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Abstract: To ensure that the performance of filters matches the continuous development in communi-
cation frequency bands, the influence of temperature on filter performance must be considered during
the fabrication of filters. In this study, a cavity-type temperature-compensated film bulk acoustic res-
onator (TC-FBAR) device was prepared with an SiO2 temperature filter between the bottom electrode
and the piezoelectric layer. A one-dimensional Mason model of the TC-FBAR was established. An
advanced design system, a high-frequency structure simulator, and COMSOL software were used to
optimize the design of the TC-FBAR. After the optimization, the out-of-band rejection was improved
by 10 dB. To address the compensation effect of the tensile and compressive stresses, a multilayer
film was implemented for low-stress control and a reduction in stress to |P| ≤ 150 MPa, thereby
improving the orientation of the piezoelectric film. Moreover, the influence of the thickness of the
SiO2 temperature-compensated layers on the temperature-compensated characteristics was studied.
When the SiO2 thickness was 50 nm, the temperature coefficient of frequency (TCF) was ±1 ppm/◦C.
The center frequency and 3 dB bandwidth of TC-FBAR were 2.492 GHz and 15.02 MHz, respectively,
and the center insertion loss was −3.1 dB. Moreover, the out-of-band rejection was greater than
40 dBc, and TCF was 0.8 ppm/◦C.

Keywords: temperature-compensated film bulk acoustic resonator; Mason model; composite film;
temperature-compensated layer; temperature coefficient of frequency

1. Introduction

With the rapid development of electronic equipment systems and mobile communica-
tion technology, communication frequency bands (S and C bands) are further extended to
higher frequencies. Consequently, phased-array radars, electronic countermeasures, and
communication systems have increasingly high requirements for the temperature coeffi-
cient of frequency (TCF), performance, and volume of high-frequency filters [1–3]. Further,
the increased scarcity of communication spectrum resources complicates the frequency
band allocation and narrows the protection frequency band with more stringent market
requirements on filter performance.

The film bulk acoustic resonator (FBAR) filter is a key component in radio frequency
(RF) systems. In particular, every RF signal and communication frequency band uses
filters to suppress interference signals. Thus, filters play a vital role in the control of
electromagnetic power. As FBARs have a large TCF [4–8], the device performance in the
entire temperature range should be considered in the filter design. As the TCF increases,
the filter bandwidth widens to more than the required bandwidth, resulting in a more
difficult design. The resonant frequency (f ) of the FBAR is determined by the thickness
(d) and the longitudinal wave velocity (v) of the volume acoustic wave propagating in the
resonator, v as follows:
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f = v/d (1)

v =
√

E/ρ (2)

where E is the Young’s modulus of the material, and ρ is the density of the material [9,10].
For AlN and Mo, the Young’s modulus decreases with increasing temperature [11–14].

The TCF of conventional Mo–AlN–Mo-structured FBAR is approximately −30 ppm/◦C [15].
As a commonly used semiconductor material, the Young’s modulus of SiO2 increases with
the increase of temperature, achieving a TCF of +85 ppm/◦C [16,17]; thus, SiO2 can be
used as the temperature-compensated material for FBARs. By increasing the thickness
of the SiO2 temperature-compensated layer, which has a positive TCF [18], and using the
principle of mutually compensated materials with positive and negative TCFs, the TCF
of FBARs can be controlled at a low value; however, the insertion loss increases with the
addition of SiO2. In particular, using a ZnO micromachined cantilever as the piezoelectric
layer and SiO2 as the temperature-compensated layer, a TCF of −0.45 ppm/◦C can be
achieved [19]. However, the micromachined cantilever has low reliability and is prone
to fracture. Moreover, ZnO is not compatible with semiconductor processing. When a
small modular reactor (SMR) filter adopts SiO2 as the temperature-compensated layer, the
TCF can reach 1 ppm/◦C [20,21]. However, SMRs require a highly precise film thickness.
After doping fluorine in SiO2 as the temperature-compensated layer, the electromechanical
coupling coefficient (k2

t) can be increased to 6.26%, and a TCF of −11.1 ppm/◦C can be
achieved [22]. Meanwhile, after doping boron in SiO2 as the temperature-compensated
layer, a TCF of up to −1.5 ppm/◦C was obtained with an improved quality factor (Q)
value [23]. Thus, the doped SiO2 temperature-compensated layer is suitable for the produc-
tion of broadband filters. However, this process is relatively complex, and requires the use
of expensive equipment.

Thus, in this study, based on the conventional Mason model, a Mason model of
the temperature-compensated FBAR (TC-FBAR) was established, and the resonator and
filter were co-simulated and optimized by COMSOL, a high-frequency structure simulator
(HFSS), and an advanced design system (ADS). Further, a method for preparing the cavity
structure of a low-stress multilayer composite film was adopted to incorporate an SiO2
temperature-compensated layer between the bottom electrode and the piezoelectric layer.
The proposed method can obtain piezoelectric thin films with the preferred orientation
as well as fabricate filters with a low insertion loss, a narrow bandwidth, a high out-
of-band rejection, and a low TCF that meet the requirements of a low-temperature drift
narrowband filter.

2. Materials and Methods
2.1. Design of the FBAR Filter
2.1.1. FBAR Model

According to Mason’s equivalent model in the traditional piezoelectric theory [24],
the equivalent circuit of the piezoelectric and acoustic layers was cascaded to obtain
the traditional FBAR equivalent circuit. From the traditional FBAR Mason model, the
equivalent circuits of the adhesion and temperature-compensated layers were added to
obtain a Mason model of the TC-FBAR, as shown in Figure 1a. A finite element analysis
(FEA) based on COMSOL Multiphysics software was performed using the TC-FBAR Mason
model structure, as shown in Figure 1b.

2.1.2. Design of TC-FBAR

A three-dimensional electromagnetic model of the package, a die pad, and a wire
bonding line was established in a HFSS. The size, position, and thickness of the pad, and
the number and position of the wire bonding lines were optimized, thereby optimizing the
near and outer ends of the out-of-band filter. From the FEA, the peripheral electromagnetic
environmental parameters of TC-FBAR were obtained, as shown in Figure 2a.
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Figure 1. (a) Mason model of the TC-FBAR. (b) Simulated displacement field at the resonant frequency
of TC-FBAR.

Figure 2. (a) HFSS model. (b) TC-FBAR full-wave simulation diagram. (c) Performance comparison
after the simulation optimization.

The peripheral electromagnetic parameters and resonator model obtained by the HFSS
and, subsequently, the lumped parameter matching circuit were imported into the ADS.
The optimized design of the device was realized through the optimization algorithm in
ADS. The topological structure adopted six series and six shunts, as shown in Figure 2b.
This structure can address the problems of narrow bandwidth, high out-of-band rejection,
and low insertion loss filters. In COMSOL, the resonator film thickness structure was
optimized to ensure that it was in its optimal matching state, thereby reducing the insertion
loss and improving the Q and k2

eff. Qs and Qp are computed as follows:

Qs = fs/∆fs (3)

Qp = fp/∆fp (4)

where ∆fs and ∆fp are the −3 dB frequency widths of the impedance response |Z| at fs and
fp, respectively. The effective coupling coefficient k2

eff is derived from the series resonant
frequency f s and parallel resonance frequency f p [22] as follows:

k2
eff = (π2/4)(fs/fp)[(fp − fs)/fp] (5)

In the HFSS, the layout of the resonators and the number and position of wire bonding
were optimized to reduce the electromagnetic parasitic effect and inductance as well as
improve the out-of-band rejection. In ADS, filters with low loss and high out-of-band
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suppression were obtained by optimizing the topology, number, and size of the resonators,
as well as the series–parallel mode. The simulation performance diagram after optimization
is shown in Figure 2c. After optimization, the out-of-band rejection was 50 dB, which was
10 dB higher than that before optimization.

2.2. Film Fabrication

In this study, a high-resistance silicon wafer (resistivity of >5000 Ω·cm) and SiO2
films were used as the temperature-compensated layer to produce the TC-FBAR filter.
The fabrication process is shown in Figure 3. Owing to the introduction of the SiO2
temperature-compensated layer, the upper and lower film layers were prepared using
different methods and physical parameters. This resulted in difficulties in controlling
the stress, easy separation of the components [25], widened full width at half-maximum
(FWHM), and other phenomena that seriously affect the device performance or even cause
failure of the composite film. Therefore, the preparation of the temperature-compensated
composite film is a key technology in TC-FBAR.

Figure 3. Fabrication process of the TC-FBAR: (a) silicon etching; (b) thermal oxidation and poly-Si
deposition and chemical mechanical polishing; (c) AlN seed layer and Mo deposition and etch-
ing; (d) adhesion layer AlN and SiO2 temperature-compensated layer deposition and etching;
(e) piezoelectric layer and AlN deposition; (f) top Mo and AlN protective layer deposition and
etching; (g) Al pad formation; (h) AlN etching and polysilicon release.

2.2.1. SiO2 Film Fabrication

Plasma-enhanced chemical vapor deposition method was used to prepare the SiO2
films [26,27]. The film thickness was adjusted using the growth time. The growth of a
substrate layer, such as Ti or AlN, before SiO2 deposition can improve adhesion during
SiO2 growth, which can prevent the fall off of the SiO2 film.

2.2.2. Mo Electrode Film Fabrication

The Mo electrode thin film was prepared by direct current (DC) magnetron sputtering.
By adjusting the sputtering power and argon flow rate [28], the stress of the Mo film in
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the electrode layer can be adjusted to 0 and 100 MPa, as shown in Figure 4a. The process
parameters of the Mo film growth are as follows: alternating current (AC) power, DC power,
RF power, and Ar flow rate of 0.5 kW, 3 kW, 35 W, and 60 sccm, respectively. In addition to
optimizing the process parameters during Mo sputtering, an AlN seed layer was grown
before the deposition of the Mo electrode, which greatly improved its orientation. To
improve the induction effect of the seed layer, the substrate support layer was pretreated
before growing the seed layer, and the support layer on the substrate was dusted with argon
plasma to activate it and improve the preferred orientation of the Mo film. The FWHM of
Mo’s (110) swing curve was reduced from 2.0197◦ to 1.6164◦ after optimization, as shown
in Figure 4b. The surface, as evidenced by the increased intensity of the peak, indicated
a higher degree of crystallization. The FWHM of the Mo films largely depends on the
orientation and surface roughness of the substrate. The roughness of the Mo films prepared
by DC magnetron sputtering was 0.294 nm, as shown in Figure 4c, which satisfies the
process requirements. Moreover, the film surface is dense, smooth, and evenly distributed
with few protrusions.

Figure 4. (a) Stress diagram of the bottom electrode of Mo. (b) Swing curve of Mo (110). (c) Surface
roughness of the Mo film.

To avoid defects, such as poor coverage of the upper film, poor orientation, and exces-
sive stress at the step, due to the excessive angle after etching the bottom electrode, a bottom
electrode step with a smaller angle was obtained by adjusting the process parameters [29],
as shown in Figure 5. An angle of 13.23◦ was used to ensure the growth quality of the
upper film.

Figure 5. Small-angle diagram after etching the bottom electrode.
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2.2.3. AlN Piezoelectric Film Fabrication

The AlN films were prepared on composite films, i.e., SiO2 film passivation layer,
sacrificial polysilicon film layer, AlN-supporting layer, Mo bottom electrode, and SiO2
film temperature-compensated layer, by growing on a silicon substrate. Owing to the
influence of stress accumulation and surface roughness, the preferred-orientation growth
of the AlN film was more difficult than the direct growth of the AlN film on a silicon
substrate. Thus, AlN film is mainly produced by magnetron sputtering [30,31]. In this
study, the AlN film was prepared by intermediate frequency AC magnetron sputtering.
The stress of the AlN film was adjusted by controlling the flow rate of the argon gas and
through a stress-regulating resistance. The thin film stress measurement system was used
to measure the stress of the thin film on the wafer before the growth of the AlN film. The
stress of the AlN film was adjusted by preparing the multilayer film. If the composite film
exhibited compressive stress, the AlN film was adjusted to exhibit tensile stress to achieve
low stress for the film. The process growth parameters of the AlN film are as follows:
AC power, DC power, RF power, Ar flow rate, and N2 flow rate of 9 kW, 10 kW, 50 W,
60 sccm, and 45 sccm, respectively. The orientation of the AlN thin films was improved
by RF plasma cleaning before AlN film plating. During the RF plasma cleaning, argon
ions bombarded the substrate to remove water vapor and other adjacent crops on the
substrate surface, which increased the mobility of the particles on the substrate surface and,
consequently, improved the crystallization orientation of the AlN film. For the tensile and
compressive stress compensation effects, the bottom electrode, temperature-compensated,
and piezoelectric layers under stress, and roughness of the monolayer film were adjusted
to decrease the stress of the multilayer piezoelectric composite film.

3. Results and Discussion

The roughness of the film was tested by atomic force microscopy (AFM). The roughness
of the SiO2 films with different thicknesses is shown in Figure 6. With the increase in the
SiO2 thickness, the roughness of the films gradually increases, which affects their quality.
In particular, an excessively high roughness causes energy loss of the film surface, thereby
increasing device loss [32]. Moreover, roughness affects the internal stress of the film,
which is controlled by adjusting the process parameters, such as gas flow rate, power,
and temperature.

Figure 6. Roughness of the SiO2 films of different thicknesses: (a) 80, (b) 160, (c) 240, and (d) 320 nm.
(e) Surface roughness with different SiO2 thicknesses.
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The stress of the film was tested by the stress tester. The stress of the SiO2 films with
different thicknesses is shown in Figure 7. As the SiO2 film thickness was increased, the
stress gradually decreased. Moreover, a transformation from compressive to tensile stress
was noted. This is ascribed to the lower deposition temperature in the films with a smaller
thickness, which allows the escape of the reaction by-products as disordered substances in
the film [33,34]. Thus, with the increase of the film thickness, the temperature of the film
increased gradually due to the heat energy accumulation effect, it decreased the number
of residual by-products in the film with accelerated escape, and transformed the stress
from compressive to tensile stress. In addition, the (002) orientation of AlN is affected by
the high stress, which can result in device film cracking or collapse after release. Thus, to
improve the quality of the thin film and AlN (002) preferred orientation, a single-layer film
was adopted to address the tensile- and compressive-stress-compensated effects, thereby
realizing the low-stress control of the multilayer composite film. A schematic of the stress-
compensated effect is shown in Figure 8. When the lower film exhibited compressive stress,
the stress of the upper film was adjusted to the tensile stress to eliminate the stress of the
composite film.

Figure 7. Stress of the SiO2 films with different thicknesses: (a) 80, (b) 160, (c) 240, and (d) 320 nm.
(e) Stress with different SiO2 thicknesses.

Figure 8. Schematic of the stress-compensated effect.

The X-ray diffraction (XRD) (002) orientation swing curve of the AlN film is shown in
Figure 9. The FWHM of the AlN (002) swing curve was reduced from 2.361◦ to 1.885◦ after
optimization, and the surface had a high peak strength, indicating the c-axis orientation
and good crystallization of the AlN film [35–37].
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Figure 9. Swing curve of the AlN thin film.

The stress of the composite film was tested by the stress tester. The stress in the
multilayer composite film is shown in Figure 10. By comparing the stress of the composite
film before and after optimization, the stress (|P|) generated by the multilayer composite
film was reduced from 800 to 150 MPa after optimization, thereby achieving the low-stress
growth of the composite film.

Figure 10. Three-dimensional stress diagram of the composite film: (a) before optimization, (b) after
optimization.

A high-resistance silicon wafer and a cavity-type structure were used to fabricate
the TC-FBAR filter. The appearance of the device was observed by a microscope, and the
microstructure and membrane structure of the device were analyzed with transmission
electron microscopy (TEM). The top view and TEM diagram of the TC-FBAR structure are
shown in Figure 11. The layers exhibit good growth quality and adhesion, as shown in
Figure 11b. The temperature-compensated characteristics of the temperature-compensated
layers of different thicknesses were tested, as shown in Figure 12. As the thickness of
the SiO2 temperature-compensated layer gradually increased, the TCF changed from
negative to positive, and gradually increased because of the positive TCF of SiO2 and the
negative TCF of the FBAR, as shown in Figure 12a. When the thickness of the temperature-
compensated layer was approximately 50 nm, the TCF was ±1 ppm/◦C, k2

eff gradually
decreased because the difference between fp and fs decreased gradually [38–40], and the
corresponding bandwidth of the filter became narrower. As SiO2 was added between the
piezoelectric layer and bottom electrode, the piezoelectric performance of the piezoelectric
layer was affected when the piezoelectric property was converted into electrical energy;
thus, the piezoelectric property cannot be completely converted into electrical energy,
thereby reducing the effective coupling coefficient. The Q decreased gradually with an



Coatings 2022, 12, 1126 9 of 12

increase in the thickness of the temperature-compensated layer, because the acoustic energy
was lost after adding SiO2, and −3 dB frequency widths were increased.

Figure 11. (a) Top view of the TC-FBAR. (b) TEM diagram of the TC-FBAR.

Figure 12. (a) Relationship between TCF, k2
eff, and thickness of the SiO2 film. (b) Q with different

thicknesses.

A vector network analyzer (VNA) was used to test the electrical performance of the
TC-FBAR, as shown in Figure 13. As shown in Figure 13a, the measurements achieved
were f 0 = 2.492 GHz, BW3dB = 15.02 MHz, IL = −3.1 dB, and out-of-band rejection of more
than 40 dBc. The test and simulation results have consistent trends. However, compared
to the simulation results, the measured insertion loss and the out-of-band suppression
were slightly larger and smaller, respectively. During the fabrication, the Mo films may
be oxidized to increase the insertion loss. The differences in the out-of-band rejection can
be attributed to the electromagnetic parasitism that was not considered during encapsu-
lation. Furthermore, the measured frequency was lower than the simulated frequency
because of the deviations between the actual and designed film thicknesses. Figure 13b
shows the temperature characteristic test curve of the TC-FBAR, which has a TCF of
0.8 ppm/◦C at −55–125 ◦C. The test results were compared with different references, as
shown in Table 1 [12–14,41–44]. From the comparison results, the lowest TCF and narrow-
est bandwidth were obtained in this work; thus, this resonator is suitable for fabricating a
narrowband filter with a low TCF.
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Figure 13. (a) Test and simulation comparison diagram of the TC-FBAR. (b) Frequency response
diagram of the temperature characteristics of the TC-FBAR.

Table 1. Performance comparison.

Reference f 0
(GHz)

IL (dB)
(Within the Passband)

BW/3 dB
(MHz)

TCF (ppm/◦C)
(−55–85 ◦C)

[12] 2.080 – – +1.5

[13] 1.320 – – ±2.0

[14] 1.500 – – −6.0

[41] 3.723 2.40 (at f 0) 840.00 –

[42] 2.442 2.20 82.00 –

[43] 2.595 2.00 120.00 –

[44] 2.492 3.74 17.00 +5.0

This work 2.492 3.10 15.02 +0.8 (−55–125 ◦C)

4. Conclusions

In this study, a structural model of a TC-FBAR and its one-dimensional Mason model
were established. ADS, HFSS, and COMSOL software were used to optimize the design of
the TC-FBAR. Thus, a preparation method for the low-stress composite film was investi-
gated. The principle of compressive- and tensile-stress-compensated effect was adopted to
ensure that the stress of the composite film was within the required range. Moreover, the
influence of the SiO2 thickness on the temperature-compensated characteristics was studied.
At a suitable SiO2 thickness, the TCF could reach 0 ppm/◦C. The TC-FBAR prepared by
the cavity and composite film structures exhibited a low TCF.
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