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Abstract: The evaluation of biofilm formation is important, given the ubiquity and problematic
nature of biofilms in industrial and medical settings, as well as in everyday life. Basically, biofilms
are formed on substrates. Therefore, it is essential to consider the properties of the substrates during
biofilm evaluation. The common dye staining method to evaluate biofilm formation requires a short
evaluation time and enables the evaluation of a large area of the sample. Furthermore, it can be
easily determined visually, and quantitative evaluation is possible by quantifying color adsorption.
Meanwhile, the dye staining method has the problem of adsorption even on substrate surfaces where
no biofilm has formed. Therefore, in this study, we focused on Ag+ reduction reaction to devise
a novel biofilm evaluation method. Ag+ is highly reductive and selectively reacts with organic
substances, such as saccharides, aldehydes, and proteins contained in biofilms, depositing as metallic
Ag. First, to simply evaluate biofilm formation, we used a glass substrate as a smooth, transparent,
and versatile oxide material. We observed that the amount of Ag deposited on the substrate was
increased proportionally to the amount of biofilm formed under light irradiation. Upon comparing
the Ag deposition behavior and adsorption behavior of crystal violet, we discovered that for short
immersion times in AgNO3 solution, Ag deposition was insufficient to evaluate the amount of biofilm
formation. This result suggests that the Ag reduction reaction is more insensitive than the crystal
violet adsorption behavior. The results of the Ag deposition reaction for 24 h showed a similar trend
to the crystal violet dye adsorption behavior. However, quantitative biofilm evaluation using the
proposed method was difficult because of the Ag+ exchange with the alkali metal ions contained
in the glass substrate. We addressed this issue by using the basic solution obtained by adding an
ammonia solution to aqueous AgNO3. This can cause Ag+ to selectively react with the biofilm,
thus enabling a more accurate quantitative evaluation. The optimum was determined at a ratio of
distilled water to aqueous ammonia solution of 97:3 by weight. This biofilm was also evaluated for
materials other than ceramics (glass substrate): organic material (polyethylene) and metal material
(pure iron). In the case of polyethylene, a suitable response and evaluation of biofilm formation was
successfully achieved using this method. Meanwhile, in the case of pure iron, a significantly large
lumpy deposit of Ag was observed. The likely reason is that Ag precipitation occurred along with
the elution of iron ions because of the difference in ionization tendency. It could be concluded that
the detection of biofilm formation using this method was effective to evaluate biofilm formation
on materials, in which the reduction reaction of [Ag(NH3)2]+ does not occur. Thus, a simple and
relatively quantitative evaluation of biofilms formed on substrates is possible using this method.
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1. Introduction

Biofilms are sticky, gel-like materials produced by microorganisms, such as bacteria [1–3].
Biofilm formation poses problems in the industrial and medical fields, as well as in daily life.
For example, mineralization in cooling pipes is caused by biofilm formation [1–3]. Mineral
ions, such as Ca2+, Mg2+, and Si4+, usually concentrate in the biofilms where the ions are
deposited as hydroxides and carbonates and ultimately clog coolant pipes [4]. Furthermore,
biofilms can serve as protective films that inhibit the effectiveness of cleaning agents. Figure 1
shows the mechanism of biofilm formation on a substrate [5–7]. Microorganisms exist as
planktonic bacteria in water and the atmosphere. These floating bacteria can adhere to an
existing conditioning film present on a substrate and start secreting extracellular substances
(EPS). Under favorable conditions, the bacteria multiply and form colonies, and the biofilm
grows. Thus, biofilm formation manifests itself on the substrate. Therefore, it is crucial to
develop a method to evaluate biofilm formation while also considering the substrate.
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Figure 1. Schematic of biofilm formation.

Several researchers have evaluated biofilm formation [8–36]. For example, confo-
cal microscope, scanning electron microscopy, and atomic force microscopy have been
used to directly observe the morphology of biofilms formed on materials [13–17]. Other
characterization methods focusing on the organic functional groups contained in biofilms,
such as Raman spectroscopy, Fourier transform infrared spectroscopy with attenuated
total reflection (FT−IR ATR), and X−ray fluorescence analysis, were employed to identify
biofilms [18–22]. Other methods include the electrochemical assessment of biofilm growth
using oxygen consumption and quartz crystal measurement methods for in-situ monitor-
ing [23–26]. Many reports were combined with these multiple analyses almost. However,
these methods can only analyze localized areas or spots and are often difficult to apply
over a wide area. In addition, the equipment is often specialized and expensive, making it
difficult to evaluate the methods conveniently.

Dye staining, using dyes, such as crystal violet and alcian blue, is the most popular,
simple, and effective biofilm evaluation method for wide areas [27–31]. The dye staining
method can be used to evaluate a large area in a short time and can quantitatively evaluate
biofilm formation. However, dye absorption on the bare substrate (without the biofilm) is a
critical problem encountered during this method. The formation of chemical bonds with the
substrates, over-adsorption, and aggregation are possible reasons for this drawback [32–34].
These phenomena are particularly noticeable in the case of several porous metal oxide
substrates. For this reason, measures, such as diluting the concentration of the dye solution
are taken.
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We focused on biofilm-derived organic functional groups. We attempted a biofilm
evaluation method that is independent of the substrate properties and employs the Ag+

reduction reaction, thus contrasting with the dye staining method. Ag+ is highly reducible
and reacts with organic matter, such as saccharides and aldehydes, to precipitate as metallic
Ag. This phenomenon is known as the Ag mirror reaction. These organic functional groups
are specific to biofilms. In addition, Ag+ binds well with the amino acid and thiol groups
(–SH) contained in the proteins. The reaction of Ag+ also involves the bacteria contained
in the biofilm [35,36]. Therefore, this reaction may be useful in the evaluation of a wide
range of biofilm formations, including those that contain bacteria. Furthermore, since the
proposed method is a marker technique similar to the dye staining method, it is expected
to be simple to evaluate without the need for special and expensive equipment. Table 1
summarizes the characteristics of each analytical evaluation method.

Table 1. The characteristics of each analytical evaluation method.

Analysis Method Range Cost
Special

Equipment
Required

Quantitative/
Qualitative

Dye staining wide low not depend on substrate
FT-IR, Raman small high yes high reliability
Microscope small high yes high reliability

Electro Chemical wide high yes high reliability
Ag deposited method wide low not this study will reveal

In this study, we proposed that the evaluation of biofilms formed on a metal oxide
substrate is possible by utilizing the Ag+ reduction reaction. The objective is to validate
the method on various substrate properties; however, we attempted to first evaluate the
method on a commonly used substrate to examine the substrate characteristics. A glass
substrate, which is a smooth, transparent, and versatile oxide material, was used as the
sample material for ease of biofilm formation evaluation. In addition to the glass substrates,
the method was also applied to organic (polyethylene) and metallic materials (pure iron) to
clarify their behavior toward biofilm formation.

2. Materials and Methods
2.1. Biofilm Formation Experiment

Soda lime glass plates (Sliding glass, AS ONE, Osaka, Japan) were used as the sub-
strates. Firstly, the glass slides were cut into 2.5 × 2.5 cm dimensions and washed using
ultrasonic treatment with detergent, distilled water, and isopropyl alcohol. The samples
were then hydrophilized with aqueous ammonia solution (FUJIFILM Wako Chemicals,
Osaka, Japan, Guaranteed Reagent, 28%–30% purity) and hydrogen peroxide solution (FU-
JIFILM Wako Chemicals, Guaranteed Reagent, 30%–35.5% purity) at 80 ◦C. Polyethylene
substrates (Azwan, PEN-101002, Osaka, Japan) were cut into 2.5 × 2.5 cm dimensions
and washed by ultrasonic treatment with distilled water, and isopropyl alcohol. Pure
iron substrates (The Nilaco Corporation, purity of 99.5%, Tokyo, Japan) were cut into
2.5 × 2.5 cm dimensions and washed by ultrasonic treatment with acetone and isopropyl
alcohol. Thereafter, they were washed with distilled water and placed in a biofilm reactor
that accelerates biofilm formation [20,37,38].

Figure 2 shows a schematic of the biofilm accelerated formation reactor. A strut
containing samples fixed inside an acrylic column was inserted, and tap water flowed
from the water tank to the inside of the column. Water was passed over a porous metal
plate, which then flowed into a water tank such that the area exposed to the atmosphere
was increased. At this step, the air was also blown over the porous metal plate, and
a large number of microorganisms present in the air were thus mixed in the tank. In
these experiments, biofilm formation was evaluated using the aforementioned equipment.
Biofilms were formed on the glass substrates by immersing the hydrophilic-treated glass
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slides in the biofilm accelerated formation reactor at a water temperature of 30 ◦C for
various immersion times.
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Figure 2. Schematic of the biofilm reactor.

2.2. Evaluation of Biofilm Formation

After the biofilms were formed on the glass slides, the samples were immersed in a
1.0 wt% AgNO3 (FUJIFILM Wako Chemicals, Osaka, Japan, Guaranteed Reagent, minimum
purity of 99.8%) solution. Initially, pure water was used as the solvent. To investigate the
effect of light irradiation on the deposited Ag, the samples were immersed in the AgNO3
solution. These samples were exposed to room light irradiation, while others were covered
with aluminum foil (to shield them from the light) for 10 days. Based on the findings
from the light irradiation experiment, the experiment involving biofilm formation was
performed again in the biofilm accelerated formation reactor.

The biofilm-formed slide glasses were immersed in 1.0 wt% AgNO3 under ultraviolet
irradiation using tabletop Ultra Violet irradiation equipment (ES-27BLB, Sankyo Electric
Co., Ltd., Tokyo, Japan) at 25 ◦C. Crystal violet staining was also conducted for comparison;
the biofilm-coated glass substrates were immersed in 0.05 wt% crystal violet solution for
30 min. Biofilm formation was evaluated based on the amount of Ag deposited on the
substrate. Subsequently, to inhibit ion exchange, pure water (solvent) was mixed with
an ammonia solution (FUJIFILM Wako Chemicals, Osaka, Japan, Guaranteed Reagent,
purity of 28%–30%) in ratios of pure water to aqueous ammonia of 100:0 to 95:5 by weight.
Following the above experiments, the deposition behavior of Ag on the biofilms formed on
the surfaces of glass, pure iron, and polyethylene substrates was evaluated at an optimum
concentration of 97:3 by weight of distilled water and ammonia.

The relationship between the amount of biofilm formation and Ag deposition was
evaluated visually and via imaging. The Ag-deposited area (black) was extracted and
estimated from a photograph using the image analysis software ImageJ (version 1.53K,
Wayne Rasband and contributors National Institutes of Health, Bethesda, MD, USA). The
images of the crystal violet stained area were also analyzed for comparison with the Ag
deposition behavior. Elemental analysis of a small sample area was performed using low-
vacuum scanning electron microscopy (SEM; TM-1000, Hitachi, Tokyo, Japan). Components
of the biofilm were identified by microscopic laser Raman analysis (NRS-3300, JASCO
Corporation, Tokyo, Japan).

3. Results and Discussion
3.1. Investigation of the Ag Deposited by the Effect of Light Irradiation

Figure 3 shows the results of the Raman analysis of the obtained biofilm: (a) biofilm
formation after 10 days on the glass substrate, (b) bared−glass substrate. An excitation
wavelength of 532.10 nm was used. The result indicated that the peak at approximately
600 cm−1 is attributable to Si–O–Si bending vibration in depolymerized structural units,
the peak at approximately 800 cm−1 can be attributed to Si–O–Si symmetric stretching of
bridging oxygen between tetrahedra, and the peak at approximately 1100 cm−1 can be
attributed to Si–O0 and Si–O− stretching vibration of Qn with different n (n = 0,1,2,3,4)
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each [39]. However, these peaks were not observed on the biofilm-formed glass substrate,
and new peaks appeared. The peak at approximately 960 cm−1 is attributable to C–CH3
rocking; the peak at approximately 1150 cm−1 is attributable to band the C–C stretching
mode (coupled with C–H in-plane bending), and the peak at approximately 1500 cm−1 is
attributable to C = C stretching each [21,22]. These peaks had been identified in previous
reports and were assumed to be due to multiple microbial groups. The biofilms prepared
under these conditions were evaluated for the effect of Ag deposition with and without
light irradiation.
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Figure 4 depicts a comparison of the samples exposed to room light irradiation to those
covered with aluminum foil for 10 days. After the first day, Ag deposition was observed on
the room light−irradiated sample. In contrast, Ag was deposited slowly on the shielded
light sample. This result confirms that the reaction speed depends on the presence or
absence of light irradiation, as in the case of silver halide photography. In addition, because
no reaction occurred with the experimental equipment (beaker as glass), it was considered
that this reaction was reacting with the biofilm formed on the glass substrate. This result
indicates that Ag+ selectively and qualitatively reacts with the biofilm during the reduction
reaction. Moreover, light irradiation plays a major role in determining the reaction rate
(indicating photosensitivity).
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3.2. Validation of Ag+ Reduction Reaction Method for Quantitative Evaluation of Biofilm

Next, we evaluated the biofilms quantitatively using the Ag+ reduction reaction.
Figure 5 illustrates the relationship between the amount of biofilm formed and Ag deposited.
Ag deposition was confirmed after 0.5 h, indicating that the reaction was significantly
promoted by ultraviolet irradiation. It was also confirmed that the amount of deposited Ag
increased with the biofilm formation time.



Coatings 2022, 12, 1031 6 of 11

Coatings 2022, 12, x FOR PEER REVIEW 6 of 11 
 

 

Next, we evaluated the biofilms quantitatively using the Ag+ reduction reaction. Fig-

ure 5 illustrates the relationship between the amount of biofilm formed and Ag deposited. 

Ag deposition was confirmed after 0.5 h, indicating that the reaction was significantly 

promoted by ultraviolet irradiation. It was also confirmed that the amount of deposited 

Ag increased with the biofilm formation time. 

Furthermore, the validity of the Ag deposition method was verified by comparing its 

adsorption behavior with that in crystal violet dye staining. Figure 6 shows the adsorption 

of crystal violet dye on the biofilms formed on the glass substrates when immersed in the 

dye solution for 30 min. The photographs clearly indicate that the amount of dye adsorp-

tion increased with increasing biofilm formation time. The amount of dye adsorption was 

analyzed via image analysis and compared with the Ag deposition sample (Figure 7). 

Upon comparing the two deposition behaviors, it was observed that when the immersion 

time of a sample in AgNO3 solution was short, Ag deposition was insufficient for evalu-

ating the amount of biofilm formed on the substrate. This result indicates that the Ag re-

duction reaction is more insensitive than the crystal violet adsorption behavior. The re-

sults of the Ag deposition reaction for 24.0 h showed a similar trend to the crystal violet 

dye adsorption behavior. 

 

Figure 5. Variation of deposited Ag and biofilm formation with time. 

 

Figure 6. Crystal violet dye staining of biofilm formed on glass substrates. 

3.00.5 1.00.0 6.0 24.0

0.0

0.125

1.0 

3.0 

7.0 

B
io

fi
lm

 f
o

rm
a
ti

o
n

 t
im

e
 [

d
a
y
s
] 

Ag deposition time[h]

Biofilm formation time [days] 

0.0 0.125 1.0 3.0 7.0 

Figure 5. Variation of deposited Ag and biofilm formation with time.

Furthermore, the validity of the Ag deposition method was verified by comparing its
adsorption behavior with that in crystal violet dye staining. Figure 6 shows the adsorption
of crystal violet dye on the biofilms formed on the glass substrates when immersed in the
dye solution for 30 min. The photographs clearly indicate that the amount of dye adsorption
increased with increasing biofilm formation time. The amount of dye adsorption was
analyzed via image analysis and compared with the Ag deposition sample (Figure 7). Upon
comparing the two deposition behaviors, it was observed that when the immersion time
of a sample in AgNO3 solution was short, Ag deposition was insufficient for evaluating
the amount of biofilm formed on the substrate. This result indicates that the Ag reduction
reaction is more insensitive than the crystal violet adsorption behavior. The results of the
Ag deposition reaction for 24.0 h showed a similar trend to the crystal violet dye adsorption
behavior.
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3.3. Approaches to Suppress ion Exchange Effects

On the other hand, Ag deposition on bare glass (without biofilm) was confirmed
following long immersion times over 0.5 h. As a result, elemental analysis was performed
on small areas using a low−vacuum SEM. Figure 8 shows the SEM image of the glass
substrate with and without the biofilm. The samples containing biofilms show certain
deposits (light color). The elemental analysis confirmed that the deposits were composed
of Ag. However, even in the absence of biofilm formation, Ag was deposited (Figure 8b).
Ag precipitation became more pronounced over time. Upon comparing the morphology
of Ag deposited on the biofilms and substrate, it was noted that the former was in an
agglomerated state similar to a bacterial colony that grew over time. In contrast, on the
substrates that did not experience biofilm formation, Ag was sparsely deposited. Ag
precipitation on the glass substrate without biofilm formation was attributed to the ion
exchange with the Na+ contained in the glass.

1 

 

  
(a) (b) 

 

0.0 h 0.5 h 3.0 h

Figure 8. SEM image of the glass substrate immersed in AgNO3 solution. (a) With biofilm formation;
(b) Without biofilm formation.

The glass substrate is basic, and the presence of NO3
− in the solution caused Na+ to

leach from the glass. Subsequently, negatively charged pores were generated on the glass
surface because of the release of Na+, and Ag+ was reduced on the glass surface. As a
result, silver precipitation was considered to have occurred.

To solve this problem, we attempted to suppress the Na+ ion exchange by adding
an ammonia solution to the AgNO3 solution. Using this method, Ag+ was changed to
[Ag(NH3)2]+, and the pH of the solution became basic. Figure 9 shows the photographs
displaying the effect of adding the ammonia solution on the deposition reaction of Ag
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on the biofilm. When the amount of added ammonia solution was 98:2 (by weight) or
less, black turbidity was observed before the sample was added to the solution. This
phenomenon was attributed to the reaction of Ag+ with OH− in the basic solution and
deposition of Ag2O. Thus, the reactants did not selectively react with the biofilm on the
sample. This phenomenon did not occur when the ratio of the ammonia added to the pure
water was 97:3 (by weight) or higher. In this case, Ag precipitation due to the Ag+ reduction
reaction was confirmed.
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Figure 9. Ag+ reduction reaction in the presence of NH3 in solution.

Ag+ changed to [Ag(NH3)2]+ in the presence of excess ammonia solution. However,
at ratios of 96:4 and 95:5 by weight, the rate of Ag reduction was extremely slow, and
it took a long time before Ag precipitation became visible. As a result, it was difficult
to quantitatively evaluate the biofilm when the amount of ammonia solution added was
low. However, the reaction rate became extremely slow when the ammonia solution
concentration was high. In conclusion, the optimal ratio of distilled water to ammonia
solution was 97:3 by weight.

In this study, glass substrates were used as the substrate material to facilitate the
verification. Further verification of the observation is required in the case of other substrate
materials. Figure 10 shows (a) the Ag deposition behavior and (b) crystal violet dye
staining results for glass, pure iron, and polyethylene substrates at optimal evaluation
concentrations. The results show that the Ag deposition behavior on the polyethylene
substrate was excellent and almost consistent with the crystal violet staining behavior on
the glass substrate. Meanwhile, significantly large Ag precipitates were observed on the
pure iron substrate. This was considered to be due to the ion exchange with [Ag(NH3)2]+
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because of the low ionization tendency of the iron ions. In addition, the weak alkalinity
of the aqueous solution was expected to have caused the iron ions from the pure iron to
leach out more readily. It was concluded that this experimental method was effective for
substrate materials that did not directly contribute to the Ag reduction reaction and where
excessive dye adsorption was a problem.
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The Ag reduction reaction focused on the organic functional groups in the biofilm has
a slower reaction rate than that of crystal violet staining. This may be partially because
of the environment of the formed biofilm. In addition to the adsorption of Ag+ onto the
biofilm, further Ag+ reduction reactions are required. The biofilms used in our experiments
were formed using several bacteria [32–34]. It is necessary to further examine various types
of biofilms as the Ag deposition behavior may be affected by the contents of the reducing
materials in the biofilm.

4. Conclusions

In this study, we attempted to use the Ag+ reduction reaction as a new evaluation
method for biofilms. We considered that this method does not require expensive special
equipment and can evaluate biofilms as easily as the dye staining method. First, we used
a glass substrate as a smooth, transparent, and versatile oxide material to facilitate the
evaluation. It was confirmed that the Ag+ reduction reaction occurred on the biofilm
formed on the glass substrate. The reaction rate was significantly accelerated upon light
irradiation. Compared to the adsorption behavior of the crystal violet dye, the reaction
rate of Ag deposition was slow. It was observed that sufficient reaction with the biofilm
required more than 24 h. The trends of Ag deposition and crystal violet adsorption as
a result of immersion for 24 h were confirmed to be in good agreement. However, the
alkali metal ions contained in the glass slides caused an ion-exchange reaction with Ag+,
resulting in Ag deposition on the glass substrate, which hindered quantitative evaluation.
Therefore, a basic solution was prepared by adding aqueous ammonia to an aqueous
AgNO3 solution. As a result of verification, the optimal condition was observed in a water
to aqueous ammonia solution ratio of 97:3 by weight.

In addition, the Ag deposition reaction on the biofilm was also evaluated for polyethy-
lene substrate as the organic material and pure iron substrate as the metal material. It was
observed that the Ag deposition behavior on the polyethylene substrate was excellent and
nearly matched the staining behavior of crystal violet as well as that of the glass substrate.
Meanwhile, significantly large Ag precipitates were observed on the pure iron substrate.
This was considered to be due to the ion exchange with [Ag(NH3)2]+ because of the low
ionization tendency of the iron ions. In addition, the weak alkalinity of the aqueous solution
is believed to have promoted the elution of iron ions from pure iron.

In conclusion, this experimental method was found to be effective on a substrate
material that does not directly contribute to the Ag+ reduction reaction. This method is
simple and inexpensive, this experiment can be further enhanced by evaluating various
other materials and biofilms in the future. We also expect its effectiveness to be demon-
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strated by combining it with other analytical methods. It is expected that this research
and development will facilitate the evaluation of biofilm formation in materials that have
been difficult to evaluate by staining, without the use of special and expensive equipment.
We expect that expanding to everyday materials, especially porous oxides will enhance
research on biofilm formation in conjunction with dye evaluation.
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