows [37].]

∆E = [(∆L)2 + (∆a)2 + (∆b)2]1/2 (2)

Gloss test of paint film: LS195 gloss meter (Shenzhen Linshang Technology Co., Ltd.,
Shenzhen, China) is used to measure the gloss of paint film at 20◦, 60◦ and 85◦.

Self-repair performance test of paint film: A micro crack blade is respectively marked
on the paint film. The size of the micro crack was observed by optical microscope. After
the paint film is placed flat at room temperature for five days, the size of the same crack
is observed with an optical microscope. The self-repair performance of the paint film is
explored by observing the change in crack size twice.

All the above tests were carried out four times with an error of less than 5%.
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3. Results and Discussion
3.1. Analysis of Micro Morphology of Microcapsules Prepared with Different Emulsifiers

Figure 1 shows the state of core material solution after emulsifying with different
emulsifiers for half an hour. Figure 1A shows the core material emulsion with Span-80.
After emulsification, there is obvious delamination, and the upper layer can be clearly seen
as core material tung oil. It indicates that the core material is not fully reacted. It may be
due to the low HLB value of emulsifier Span-80, which belongs to lipophilic emulsifier. It
cannot disperse tung oil better, which leads to poor emulsifying effect. Figure 1B shows the
core material solution with SDBS as emulsifier. The liquid is white, the emulsion is evenly
dispersed, and there is less core material left in the upper part of the solution. Figure 1C
shows the core material solution with emulsifier OP-10. The liquid in the lower layer is also
evenly dispersed, and a small amount of foam is produced in the upper layer. Figure 1E
also shows the SDS core emulsion of anionic emulsifier, with a large amount of white
foam on the upper layer. This is mainly because anionic emulsifier is easy to produce
foam in the process of high-speed rotating emulsifying core material, and the HLB value
of emulsifier SDS is as high as 40.638, which may also be the reason for the generation of
foam. Significantly, Figure 1D shows the core material emulsion with emulsifier Tween-80,
without obvious delamination. The solution is evenly dispersed, the color is yellow, and
there is no foam on the upper layer. It shows that tung oil is fully emulsified.
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(C) OP-10, (D) Tween-80, (E) SDS.

Figure 2 is the SEM diagram of microcapsules under different emulsifiers. Figure 2A
shows the microcapsule with emulsifier Span-80. The particle size is larger than that of
microcapsules prepared by other emulsifiers, and the surface of microcapsules is not smooth.
There is obvious adhesion between microcapsules, and the amounts of microcapsules
produced is less. This may be because the tung oil core material is not completely emulsified
in the emulsification process, which results in less microcapsules. Figure 2B,E show
microcapsules with SDBS and SDS emulsifiers, respectively, which have small particle
sizes and obvious agglomeration. There are few microcapsules prepared with SDS as
emulsifier. This may also because the process of emulsifying core materials, large numbers
of foam produced during the emulsification of SDS emulsifier, which affects the output
of microcapsules. Figure 2C shows the microcapsules prepared with emulsifier OP-10,
with small particle size but many cavities. This may be due to the gas generated when
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the core material is covered by the wall material, and it is not eliminated in time. When
the microcapsules are finally dried, the bubbles will burst. This leads to the rupture of
microcapsules [38]. In general, Figure 2D shows that the microcapsules prepared with
Tween-80 as emulsifier have uniform particle size and the best morphology. There are also
many microcapsules produced. It can also be proved that different core emulsifiers will
affect the preparation of microcapsules.
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Figure 2. SEM of tung oil microcapsules emulsified by five emulsifiers (A) Span-80, (B) SDBS,
(C) OP-10, (D) Tween-80, (E) SDS.

The emulsion can form microcapsules only when it is unstable. The emulsion changes
from alkaline to acidic. At this time, the performance of lotion is reversed, and the solubility
of core and wall materials is different, so the wall materials settle on the surface of the core
materials to form the core wall ratio structure. The cellulose modified urea formaldehyde
resin is used as the wall material and coated with the tung oil core material to form tung
oil microcapsules.

3.2. Particle Size Analysis of Microcapsules Prepared with Different Emulsifiers

The particle size distribution of microcapsules prepared with different emulsifiers
is shown in Figure 3. It can be seen from the figure that the particle size distribution
of microcapsules with SDS as emulsifier is relatively dispersed, and the particle size is
uneven. The particle size of microcapsules with emulsifiers OP-10 and Tween-80 is mainly
between 6 and 15 µm. The percentages are 78% and 71%, respectively. The particle size of
microcapsules with Span-80 emulsifier is mainly distributed in 11–20 µm. It accounts for
about 67%. The size of microcapsules prepared with Span-80 as the emulsifier are slightly
larger than that of other microcapsules. It can be proved that the type of emulsifier can
affect the particle size of microcapsules.

3.3. Chemical Composition Analysis of Microcapsules Prepared with Different Emulsifiers

The infrared analysis results of microcapsules are shown in Figure 4. The 3384 cm−1

is the telescopic vibration peak superimposed by N–H and O–H. The absorption bimodal
near 2965 cm−1 comes from the stretching vibration of methylene and various alkane
configurations in the molecular structure of cellulose [33,39]. The characteristic absorption
peak at 1380 cm−1 is caused by the stretching vibration of methyl groups [40]. These are
the characteristic peaks of wall materials. The 2854 cm−1 is the stretching vibration peak of
unsaturated bond C–H, and the 1746 cm−1 is the stretching vibration peak of C=O [33,41].
These are the characteristic peaks of tung oil. The core and wall materials of microcapsules



Coatings 2022, 12, 1166 8 of 16

can be found in the whole spectrum [42]. It can be proved that the microcapsule contains
core and wall materials. It shows that the microcapsules prepared by the five emulsifiers
are all successfully prepared.
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3.4. Test of Film Properties of Microcapsules Prepared with Different Emulsifiers
3.4.1. Effect of Emulsifier on Color Difference and Gloss of Coating Film

The influence of microcapsules prepared with different emulsifiers on the color differ-
ence of paint film is shown in Table 4. It can be seen from the table that the color difference
of the paint film of the microcapsules prepared by the five emulsifiers is similar. This
is mainly because the microcapsules prepared by the five emulsifiers are white powder.
There is not much difference in appearance, so the effect of coating on the wood surface
is not much different [43]. However, the color difference value of the paint film without
microcapsules is 3.5. The microcapsules prepared with Tween-80 as emulsifier are coated
on the basswood, the color difference of the paint film is the smallest, with a color difference
value of 4.1.

Table 4. Effect of emulsifier on chromatic aberration of coating film.

Emulsifier
Type

Chromatic Aberration

L1 a1 b1 L2 a2 b2 ∆L ∆a ∆b ∆E

Span-80 51.9 ± 1.7 29.1 ± 0.7 23.8 ± 0.5 49.9 ± 1.0 28.7 ± 0.8 25.3 ± 0.7 2.0 ± 0.1 0.4 ± 0.1 1.5 ± 0.2 6.4 ± 0.1
SDBS 46.0 ± 1.7 26.6 ± 0.6 21.3 ± 0.3 44.8 ± 1.8 28.2 ± 0.3 22.2 ± 0.4 1.2 ± 0.3 1.6 ± 0.1 0.9 ± 0.1 4.8 ± 0.1
OP-10 48.3 ± 1.6 20.2 ± 0.7 20.3 ± 0.4 47.7 ± 1.9 21.6 ± 0.7 22.1 ± 0.7 0.6 ± 0.3 1.4 ± 0.1 1.8 ± 0.3 5.5 ± 0.1

Tween-80 51.0 ± 0.9 26.6 ± 0.8 21.1 ± 0.6 52.6 ± 1.8 27.8 ± 0.5 21.4 ± 0.5 1.6 ± 0.1 1.2 ± 0.3 0.3 4.1 ± 0.1
SDS 56.7 ± 1.7 25.1 ± 0.7 27.1 ± 0.6 55.9 ± 1.6 27.3 ± 0.7 26.7 ± 0.6 0.8 ± 0.2 2.2 ± 0.2 0.4 5.6 ± 0.1

The influence of microcapsules with different emulsifiers on the gloss of paint film
is shown in Table 5. The gloss of the paint film of microcapsules prepared with different
emulsifiers is different. Among them, the gloss of the paint film with emulsifier Span-80,
SDBS and SDS microcapsules is lower than that with emulsifier Tween-80 and without
microcapsules. The gloss of the coating without microcapsules at 60◦ is 78.5, and that
of Tween-80 microcapsule is 73.0. This is mainly because the microcapsule with Span-80
emulsifier has a larger particle size. This causes the paint film to become uneven when
microcapsules are added to the film. The microcapsules with SDBS and SDS as emulsifiers
have a large amount of agglomeration, which will also lead to uneven coating film [44,45].
Since microcapsules have been coated on the surface of basswood, the haze measurement
cannot test the light transmittance of the paint film. Figure 5 shows the appearance
of microcapsules prepared by different emulsifiers coated on the surface of basswood.
Figure 5A shows that the surface of the paint film of the sample without microcapsules
is transparent. By comparison, Tween-80 from Figure 5E has the best transparency of the
coating film. The substrate texture is visible. The surface of other paint films has been
covered with wood texture due to serious agglomeration of microcapsules, resulting in low
transparency. To sum up, the gloss of the paint film of microcapsules with the emulsifier
Tween-80 is better.

Table 5. Effect of emulsifier on gloss of coating film.

Emulsifier Type 60◦ Gloss (%)

No microcapsules 78.5 ± 1.13
Span-80 61.3 ± 1.77

SDBS 62.6 ± 1.65
OP-10 68.1 ± 2.01

Tween-80 73.0 ± 2.32
SDS 65.6 ± 1.68
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3.4.2. Effect of Emulsifier on Film Hardness and Adhesion

The influence of microcapsules with different emulsifiers on the hardness and adhesion
of paint film is shown in Table 6. There is little difference in hardness between different
paint films, and the hardness is between 4H–5H. The hardness of the coating without
microcapsules is 3H and the adhesion is 0 grade. The film thickness is 60 µm. The paint film
with better hardness is added with emulsifiers SDBS, OP-10 and Tween-80 microcapsules,
respectively. The adhesion grade of paint film of microcapsules with different emulsifiers
varies greatly. The adhesion grade of the paint film of microcapsules with emulsifiers
Span-80, OP-10 and Tween-80 is 1. There is no obvious paint film falling off at the cutting
intersection, and the falling off area is less than 5% of the total test area. The adhesion of
the paint film of microcapsules with SDBS and SDS as emulsifiers is 2 and 3, respectively.
The paint film falls off at the cutting intersection, and the falling area is large. Through
comprehensive analysis, the hardness and adhesion of the paint film of microcapsules with
emulsifier Tween-80 are the best.

Table 6. Effect of emulsifier on film hardness and adhesion.

Emulsifier Type Hardness (H) Adhesion (Grade)

No microcapsules 3 0
Span-80 4 1

SDBS 5 2
OP-10 4 1

Tween-80 5 1
SDS 5 3

Span-80 4 1

3.4.3. Effect of Emulsifier on Elongation at Break of Coating Film

Figure 6 shows the effect of microcapsules with different emulsifiers on the elongation
at break of coating film. The elongation at break of the coating without microcapsules
is 26.26%. It can be seen that the elongation at break of microcapsules with emulsifiers
Span-80 and Tween-80 is higher; 47.08% and 47.23%, respectively. It shows that the coating
films prepared by these two microcapsules have good toughness. It shows that different
emulsifiers in microcapsules affect the performance of microcapsules. The elongation at
break of the paint film of microcapsules with SDS as emulsifier was only 32.60%. It may also
be because the prepared microcapsules have agglomeration. When added to water-based
paint, it will affect the toughness of the paint film, thereby reducing the elongation at break
of the paint film. In contrast, the microcapsules with emulsifiers Span-80 and Tween-80
have better performance.
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3.4.4. Effect of Emulsifier on Impact Resistance of Paint Film

Figure 7 shows the impact resistance of paint films prepared by microcapsules of dif-
ferent emulsifiers. The impact resistance of the coating without microcapsules is 10 kg·cm.
It can be seen from the figure that the impact resistance of the paint film with emulsifiers
OP-10 and Tween-80 reaches 20 kg·cm. Secondly, the impact resistance of the paint film of
microcapsules with Span-80 emulsifier is 19 kg·cm. Among the microcapsules prepared
with five emulsifiers, the worst impact resistance of the paint film with SDS emulsifier is
12 kg·cm. This may be because the agglomeration of microcapsules affects the brittleness
of the paint film. At the same time, it affects the force between the paint film and wood,
so that the paint film and wood cannot be better bonded together. As a result, the impact
resistance of the paint film is reduced [46]. The microcapsules with emulsifiers OP-10 and
Tween-80 have better performance, so the paint film can be better connected with the wood
surface to improve its impact resistance.
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3.4.5. Effect of Emulsifier on Film Roughness

Figure 8 shows the change in paint film roughness of microcapsules prepared with
different emulsifiers. The roughness of the coating without microcapsules is 0.12 µm. It can
be seen from the figure that the maximum roughness value of paint film with emulsifier
SDS is 0.58 µm. The minimum roughness value of paint film with emulsifier Tween-80 is
0.29 µm. The roughness value of paint film prepared by other emulsifiers is 0.29–0.58 µm.
The larger the roughness value is, the more uneven the paint film surface is. Therefore, the
uneven surface of the paint film of microcapsules prepared by adding different emulsifiers
may be caused by the agglomeration of microcapsules [47]. The surface of the paint film
prepared with Span-80 and Tween-80 microcapsules as emulsifiers is relatively flat.
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Through the above research on the color difference, gloss, hardness, adhesion, impact
resistance, elongation at break and roughness of the paint film, it is concluded that the
performance of the paint film of microcapsules is better with emulsifiers Tween-80 and
OP-10. Then, the influence of microcapsules prepared by different emulsifiers on the
coating film is explored by combining the surface roughness and foreign body sensation of
the paint film. Figure 9 is the SEM diagram of the coating film. From the analysis of the
SEM diagram, the appearance and performance of the film of microcapsules prepared with
different emulsifiers are also different. The surface of the paint film with SDS and SDBS
microcapsules as emulsifiers is very uneven, with obvious agglomeration and bubbling.
The surface of the paint film with Span-80 microcapsule as emulsifier has obvious graininess,
while the surface of the paint film with OP-10 and Tween-80 microcapsule as emulsifier is
relatively flat and smooth, without obvious bubbling, and the coating effect is good. The
film without microcapsules in Figure 9F is relatively smooth. Compared with it, emulsifier
is the best membrane prepared by Tween-80.

3.5. Self-Repairing Properties of Microcapsules Prepared with Different Emulsifiers

Figure 10 shows the self-repairing properties of coating films prepared by microcap-
sules of different emulsifiers. By comparing the results of the first day and the fifth day
and calculating the crack size, the self-healing properties of the paint film prepared by
microcapsules with different emulsifiers were obtained. It can be seen from Figure 10A,B
that the crack of the paint film with emulsifier Span-80 narrowed by 4.70 µm after five
days. The repair rate was 22.15%. After repairing the paint film with SDBS as emulsifier,
the crack was reduced by 2.64 µm, and the repair rate was 14.0% from Figure 10C,D. The
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cracks of the paint film with emulsifier OP-10 were reduced by 4.31 µm from Figure 10E,F,
and the repair rate was 34.7%. The crack of paint film with emulsifier SDS was reduced by
1.25 µm from Figure 10I,J. The repair rate was 8.9%. However, the crack of paint film with
emulsifier Tween-80 was reduced by 5.23 µm from Figure 10G,H. The repair rate was 37.9%.
The repair performance of the paint film prepared by different emulsifier microcapsules
is different, which shows that the type of emulsifier, particle size and coverage rate of
microcapsules affect the repair performance of the coating film. However, it can be seen
from Figure 10K,L that the crack of the paint film without tung oil microcapsule increased
from 10.86 µm to 10.95 µm after 5 days; an increase of 0.09 µm. In general, the repair
performance of the paint film with Tween-80 as emulsifier is better. The reason is that
Tween-80 is a non-ionic surfactant with strong hydrophilicity and good emulsifying effect,
which can effectively improve the self-repairing performance of tung oil microcapsules.
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Figure 10. Micrographs of paint film self-healing test of five emulsifier microcapsules: (A) the first
day of Span-80, (B) the fifth day of Span-80, (C) the first day of SDBS, (D) the fifth day of SDBS,
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(E) the first day of OP-10, (F) the fifth day of OP-10, (G) the first day of Tween-80, (H) the fifth day
of Tween-80, (I) the first day of SDS, (J) the fifth day of SDS, (K) the first day of no microcapsules,
(L) the fifth day of no microcapsules.

The tung oil microcapsules can be stored directly in the air for two years or even
longer. The microcapsules do not dissolve or precipitate in paint. The paint film with the
prepared microcapsules has a stable performance within two years.

4. Conclusions

Different types of emulsifiers with HLB values affect the particle size and self-repairing
performance of tung oil microcapsules. It can be concluded that the particle size of micro-
capsules prepared by Tween-80 as the emulsifier is 6–15 µm, and the appearance of the
microcapsules is good. At the same time, tung oil microcapsules with a content of 12.0%
are added to the primer and finish paint and coated on the wood surface. The obtained
film has the best performance. The color difference of the paint film is 4.1, and the gloss
of 60◦ is 73.0. The hardness of the paint film is 5H, the adhesion grade is grade 1, the
elongation at break is 47.23%, and the impact resistance of the paint film is preferably
20.0 kg·cm, which has good toughness. The minimum roughness value is 0.29 µm. The
microcapsule prepared by Tween-80 as emulsifier added to the waterborne paint has a good
coating effect, and the crack repair rate is 37.9%. Therefore, based on the analysis of the
microstructure of microcapsules and the performance of paint film, the Tween-80 emulsifier
is suitable for the preparation of tung oil microcapsules to ensure the self-repairing effect of
tung oil microcapsules. The results provide a reference for the application of self-repairing
microcapsules in waterborne coatings.
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