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Abstract: The physical and mechanical properties of the coatings produced by electric arc thermal
spraying are closely related to the velocity and temperature of the particles that interact with the
substrate surface. Knowing the temperature variation of the sprayed particles allows establishing
their aggregation state, respectively determining the spraying distance, so that the state of aggregation
of the particles at the impact moment is predominantly liquid. Obviously, when the sprayed particle
passes through the spray cone, it cools continuously due to the low and variable temperature of the
entrainment gas. This paper aims to determine analytically the thermal behavior of the particles
entrained by the gas jet formed at the thermal spraying in an electric arc, depending on the variable
temperature, existing along the spraying cone. In this sense, by modeling with finite elements, using
the ANSYS program, the temperature inside the spray jet was determined, and by a mathematical
model carried out based on the thermal balance equations, the thermal profile of the sprayed particles
was determined. The thermal profile demonstrates that their temperature suddenly increases to
the solidification temperature, then increases to the melting temperature—due to the latent heat of
solidification, after which it decreases to 300 K.

Keywords: arc spray process; particles; thermal profile

1. Introduction

One of the most cost-effective methods of coating surfaces by thermal spraying is that
of electric arc spraying, because the costs of purchasing and operating such equipment
can be quickly amortized, due to the high productivity and versatility of the materials that
can be thus sprayed [1–3]. The electric arc deposition process is based on the formation
of an electric arc between the two consumable wires directed through the pistol head,
on the atomization of the molten material by means of a carrier gas pressured jet and
the acceleration of the particles thus produced towards the substrate surface [4–6]. Upon
impact with the substrate, the particles flatten and deposit in the form of splats, thus giving
rise to a coating composed of successive layers [7–10]. The steps of this mechanism are
shown schematically in Figure 1 [11].

In contrast to the efficiency of this deposition process, there are a number of disad-
vantages, among which the following can be mentioned: smoke release during deposition,
higher porosity of the coating compared to other thermal spraying methods, and an in-
creased percentage of oxides in the coating caused by oxidation of the droplets in contact
with the working atmosphere [12–14].

A multitude of studies are available in the literature, in which attempts are made to
experimentally solve these drawbacks by varying the working parameters, an example
being the study [15], in which it was analyzed how the type of carrier gas (Ar, N, O, air)
influences the oxidation degree of the arc coatings. Other studied parameters were the wire
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feed rate [16] and its influence on the adhesion to the substrate, the oxidation resistance
of the arc-sprayed coatings [17], or the influence of the substrate texture on the coating
quality [18]. Furthermore, the phenomena in the spray jet were analyzed using high-speed
recording cameras [19], and the thermal diffusivity α of the coatings was measured by
thermal wave interferometry [20].
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From the studies on the influence of working parameters on the quality of arc spray
coatings, it appears that the success of a quality coating is closely related to the temperature
at which the particles reach the substrate. It has been found that a too-low temperature
causes the material to go into a semi-molten, viscous state, which leads to the formation of
less adherent splats, so that there is a risk of producing a coating with low cohesion in the
layer, caused mainly by the increase of gaps between the splats [21].

With the evolution of finite-element analysis and numerical simulation software
for heat transfer phenomena, a general trend of the extension of the research approach
from case studies to numerical analysis and simulation can be observed [22–24]. Thus, the
analysis of particular phenomena leads to the establishment of models on the basis of which
the simulation of the influence of the thermal spraying process phenomena can be carried
out, in order to achieve efficiency in terms of cost versus optimization time. R. Tamaki et al.
carried out a series of studies both practically [25] and by Computational Fluid Dynamics
(CFD) analysis [26,27] on how the modification of the spray jet configuration, using a plate
mounted between the two wires upstream of the arc point, influenced the flow field and the
pulverization of the droplets. It was observed that the mass of the molten wire changes once
with the mounting position of the plate, and the larger the expansion waves on the plate
sides, the smaller the mass of the molten wire is. Another study aiming at the optimization
by geometry modification is [28], in which a model of an arc spray gun was realized with
CFD, and the gas flow inside and outside the spray gun was analyzed. It was observed that
moving the intersection point from the nozzle outside to the nozzle exit and a moderate
intersection angle are beneficial for the flow velocity distribution and droplet atomization.

The influence of spray nozzle geometry and numerical prediction of the splat diameter
distribution was studied by CFD analysis in [29], with three different models being considered:
closed nozzle with green cap and converging orifice (C/CL), closed nozzle with a converging-
diverging orifice (CD/CL), and open nozzle with a converging-diverging orifice (CD/OP). It
was observed that the third variant, with open nozzle, is the least efficient due to the large
distance between the intersection point of the wires and the nozzle outlet, while the second
variant provides a smaller average diameter and a better splat distribution.

In study [30], the arc spray process was analyzed by a three-dimensional model, using
the Fluent CFD code to study the jet inside and outside the spray head, and two different
k-ε type turbulence models suitable for the study of round jets were tested. A completely
different behavior from that of such a jet (round) was observed due to the complexity of the
component elements, significantly divergent in the horizontal and vertical planes. Another
use of the numerical model is the one from the study [31], based on the capability to handle
free surface evolution during droplet flattening, fluid flow, heat transfer, and solidification
phase change in the molten droplet, being reported the dynamics of air entrapment and the
formation of pores in thermal spraying coating by considering the realistic conditions.
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It was also studied how numerical modeling can provide solutions to improve the
mechanical characteristics of arc-sprayed coatings, an example being given in study [32], in
which coatings made of 625 alloy were subjected to multiple experimental tests and analyti-
cal and numerical simulations, to determine the elastic modulus of the coating. Another
example is the one from the study [33], where a mathematical model was developed to
calculate the residual stresses of arc-produced coatings, considering the quenching stress
generated during the coating deposition process and the thermal stress generated during
the cooling process and establishing a corresponding relationship among the number of
coating layers, the temperature gradient, and the residual stress.

As can be seen, there is no modeling of particle behavior on the route from the
atomization nozzle to the substrate, in the literature. Several studies on the numerical
analysis of the plasma spray process have been carried out, regarding the analysis of the
arc dynamics and its effect on the distributions of the temperature and flow field both
inside and outside of the torch [34], the deep neural networks that have an excellent ability
to express the governing equations of thermal plasmas [35], the deposition behavior and
oxidation mechanism of the coatings [36], or a proposed computational approach that can
predict the mechanical properties [37]. The results of a numerical simulation based on a
3D (Ansys Fluent 19.0) model and experimental measurements were compared and thus
validated the flow-velocity field directly and the distribution of particle mass concentration
indirectly in the case of internal rotating plasma spraying (IRPS) coatings [38].

The hydrodynamic and electromagnetic phenomena occurring in the plasma spray gun
in the case of coating with a TriplexProTM-200 three-cathode device were simulated using
a three-dimensional numerical model, but without taking into account the marginal areas
of the electrode surfaces. In the same study [39], another model was performed in order
to approximate the plasma parameters in the free jet. Both models were validated using a
complex analysis system based on argon emission computed tomography by analyzing
the temperature distribution recorded during the experiment. The results obtained were
used to evaluate the influence of process parameters on the plasma jet characteristics and
to understand the physical phenomena occurring inside the spray gun.

In [40], further numerical models were presented, developed with the commercial
Fluent 6.3 software, in order to analyze how the arc fluctuations developed inside the spray
gun influence the formation of the plasma jet, i.e., its temperature and velocity. The plasma
jet coating technology was also analyzed in [41], in which a three-dimensional numerical
model was developed, one of the variables being time. This model was extended to include
areas inside, as well as outside the spray torch, and the analysis of the plasma spray jet was
realized based on the data provided via the Enthalpy probe system. The most important
conclusion drawn from this study is that the temperature and velocity distribution inside
the plasma jet exhibits a significant three-dimensional asymmetric distribution.

Another comparative study developed using numerical simulations is [42], in which the
spraying mode of a YSZ-type powder at the same voltage (electrical input power) was analyzed
using plasma jet spray guns with one cathode, respectively three cathodes. It was observed
that the jet obtained with the three-cathode gun has a higher velocity and temperature than
that generated with the one-cathode gun. Thus, it could be concluded that in the case of the
three-cathode gun, a much more uniform distribution of the particles introduced in the spray
jet can be obtained in the area of higher velocity and temperature regardless of their size, if an
area with lower temperature is chosen as the powder injection point.

It follows from the above that it is justified to carry out studies regarding the jet
temperature variation in the process of thermal arc spraying, because it plays an important
role in the thermal behavior of the particles in the gas jet. Knowing how the temperature
within the carrier gas varies allows the determination of the particle temperature at any
point within the spray jet, i.e., how the temperature of the sprayed particle varies.

The objective of the present study is to investigate the effect of the temperature of the
entrainment gas jet on the temperature of the sprayed particles, using a CFD model (for
the determination of the spray jet temperature) and a mathematical model built on the
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basis of the thermal equilibrium equation (used to approximate the thermal behavior of the
sprayed particles).

2. Computational Setup
2.1. The Modeling of the Arc Spraying Process

The temperature of the spray jet, in the process of electric arc thermal spraying, has
an important role on the thermal behavior of the particles in the gas jet. Knowing the
temperature variation mode inside the entrainment gas jet allows the determination of the
particle temperature at any point within the spray domain, respectively the variation mode
of the sprayed particle temperature.

In order to determine the temperature variation inside the entrainment gas jet, we used
the Ansys—Computational Fluid Dynamic program Ansys CFD), which consists of a solver
specialized in thermal transfer phenomena [43,44]. The geometric model was realized
with the help of the drawing module of the ANSYS program and was assimilated with a
cylindrical tube with thin walls and with the lateral surface adiabatically isolated from the
outside environment, resembling the one used in a previous study [21]. This model has
one closed end and is provided with a 3 mm-diameter pipe through which the compressed
air enters with a pressure of 5 bar and a temperature Tair = 298 K (a value specific to the
working conditions when spraying in an electric arc). The schematic representation of the
model is presented in Figure 2, and its dimensions are resumed in Table 1.
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Table 1. The geometrical dimensions of the model.

Dimensions Symbol Value

Total length of the cylinder L 400 mm
Cylinder diameter—at the outlet D 240 mm

Compressed air pipe diameter—at the inlet d 3 mm
Wire diameter d1 0.8 mm
Wire tilt angle 30◦

Distance nozzle—arc l 20 mm

Inside the model, at the output of the nozzle, the jet of the compressed air passes over
the superheated surface of the electric arc (Tarc = 4500 K), which is formed at the contact of
the two wires, tilted from the cylinder axis at an angle of 30◦. The thermal transfer, from this
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level, is carried out by forced convection, and the thermal transfer model, chosen through
the software, was that of thermal energy. The fluid flow regime is subsonic (M < 1, where
M is the Mach number), and the gas jet temperature inside the model varies continuously,
so that the considered thermal regime is transient. The schematic representation of the
loaded model is presented in Figure 2, and the values of the initial state parameters are
presented in Table 2. The geometric dimensions of the model allow the consideration of the
outer surface as an adiabatic surface.

Table 2. Initial parameters.

Parameters Symbol Value

Compressed air pressure—at the inlet pinlet 5 bar
Compressed air velocity—at the outlet voutlet 0.0173 m/s

Compressed air temperature Tair 298 K
Local temperature of the electric arc Tarc 4500 K

Wire tilt angle 30◦

Nozzle—arc distance l 20 mm
Average wire temperature between “arc point” and wire

entry point in the model Twire 800 K

The degree of turbulence of the compressed air at the inlet 5%
Flow regime subsonic

Exterior wall surface type polished, adiabatic
The position of the outer wall fixed

The values of the initial parameters (compressed air pressure, nozzle–arc distance,
compressed air temperature), presented in Table 2, are similar to the parameters used by
Toma et al. [11], in a study in which qualitative deposits were obtained. The degree of
turbulence adopted was minimal, its value being chosen from those available through the
software. The compressed air outlet speed was calculated by the software based on the
continuity equation and the geometric dimensions of the model.

The values of Tarc and Twire are average values, determined by us under laboratory
conditions, on aluminum wires with diameters of 1.6 mm and applying arc voltages of 28 V.

The temperature of the compressed air jet was determined using: the continuity
Equation (1), the moment Equation (2), and the energy Equation (3) [45].

∂(ρ·vx)

∂x
+

∂
(
ρ·vy

)
∂y

+
∂(]ρ·vz)

∂z
+

∂ρ

∂t
= 0, (1)

∂ρ f v f

∂t
+∇·(ρ f ·v f ⊗ v f ) = ∇(p·δ + η f (∇v f + (∇v f )

T)) + SM, (2)

∂ρ f htot

∂t
− ∂p

∂t
+∇·(ρ f v f htot) = ∇(λ∇T) + SE, (3)

where htot = h + 1
2 vf

2

For the turbulence model, the k-ε criterion was adopted, and the control setup of the
solver was realized by:

- Advection scheme: high resolution;
- Flow duration: 0.5 s;
- Maximum number of iterations: 40;
- Maximum root-mean-squared (RMS) convergence criterion: 10−4.

In order to evaluate the results of the analysis, we used:

- Two perpendicular axial planes (xOy and xOz), as presented in Figure 3a;
- A family of 20 transverse planes arranged at a distance g = 20 mm from each other, as

presented in Figure 3a;
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- A system of 5 directions (numbered from 1 to 5), inclined with an angle of 2.14◦

relative to each other, as presented in Figure 3b;
- A system of 20 transverse directions located in the transverse planes, spaced apart at

f = 20 mm, as presented in Figure 3b.
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2.2. The Mathematical Model

In order to determine the temperature of a spherical particle in the spraying jet, at a
certain moment “t”, we considered the following simplifying hypotheses:

- The shape of the particle is spherical, with a dp diameter, placed at a distance of 20 mm
from the “arc point”;

- The particle moves through the fluid with a velocity vpi = 60 m/s, [46];
- The fluid moves at a constant speed vfi = 250 m/s (in accordance with the results

obtained by Vardelle, M. et al. [47]);
- Tfi values are variable and were obtained by numerical simulation;
- At the initial moment t0 = 0, the particles are in the liquid state, at the Tl temperature;
- The amount of heat transferred by radiation is negligible.

In these conditions, the general equation of thermal balance that characterizes the
cooling process of the particle, with the temperature ∂T, in the time frame ∂t in which the
solidification of a liquid fraction is also produced, Vp·∂ fs, is:

− α f ·Ap·(Tp − Tf ) + λp·ρp·Vp·
∂ fs

∂t
= ρp·Vp·Cpp·

∂T
∂t

, (4)

The first term placed on the left side of the equal sign in Equation (4) represents the
amount of heat transferred by convection to the entrainment gas, while the second term
represents the amount of heat released by the solidification of a fraction (∂ fs) of the liquid
volume Vp. The factor ∂T

∂t represents the cooling velocity, and the factor ∂ fs
∂t represents the

solidification velocity of the particle.
The convection heat exchange coefficient α f was determined using the Rantz and

Marshal Equation (5) [48,49] and the dimensionless Prandtl (6) and Reynolds (7) numbers.

α f =
kg

dp

(
2 + 0.6

√
Re· 3
√

Pr
)

, (5)
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Pr =
Cp f ·ν∣∣vp − vg

∣∣ , (6)

Re =
ρ f ·dp·

∣∣∣vp − v f

∣∣∣
η

=
dp·
∣∣∣vp − v f

∣∣∣
ν

, (7)

where vp − vf—is the relative velocity between the particle and the fluid (m/s).
The latent solidification heat (λp) released by the solidified volume (fs·Vp) was calcu-

lated using Equation (8).
λp = λu − (Cl − Cs)·(TL − TS), (8)

The specific heat of the particle (Cpp) was calculated with the help of Equation (9):

Cpp = Cl − (Cl − Cs)· fs, (9)

Equation (4) describes the thermal behavior of the molten and sprayed particle, being
applicable along the entire length of the spray jet. The term λp· ∂ fs

∂t is neglected in the
particle atomization phase. Furthermore, the thermal state of the particle in the atomization
phase is given by the value of the specific heat of the liquid phase. The phase changes,
accompanied by solidification, are observed during spraying, as well as during the impact
of the particle with the substrate surface.

In the hypothesis that the internal solidification of the undercooled particle occurs
on the basis of a diffusion-free mechanism and the liquid–solid separation interface (L/S)
is flat, then the advance velocity of the solidification interface can be written as directly
proportional to the difference between the temperature corresponding to the liquid curve
(specific for the considered alloy) and particle temperature [50], according to Equation (10).

dx
dt

= ki·
(
TL − Tp

)
, (10)

In this Equation (10), the factor ki represents the advance coefficient of the solidification
front relative to the degree of undercooling of the melt. The value of ki is determined experimen-
tally. For electric arc spraying, the value ki = 0.02 ms−1 T−1 was considered, also valid in the
case of metal melt atomization processes, realized in order to obtain small-sized powders [51].

Considering that the solidification phenomenon is developing at the particle surface,
the fraction of liquid solidified during undercooling (d fs) at the advance of the solidification
front over a very short distance dx is given by Equation (11) [52]:

d fs

dx
=

1
dp
·
[

3·
(

x
dp

)
− 3

2
·
(

x
dp

)2
]

, (11)

Substituting in Equation (4) the calculation formulas for area and volume,
Equations (10) and (11), and simplification with the factor (ρp·Vp·Cpp), this results in
Equation (12).

λp

Cpp

{
1
dp

[
3·
(

x
dp

)
− 3

2

(
x
dp

)2
]}

dx
dt

+
6·α f

ρp·d·Cpp

[
1
ki

dx
dτ

+
(

Tf − TL

)]
=

∂Tp

∂t
; (12)

By deriving Equation (10) in relation to the time, the following Equation (13) was obtained:

d2x
dt2 = −ki·

dTp

dt
; (13)

By substituting Equation (13) in Equation (12) and by rearranging the terms, Equation (14)
results.

d2x
dt2 =

(
D1·x2 + D2·x + D3

)dx
dt

+ D4; (14)
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where:
D1 = 3

2 ·
k1·λp

Cpp ·d3 ,

D2 =
−3k1λp
Cpp ·dp3 ,

D3 =
−6·α f

Cpp ·d·ρp
,

D4 =
−6α f ·ki(Tf−TL)

ρp ·dp ·Cpp
.

By integrating Equation (14) in relation to time, the advance velocity of the solidifi-
cation interface is obtained (15), in the case of a particle of a certain material, when the
temperature decreases with the value

∣∣∣Tf − TL

∣∣∣:
dx
dt

=
1
3

D1·x3 +
1
2

D2·x2 + D3·x + D4·t + D5 (15)

The term D5 from Equation (15) is obtained from the limit condition, assuming that
the solidification phenomenon takes place in those points on the particle’s surface at which
the temperature Tp = Ts, corresponding to the initial moment (t = 0), respectively x = 0, as
calculated in Equation (16).

D5 = ki·(Tl − Ts); (16)

Equation (16) shows that the velocity of the advance of the solidification front inside
a particle cooled by forced convection is dependent on the thermophysical constants of
the material, on the particle diameter (d), and on the difference between the gas fluid
temperature (Tf) and the liquid temperature (TL).

By a quick analysis of Equation (16), it is observed that:

- If Tf > TL, the term D4 < 0 and the advance velocity of the solidification front inside
the particle are very low;

- If Tf = TL, we have D4 = 0, and the solidification front does not advance inside the particle;
- If Tf < TL, then D4 > 0 and the advance velocity of the solidification front inside the

particle increases.

3. Experimental Setup

In order to validate the results obtained by analytical calculation, coatings of aluminum
alloy 01S (manufactured by Tafa Praxair, Indianapolis, IN, USA) with the following chemical
composition were experimentally deposited: 5.2 wt%Si, 0.8 wt% Fe, 2.6 wt%Cr, 0.8 wt% Ti,
0.05 wt% Mn, Al balance (wt%). The substrate used for deposition was in the form of metal
strips, made from C15 steel (DIN 17210-1652), with the following chemical composition:
0.14 wt%C, 0.43 wt%Mn, 0.3 wt%Cr, 0.3 wt%Ni, 0.15 wt%Si, 0.04 wt%P, and 0.04 wt%S.
The steel specimens were previously prepared by blasting at 6 bar pressure with corundum
(Al2O3, 120 µm grain size), chemical cleaning in an ultrasonic bath to remove mechanical
impurities, and air-dried at 200 ◦C. For this experimental study, the substrate was positioned
at different spraying distances (nozzle–substrate distance), namely 20, 40, 60, 80, 100, and
120 mm. The process parameters used are presented in Table 3.

Table 3. Process parameters.

Parameters Value

Current intensity (A) 140
Tension (voltage) 32

Pressure of compressed air (bar) 5
Movement speed of the gun (m/s) 0.11

Standoff distance (mm) 20/40/60/80/100/120
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The morphology of the arc-sprayed coatings was observed by microstructural inves-
tigations carried out on the cross-section of the samples, using the scanning electronic
microscope (SEM) Vega II LSH type (manufactured by Tescan, Brno, The Czech Republic).

4. Results
4.1. Temperature Distribution in the Entrainment Gas Jet

The axial variation of the fluid temperature in the axial planes xOy and xOz is pre-
sented in Figure 4.
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The variation of the total fluid temperature in the family of planes perpendicular to
the Ox axis is presented in Figure 5.

In the planes that are perpendicular to the axis of symmetry, as shown in Figure 5, it
was observed that the jet temperature varies only in the central area of the plane up to the
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one located at a distance of 80 mm from the contact point between the two wires, where the
arc is formed (Figure 5c). In agreement with these, Figure 6 highlights that a temperature of
the gaseous medium higher than 650 K, which could positively influence the temperature
of the sprayed particles, according to Zare, M.A., et al. [49], can be encountered up to a
distance of 80 mm from the spray nozzle.
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Figure 6 presents the 3D model of the isosurface, which has a constant temperature of
650 K and is generated during the arc spray process, inside the spray jet.
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The variation graphs of the fluid (compressed air) temperature are presented in
Figure 7a,b, obtained according to inclined or perpendicular directions to the axis of
symmetry of the model.
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The analysis of the thermal field distribution within the model showed that in the
classical thermal arc spraying process, due to the interaction between the gas jet and
the electric arc, the gas temperature varies between the limits: 950 K and 300 K. The
temperature of the gas jet varies differently in directions inclined to the axis of symmetry,
as presented in Figure 7a. Thus, the fluid temperature variation curves inside the model,
in directions inclined to the symmetry axis (Figure 7a), show maximum values of 850 K,
around a distance of 40 -50 mm from the nozzle, after which it decreases exponentially to
the value of 300 K. The same aspect is observed in Figure 7b where the fluid temperature
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reaches a maximum around 900 K, at a distance of 20 mm from the central axis in any
plane perpendicular to the symmetry axis of the model, after which it drops dramatically
to 300 K. It can be suggested that inside the model, in the first 20 mm from the point of
contact between the wires, the compressed air heats up from the electric arc, through the
phenomenon of forced convection, reaches a maximum temperature around 850–900 K,
and then, decreases exponentially. The results shown in Figures 5–7 demonstrate that
inside the model, in its axial region, a conical zone is formed where the fluid temperature is
maximum. This zone, which we can suggestively call the spray jet, characterized by a high
temperature (>650 K) and fluid flow velocity, influences the temperature and velocity of
the sprayed particles.

4.2. Numerical Results

A particle detached from the melt formed in the electric arc and propelled to the
surface of the substrate by the entrainment gas jet will continuously cool, according to the
thermal equilibrium Equation (4).

Equations (10) and (15) allow the determination of the instantaneous temperature of
the particle during undercooling, based on Equation (17):

Tp = Ts −
1
ki

(
1
3

D1·x3 +
1
2

D2·x2 + D3·x + D4·t
)

(17)

To solve Equation (14), the numerical solution method (second-order Runge–Kutta
method) was adopted, based on which the values of “x” for the incrementing time “∂t”
were obtained. These values of the incrementing time “x” were introduced in Equation (17),
and thus, the values of the particle temperature (Tp) were determined.

Equation (17) does not take into account the phenomenon of diffusion in the solid
state, characteristic between the components of an alloy, nor the one developed at the
solid–liquid interface.

The diffusion frequency of the latent solidification heat decreases progressively and,
at a specific moment, becomes equal to the frequency of heat dissipation in the gaseous
medium. At this moment, the undercooling phenomenon ceases and the specific tempera-
ture is obtained imposing the condition ∂T

∂t = 0. After that, the further solidification of the
melt is carried out through the segregated solidification mechanism. At this stage, the solid
fraction can be calculated using the Scheill equation, modified by Flemings [53,54] (18):

fs = 1− (1− fr

{
Tm − Tr

Tm − Tp

}
)

1
1−k0 , (18)

The thermal profile of some aluminum particles is presented in Figure 8, for the partic-
ular case of the particle dimensions between 0.05 and 0.4 mm, obtained using Equation (17),
considering a time interval of 0025 s. The temperature of the fluid Tfi is variable, and its Tfi
values correspond to Direction 3, represented in Figure 3b.

Cps was calculated with the relation;

Cp = a + b·Tt + c·Tt
2 (19)

where a = 29.3; b = 0; c = 0 for the liquid medium and a = 20.7; b = 12.3 × 103; c = 0 for the
solid state [39].

The temperature variation graphic of the sprayed particle in the electric arc process,
named the thermal profile (Figure 8), highlights that, initially, under the gas jet action, the
particles’ temperature decreases suddenly till the solidification temperature is reached, after
which, it increases to the melting temperature and is followed by a new decreasing trend.
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Table 4 presents the numerical constants that were used to calculate the temperature
of the aluminum particles.

Table 4. Initial parameters.

Parameters Symbol Value

Latent melting heat of aluminum λp 10.4 kJ/mol
Kinematic viscosity of compressed air ν 233.7 m2/s

Aluminum density ρp 2700 Kg/m3

Compressed air density ρf 1185 Kg/m3

Thermal conductivity of compressed air kf 0.58 cal·104/(grd·cm·s)
Specific heat of compressed air Cpf 1192 J/(Kg·K)

Specific heat of liquid (aluminum) Cpp 29.3 J/(K·mol)
Specific heat of solid (aluminum) Cps 11070 kJ/(K·mol)

Melting temperature of aluminum Tt 933 K
Liquid phase temperature (aluminum) Tl 1020 K

The sudden increase of the particles’ temperature, in the time range of (0.02–0.04), is
due to the latent heat released by the solidified fraction. The effect produced by the latent
solidification heat is noticeable till the moment when its value becomes equal to the value
of the energy dissipated by the particle to the gaseous medium.

The influencing factors of the thermal profile of the sprayed particles (highlighted by
Equations (10) and (17)) are: particle dimension, the temperature of the gas jet, the velocity
of the gas jet, the particle’s velocity, and the nature of the wire’s material.

4.3. Morphology Analysis of Experimental Coatings

Figure 9 shows secondary electron (SE) images on the cross-sections of 01S coatings
obtained by electric arc thermal spraying at different spraying distances.

Aluminum alloy layers, obtained at distances under 40 mm, exfoliated from the
substrate surface (were “burned”) because of the intense thermal field generated by the
electric arc. For these reasons, they were excluded from our following investigations.

Coatings obtained at distances d = 80 mm showed a specific structure for the layers
obtained by electric arc thermal spraying, consisting of: flattened particles, pores, and
communicating channels between pores and oxides, as presented in Figure 9a. The small
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average thickness of the splats and their uniform flattening suggest that the aluminum
alloy particles were in a molten state at the time of impact.
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Aluminum alloy layers obtained at spray distances greater than 80 mm, presented in
Figure 9b,c, contain pores, as well as unmelted particles embedded in a metallic matrix of
flattened particles. The high average thickness of the flattened lamellae (splats), as well
as the presence of non-fused particles in the layer suggest that, at the time of impact, the
particles were in a semi-molten or even solid state. It can be observed that the number
of unmelted particles in the layer increases with the increasing of the distance between
the nozzle and the layer, as observed by comparing Figures Figure 9b,c. This observation
strengthens our belief that the aluminum alloy particles cool intensely with increasing of
the spray distance, which is in agreement with the analytical results previously presented.

5. Conclusions

In the case of the classical arc spraying process, one of the first observations that
emerged from the analysis of the temperature field distribution inside the model was that
the temperature of the gas jet varies between 950 and 300 K, as a result of the interaction
between the electric arc formed between the two wires and the jet of gas.
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Following the application of the equations, it was observed that the gas jet temperature
variation occurs only in the central area of the planes perpendicular to the symmetry axis, up
to a distance of 80 mm from the point of electric arc formation. This conclusion was validated
by the morphology aspects observed on the cross-section of the experimental samples, which
presented a specific lamellar structure at an 80 mm distance, respectively unmelted inclusions
in the metallic matrix, more numerous with increasing of the spray distance.

The temperature variation of the particles sprayed during the arc deposition (it had
a less usual path, since it decreased sharply until reaching the solidification temperature)
was followed by an increase to a value close to the melting temperature and a new, much
slower decrease. The nature of this variation profile (thermal profile) can be explained
by the fact that we are dealing with a forced cooling phenomenon, which determines the
fast cooling of the particle until the appearance of the solidification, followed by a rapid
increase due to the latent heat of solidification (λ).

The temperature rise effect due to the latent solidification heat was visible until its
value was equalized by the heat transferred from the particle to the fluid (carrier gas). The
time elapsed until the two values were equalized was directly proportional to the particle
diameter and the difference between the particle temperature and the fluid temperature.
Thus, it can be concluded that the main factors influencing the thermal profile of the
particles sprayed by this process (electric arc) are the temperature of the fluid (of the
gaseous medium), the nature of the wire material, and the size of the sprayed particles.

Knowing the temperature variation of the sprayed particles allows establishing their
aggregation state, respectively determining the standoff distance, according to the character-
istics of the material (melting temperature and solidification temperature), thus becoming
a useful tool in optimizing the process parameters.
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Nomenclature

fs the percentual quantity of solidified fluid in the particle volume (%)
∂T
∂t temperature variation of the particle in the time frame ∂t (K/s)
dx
dt Liquid–solid interface forward speed (m/s)
∂ fs
∂x distance solidified fraction ∂x (Kg/m)
Ap particle surface area (m2)
Cl specific heat of the liquid phase (J·Kg−1·K−1)
Cpf specific heat of the fluid (J/(Kg·K))
Cpp specific heat at constant pressure of the liquid particle (J·Kg−1·K−1)
Cs specific heat of the solid phase (J·Kg−1·K−1)
dp particle diameter (m)
fr the fraction of liquid solidified during cooling (Kg)
h thermodynamic enthalpy (J)
htot total specific enthalpy of the fluid (J)
k0 partition coefficient, k0 = 0.14
kg thermal conductivity of the gas (W/(m·K))
ki coefficient attached to the interface (m·s−1·T−1)
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p thermodynamic pressure (Pa)
Pr Prandtl number
Re Reynolds number
SE internal source of energy, SE = 0 (J)
SM internal moment, SM = 0 (J)
t time (s)
T temperature of the fluid on components: Tx, Ty, Tz (K)
Tf drive gas temperature,(K)
TL liquid temperature—specific to each alloy (K)
Tm melting temperature of the element with the lowest melting point in

the alloy composition (K)
Tp particle’s temperature i (K)
Tr cessation temperature of the subcooling (K)
Ts the solidification temperature specific to each material (K),
vf fluid velocity with the components: vfx, vfy, vfz (m/s)
vg fluid velocity (m/s)
Vp particle’s volume (m3)
vp particle velocity (m/s)
x the length of displacement by the solidification front (J·Kg−1·K−1)
Greek letters
αf convection heat exchange coefficient (W·m−2 K−1)
δ identical matrix
η dynamic viscosity (Pa·s)
λ thermal conductivity (W/mK)
ν kinematic viscosity (N·s/m2)
ρ density of the compressed air (Kg/m3)
ηf dynamic viscosity of the fluid (Pa·s)
λp latent solidification heat (released by the solidified liquid fraction fs·Vp) (J/Kg)
λu latent heat of solidification of the table unit (J/Kg)
ρf fluid density (Kg/m3)
ρp molten particle density (Kg/m3)
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