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Coatings are being used in more and more areas of life today. Initially, the most
common application of coatings was to apply protective layers to protect the substrate, as
well as for decorative purposes [1,2]. Recently, the operating conditions of machines and
mechanisms have changed, and new production technologies have appeared [3]. All this
required the creation of fundamentally new coatings that differ both in composition and in
the method of preparation.

Recently, technologies for additive manufacturing (AM) of parts have been actively
developing [4]. Gradually, AM technologies moved from prototyping and physical repre-
sentation of 3D models to secondary use in manufacturing technologies (for example, for
making molds [5]). Now, when working parts are being produced by AM methods, the
question arises of applying protective coatings to such products. Due to the specificity of
AM processes, in particular, laser and electron beam melting, it is necessary to develop new
approaches to coating such products.

Ashkenazi, D. et al. [6] reviewed the state-of-the-art methods where the Ag, Au, and
Au–Ag were deposited on as-printed disk-shaped AlSi10Mg specimens using a dedicated
surface activation method. Moreover, Dr. Ashkenazi herself alongside her colleagues are
successfully working on this topic [7–9]. Investigations show that the roughness of all
plated specimens was somewhat reduced as the thickness of the coated layer was increased.
Adequate quality coatings were obtained for all developed electroless deposition processes.
A major advantage of the developed Ag, Au, and Au–Ag coatings is the low processing
temperature and the avoidance of environmentally hazardous material.

Slegers et al. [10] describe the method of surface roughness reduction of additive
manufactured products by applying a functional coating using ultrasonic spray coating. A
higher roughness reduction is achieved without adding material on top of the SLS substrate.
It is shown here that a roughness reduction below 5 µm can be achieved solely by process
optimization. Moreover, for porous AM parts, the material deposited by ultrasonic spray
coating can more easily penetrate the surface structure.

Another way to produce coatings for AM details is the use of the same AM technology
but with different material. Köhn et al. [11,12] coated steel surfaces with Co-based tungsten
carbide (WC) in an additive printing process. Tribological tests revealed highly constant
coefficients of friction that are highly interesting for technical applications. The coating has
good adhesion and a homogeneous microstructure. A final mechanical surface treatment
procedure after deposition led to wear-resistive WC/Co surfaces that exhibited extremely
low wear rates under dry conditions. The so-prepared surfaces exceeded the lifetime of
high-quality PVD-coated surfaces by orders of magnitude.

The issues of modeling the processes of coating deposition and modeling the behavior
of coatings under various influences are acute.

Recently, the direction of in situ production of coatings has been actively developed.
Such processes turn out to be more complex from a technological point of view; however,
they lead to the formation of composite coatings with outstanding properties. Jia et al. [13]
investigated the novel method of in situ forming of the intermetallic NiAl coating via arc
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spray technology and plasma spray technology. The results show that NiAl3, Ni2Al3, and
NiAl intermetallics are in situ formed from a mixture of Ni and Al powders. NiAl was
the only stable phase, while NiAl3 and Ni2Al3 were all or partly dissolved in liquid Al
during the coating formation process. This in situ formed coating allows increasing the
high-temperature oxidation resistance after the heat treatment (comparing to the pure
Ti substrate without a coating). The thickness and mechanical properties of the coating
can be regulated by changing the sintering temperature and high-temperature isothermal
holding time since these parameters regulates the elemental Al diffusion to Ni or/and Ti
layers. Interesting results are obtained by the same group for Al/Ti [14] and TiB2-NiCr [15]
composite coatings.

When working with painted coatings, not only the process of obtaining coatings plays
a role but also the processes of post-processing coatings. This issue especially arises in
industrial production, when it comes to the production of large batches, where the quality
of products may differ within one batch. Blinov and colleagues describe [16] the synthesis
and research of a new tool for removing metal inclusions from the surface of paint and
varnish car coatings. The composition of the coatings includes sodium laureth sulfate,
citric acid, sulfosalicylic acid, hydrogen peroxide and water as a solvent. The optimal
composition and concentration was developed, and the maximum pH value achieved is
5.8 ± 0.2. The authors showed that 30–45 s after applying, the developed product removes
from the surface metal inclusions and mineral contaminants in the form of sand, earth,
clay and other particles containing elements such as potassium, magnesium, aluminum,
sodium, silicon, chlorine and calcium.

Of particular interest is the issue of obtaining coatings with different properties near
the substrate and near the surface. These coatings can be in multilayer or in gradient form.
Kashkarov, Sidelev and colleagues are working on new promising Cr-based coatings for the
nuclear fuel industry [17,18]. Investigated coatings are candidates for effective and reliable
coatings for accident-tolerant fuel (ATF) under both normal operation (360 ◦C, 18.6 MPa)
and accident (e.g., 1200 ◦C, water steam) scenarios. Obtained CrN/Cr coatings increases
the wear resistance and cracking resistance under thermal cycling of the E110 alloy. The
interlayer composed of CrN/Cr multilayers can limit Cr-Zr interdiffusion between the
coating and E110 alloy at high temperatures (1200–1400 ◦C) due to the growth of α-Zr(N)
layer underneath the coating.

This Special Issue aims to provide a forum for researchers to share current research
findings to promote further research and provide an updated outlook on the applications
and structure formation of protective composite coatings, along with demonstrating the
modern ways of producing and post-processing of such coatings.
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