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Abstract: Crack-free and uniform nickel–tungsten (NiW) coatings and their composite coatings filled
with ceramic particles such as silicon carbide (SiC) and hexagonal-boron nitride (hBN) were deposited on
brass substrates by applying direct current (DC) waveforms. Among all coatings, NiW–SiC–hBN coatings
displayed the noblest corrosion potential (−0.49 V) and lowest current density (4.36 × 10−6 A·cm−2).
It also seems that addition of hBN and SiC ceramic particles to NiW matrix remarkably improved
the wear performance of the NiW coatings. However, NiW–hBN exhibited the lowest wear volume
(48.84 × 103 µm3) and the friction coefficient of 0.1 due to ultra–low friction coefficient of hBN particles.

Keywords: nickel–tungsten coating; direct current electrodeposition; friction coefficient; corrosion;
wear resistance

1. Introduction

Brass has been used in a wide variety of demanding applications such as aerospace,
automotive, electronics, construction, marine, and many others. This material has low
cost, good machinability, high electrical, and thermal conductivity. However, it is very
susceptible to corrosion and wear after exposure to humid environment at any pH including
marine medium producing harmful corrosion products that can have adverse effect on the
biological systems. The low mechanical strength of the brass can also negatively influence
the performance, shorten the lifespan of equipment resulting in expensive downtime,
extra maintenance, power and economical losses [1–4]. Therefore, an attempt has been
made to develop various barrier coatings to enhance the mechanical, wear and corrosion
performance of brass.

Recently, development of solid lubricant coatings has been the major topic of interest
in fabrication of corrosion and wear resistant coatings for various industries. Among
various solid lubricants, hexagonal-boron nitride (hBN) has attracted significant attention
from researchers due to its chemical inert properties and its ultra-low coefficient of friction.
The anisotropic structure of hBN consisting of covalently bonded boron and nitrogen
intra-layers stacked together by weak interlayer van der Waals forces provides efficient
inter-layer sliding and long wear life [5–7]. The schematic structure of hBN is displayed in
Figure 1 [8].

Recently, metal matrix composites (MMCs) with superior performance, have shown a
great potential in aerospace, automotive, military, and electronic applications. In these ma-
terials, the properties of a metallic matrix are modified through incorporating of a different
material type (second phase). Electrodeposition is one of the most important techniques
for producing MMC. During this process, insoluble particles are dispersed in the plating
electrolyte and tapped in the growing metal layer in order to form a composite coating.
Nickel, copper, gold, and silver are commonly used as the continuous metallic phase. The
dispersed phase can be hard oxides such as alumina (Al2O3), titanium oxide (TiO2), and
silicon dioxide (SiO2), carbides such as tungsten carbide (WC), boron carbide (B4C), and
silicon carbide (SiC), diamond or polymers such as polytetrafluoroethylene (PTFE) and
polyethylene terephthalate (PET) [9–14]. Nickel–boron nitride (Ni–BN) composites have
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become increasingly attractive for various industrial applications due to their high hard-
ness and wear performance [15–18]. Electrodeposition of nickel–boron nitride (Ni–hBN)
composites was reported. It was found that microhardness and wear resistance of the
composites were impacted by the content of the codeposited boron nitride particles [14].
Gyawali et al. [19] reported successful fabrication of Ni–hBN composite coating by using
pulse electrodeposition technique. They investigated grain structure as well as corrosion
behavior of the deposit in 3.5 wt% NaCl solution. They found that the coatings had smooth
surface compared to pure Ni coating and had mixed orientations of crystallite unlike pure
Ni. As well, they found that the addition of hBN particles within Ni matrix improved
corrosion performance of the coating in 3.5 wt% NaCl solution [19]. The properties of
electrodeposited Ni-based composites can be further improved through alloying with other
transition metals such as tungsten (W) [20–25]. Sangeetha et al. [26] reported DC and pulse
electrodeposition of NiW–hBN composites on mild steel. They investigated corrosion and
tribological performances of the composites. They reported uniform surface finish, higher
microhardness, and excellent corrosion performance of pulse electrodeposited composites
compared to DC electrodeposits [26]. Li et al. [27] investigated pulse electrodeposition of
functionally graded NiW–hBN nanocomposite coatings where the amount of codeposited
hBN particles varied along the coating thickness. They found that the wear resistance,
corrosion resistance and microhardness of coatings were improved substantially compared
to that of non-graded NiW–hBN coatings. In another study, NiW–hBN nanocomposite coat-
ings were fabricated by using DC electrodeposition method. Morphology, phase structure,
roughness, grain size, wear resistance, and corrosion resistance of deposited composites
were investigated. It was found that the increase of co-deposited hBN increases corrosion
resistance. This was attributed to grain refinement and porosity reduction due to the fact
that the hBN particles could perform as nucleation sites hence preventing crystal growth.
It was also reported that, the wear resistance and hardness increased with the increase
of hBN content to a certain level in composites [28]. To the best of our knowledge, there
is no research activities reported on electrodeposition of NiW–SiC–hBN composites and
investigation on their microstructure and properties. In this paper, the influence of hBN
on wear performance and corrosion resistance of DC-deposited NiW and NiW–SiC was
investigated. It was found that the addition of hBN to NiW matrix enhanced the wear
resistance significantly due to high lubricity of hBN. Moreover, addition of SiC to NiW–
hBN improved corrosion resistance significantly by shifting of corrosion potential to more
positive values and lowering the corrosion current density.
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2. Methodology
2.1. Electrolyte Components and Substrate Preparation

The substrates used for plating were made of brass (65% Cu, remaining Zn) having
dimension of 2.5× 1.5 cm2. The surface of substrate was degreased through immersion into
50 g·L−1 alkaline soap solution (TEC1001; Technic Inc, Cranston, RI, USA) at 50 (±5 ◦C)
for ~1 min followed by rinsing with deionized (DI) water. The cleaned substrate was
then sensitized by immersing into dilute sulfuric acid (10% v/v) at room temperature
for~10 s followed by rinsing with DI water. Electrodeposition process was accomplished
in electroplating bath containing nickel sulfate (NiSO4·6H2O) as a source of nickel ions,
citric acid as a complexing agent [25,26], sodium tungstate dehydrate (Na2WO4·2H2O) as
a source of tungstate ions, o-benzoic sulfimide (sodium saccharin, C7H5NO3S) as stress
reducer to reduce the internal stress within the electrodeposited coating materials [27],
propargyl-oxopropane-2,3-dihydroxy as a grain refiner and brightener, and DuPont Cap-
stone Fluorosurfactant F–63 as a wetting agent. NiW electrolyte composition, concentra-
tion, and optimized operating conditions are summarized in Table 1. Finally, NiW–SiC,
NiW–hBN, and NiW–hBN–SiC baths were made by adding hBN (20 g·L−1), SiC particles
(20 g·L−1) and a dispersant agent such as polyethyleneimine branched, Mn~600 by GPC
(0.5 g·L−1) as dispersing agent. SiC and hBN particles are transported to the electrode
surface through the diffusion layer by convective-diffusion and then are adsorbed onto the
growing surface. The adsorbed particles get physically entrapped into the metallic matrix
without forming any molecular bonding only if their residence time is large relative to the
burial time. Burial time is inversely proportional to the rate of metal electrodeposition and
proportional to the particle size. Larger particles require longer time to be engulfed in the
depositing metal [28,29].

Table 1. Electrodeposition bath ingredients and optimized experimental parameters.

Name of Chemicals Concentration

Nickel sulfate 29.5–30 (g·L−1)
Sodium tungstate 58–60 (g·L−1)

Citric acid 63–67 (g·L−1)
Ammonia 58 (mL·L−1)

Sulfuric acid as needed
Propargyl-oxo-propane-2,3-dihydroxy

(POPDH) 0.9–1 (g·L−1)

DuPont™ Capstone® Fluoro–surfactant FS–63 1.8–2 (g·L−1)
Sodium saccharin 0.5–1 (g·L−1)

Experimental Parameters

pH 7.8–8.0
Temperature 58–61 ◦C

Duration of electrodeposition 30 min
Applied current density 0.14 A·cm−2

2.2. Electrodeposition Setup

The electrodeposition bath setup (Figure 2) was composed of an electrodeposition
tank containing electrolyte, a pump (Flo King Filter System Inc., Longwood, FL, USA) to
provide electrolyte agitation, two stainless steel anodes, brass substrate as cathode, and
a reversed pulse plating power supply (Model pe8005, Plating Electronic GmbH, Plating
Electronic GmbH, Sexau, Berlin, Germany).
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Figure 3 displays the Hull cell setup (Figure 3) equipped with heater, thermostat, and
air pump. Hull cell was used to perform the initial electrodeposition tests and to optimize
the conditions of the electrodeposition. A platinized titanium mesh was used as anode and
brass substrate was used as cathode.
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2.3. Characterization of Deposits

Surface morphology and elemental composition of the deposits were characterized
by using scanning electron microscopy and energy dispersive spectroscopy (SEM–EDS,
Joel 7600 TFE, JEOL Ltd., Akishima, Tokyo, Japan) with an acceleration voltage of 20 kV.
The observations of surfaces were performed without any specific sample preparation.
Grain size analysis were also performed using X–ray diffraction (XRD, Bruker D8 Advance,
Bruker AXS, Madison, WI, USA) with Cu–Kα radiation (λ = 0.154 nm) and transmission
electron microscopy (TEM, Jeol JEM–2100F, JEOL Ltd, Akishima, Tokyo, Japan) at 200 kV,
respectively. The samples were thinned to the thickness of ~100 nm using a Gallium
Focused Ion Beam (Ga–FIB, Hitachi FB–2000A, Hitachi High-Tech Kyushu Corporation,
Tegama, Omuta-shi, Fukuoka, Japan) at 30 kV.

Various electrochemical corrosion tests including potentiodynamic polarization (PP)
and cyclic potentiodynamic polarization (CPP) tests were performed to evaluate the corro-
sion performance of the deposits. The potentiostat was operated by a PC equipped with
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corrosion software (CorrWare) enabling the test parameters to be set and the experiments
to be conducted. Potentiodynamic polarization (PP) measurements were performed in the
potential range of −0.6 to 1.0 V vs. Ecorr at room temperature and scan rate of 5 mV·s−1.
Similarly, cyclic potentiodynamic polarization (CPP) scans were performed in the potential
range of −0.6 to 1.0 V in forward direction and from 1.0 to −1.0 V in reversed direction at
room temperature and 5 mV·s−1 scan rate. For all the PP and CPP experiments, graphite
rod was employed as reference electrode and silver/silver sulfate was used as reference
electrode. The coated specimens were sealed with an insulating adhesive tape and 1 cm2 of
the surface was exposed to artificial sea water. The composition of the artificial sea water is
displayed in Table 2.

Table 2. Composition of artificial sea water.

Ingredients Concentration (wt%)

NaCl 58.49
Na2SO4 9.75
CaCl2 2.765
KCl 1.645

NaHCO3 0.477
KBr 0.238

H3BO3 0.071
SrCl2·6H2O 0.095

NaF 0.007
MgCl2 26.46

Wear tests were performed using a custom-built pin-on-disk wear testing machine
under dry air conditions and room temperature. The pin specimens were spherical with
a diameter of 1.6 mm and were made of steel (AISI). ASTM G99–05 (2010) was used as a
standard to conduct the tests. The applied load was 1 N for all the experiments and the
sliding speed and the number of revolutions were 100 mm·s−1 and 3500, respectively. The
friction experiments were continuously recorded and repeated three times with regard to
the sliding distance. Profilometer (Bruker Dektak XT, Bruker Corporation, Billerica, MA,
USA) was used to measure the volume of the worn tracks.

3. Results and Discussion
3.1. SEM/EDS Analysis

The SEM images were taken from the surface of NiW electrodeposited on brass
substrate (Figure 4a). The micrograph shows that the coating surface is smooth and free
of any cracks or defects. This can have a great influence on the durability and on the
performance of the coating in terms of corrosion since such surface can greatly prevent
the penetration of corrosive agents from reaching the substrate. EDS spectra and X-ray
mapping (Figure 4b,c) were also taken from different locations of the DC-deposited NiW.
Accordingly, Ni (~65.9 wt%) and W (~34.1 wt%) were the main elements of the coatings
(Figure 4b) and were distributed uniformly across the coating surface (Figure 4c). The
homogeneous microstructure and elemental distributions can remarkably improve the
corrosion and wear performance of the coating.

SEM micrographs (Figure 5a) were taken from the surfaces of the DC-deposited
NiW–SiC to examine any possible defects at the surface of coatings. No defect or delam-
ination was observed on the surface of the coatings and SiC particles with average size
of 60 µm were uniformly distributed across the surface. Furthermore, EDS spectra and
X-ray mapping (Figure 5b,c) taken from various locations on the surface suggest that the
elemental composition of the coatings Ni (~45.6 wt%), W (~20.7 wt%), Si (~32.5 wt%), and
C (~1.2 wt%) were uniformly distributed throughout the surface. Surface roughness of the
coatings can have a remarkable influence on the longevity and performance of the coating
in terms of contact stress, friction, and wear. Higher surface roughness may result in a
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lower contact area and lower adhesion between contact surfaces, minimizing the friction
and adhesive wear [30,31].
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SEM micrograph (Figure 6a) was taken from the surfaces of the DC-deposited NiW–
hBN. No crack or delamination was observed on the surface of the coating and hBN particles
with average size of 44 µm were uniformly distributed across the surface. Furthermore,
EDS spectra and X-ray mapping (Figure 6b,c) taken from various locations on the surface
suggest that the elemental composition of the coatings Ni (~66.2 wt%), W (~24.2 wt%), B
(~8.5 wt%), and N (~1.1 wt%) were homogeneously distributed throughout the surface.
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SEM micrograph, EDS spectra, and X-ray mapping (Figure 7) were taken from the
surfaces of the electrodeposited NiW–SiC–hBN. The coating surface was crack-free without
any delamination and coating elements were homogeneously distributed across the surface.
As well, EDS spectra and X-ray mapping results suggest that the elemental composition of
the coatings Ni (~69.6 wt%), W (~9.3 wt%), Si (~8.6 wt%), C (~5.1 wt%), B (~5.8 wt%), and
N (~1.1 wt%) were homogeneously distributed throughout the surface.

3.2. Potentiodynamic Polarization of DC Electrodeposited of NiW, NiW–hBN, and NiW–hBN–SiC

Potentiodynamic polarization (PP) tests (Figure 8) were performed on the surface of
various DC-deposited NiW, NiW–hBN, and NiW–hBN–SiC composites. The intersecting
point of the anodic and cathodic polarization curves (Ecorr) showed a significant shift
toward the nobler values from −0.92 VAg/AgCl to −0.49 VAg/AgCl and lower current den-
sity values were obtained with the addition of SiC, hBN, and mixture of SiC and hBN,
respectively (Table 3).
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Table 3. Corrosion potential and current density values extracted from potentiodynamic polarization
graph.

Name of Coatings Corrosion Potential (V) Current Density (A·cm−2)

NiW −0.92 2.38 × 10−5

NiW–SiC −0.70 2.04 × 10−5

NiW–hBN −0.60 2 × 1−5

NiW–hBN–SiC −0.49 4.3 × 10−6

The increase in corrosion potential of NiW toward positive values with the addition of
SiC could be attributed to a uniform distribution of SiC particles within the NiW, surface
oxidation of SiC particles or presence of SiO2 in the interplanar layers of individual SiC [32,33].
As well, formation of double layer of NiWO4 due to the oxidation of the NiW when exposed
to corrosive media. These protective layers will act as physical barriers to initiation and
propagation of cracks or defect corrosion and thus hinder the matrix dissolution. Similar
observations were reported by Yao and et al., Jin and et al., Li and et al. [22–24]. The formation
of NiWO4 and SiO2 barrier layers might be attributed to the following reactions [34–36]:

Ni2++WO4
2− → NiWO4 (1)

SiC + 4H2O→ SiO2 + 8H+ + CO2 + 8e− (2)

The formations of NiWO4, SiO2 and CO2 are supported by the zone of stabilities of m
potential vs pH diagrams of Ni–H2O, W–H2O, Si–H2O and C–H2O at 25 ◦C. [37]

Moreover, the corrosion resistance enhancement in NiW with the addition of hBN could
be explained by its chemical inertness due to its wide band gap (Eg~5.15 eV) [38] and strong
in-plane covalent bond, preventing corrosive ion diffusion to the surface of the electrode.

The results are in agreement with those reported by Sangeetha and et al. [26]. They
found that the inclusion of hBN nanoparticles within in the NiW matrix could decrease the
cracking, porosity, and pinholes of the coating, improving the shielding effect.

Further improvement of corrosion performance in NiW by incorporating a mixture
of SiC and hBN could be related to taking advantage of the properties of both ceramic
particles for example combination of chemical inertness of hBN together with the formation
of protective layers of NiWO4 and SiO2. Similar to hBN, SiC is also a wide band gap
semiconductor (Eg~3.26 eV). [39]

According to potentiodynamic polarization (PP) graphs, NiW–SiC–hBN coatings
displayed active–passive transitions, and relatively small passive regions were observed
that could be attributed to slightly defective passive films. Presence of active–passive
transitions in the anodic curve indicates that the time used to scan the potential range
where passivation is expected to occur is much longer than the natural timescale required to
obtain the passive film. If the material does not go under active–passive transition, it would
corrode at much higher rate in the corrosive environment. Formation of a passive layer
offers a great protection against the ionic and electronic diffusions and lowers the corrosion
rate of the metal. It also has self-repairing ability after the rupture. The performance of
passive layer in corrosive media is affected by many factors, such as pH, temperature, and
dissolved oxygen content [40–43].

3.3. Cyclic Polarization of DC Electrodeposited NiW, NiW–hBN, and NiW–hBN–SiC

Figure 9 displays the CPP graphs for DC electrodeposited NiW, NiW–SiC, NiW–hBN,
and NiW–hBN–SiC coatings. In the anodic polarization scan, the potential scanning begins
from the corrosion potential (Ecorr). A rapid rise in anodic current density at the potential
below the potential of oxygen evolution can be due to: (1) Local dissolution of passive
films and formation of metastable pits in the presence of aggressive Cl− ions; (2) presence
and propagation of active defects on the surface of passive layer. The potential at which
current density increases sharply is called critical pitting potential, pitting potential, rupture
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potential, or breakdown potential [44–46]. In order to investigate the materials’ response
to the pitting corrosion, the scanning direction of the potential was changed at the pitting
potential from positive values toward the negative values. It can be observed that DC-
deposited NiW exhibits a zero hysteresis loop, while NiW–hBN, NiW–SiC, and NiW–
hBN–SiC indicate negative hysteresis loop, depicting repassivation of pits. In fact, reverse
anodic curve is shifted to lower current densities in contrast to the forward anodic scan.
This indicates the uniform corrosion and reconstruction of the damaged passive layer
at higher potentials. As well, the corrosion potential for the electrodeposited NiW–hBN
and NiW–hBN–SiC appeared to be similar and nobler compared to NiW and NiW–SiC
coatings due to hBN’s chemical inertness. As it is seen in Figure 9, all deposits displayed
anodic to cathodic transition potential. During the reversal scan, the rapid decrease in
corrosion current density at anodic nose or active–passive transition potential was observed
at more positive potentials compared to Ecorr. Therefore, the potential of the corroded
region is nobler than the un-corroded area. This behavior is usually characteristics of
materials that are susceptible to passivation or the materials that are not susceptible to
pitting corrosion [40–43].

3.4. Tribological Analysis (Coefficient of Friction and Wear Rate)

Figure 10 displays the variation in the average coefficient of friction of NiW, NiW–
hBN, and NiW–hBN–SiC materials, respectively, DC-electrodeposited on brass substrate
using pin-on-disc wear testing equipment. As it can be seen, the DC electrodeposit of
NiW–hBN demonstrated a lower coefficient of friction (0.1) compared to those of the DC
electrodeposits of NiW–hBN–SiC (0.2), NiW–SiC (0.4), and NiW (0.6), respectively. This
is attributed to the ultra-low coefficient and anisotropic structure of hBN consisting of
covalently bonded boron and nitrogen intra-layers stacked together by weak interlayer
van der Waals forces providing efficient inter-layer sliding effect. As well, presence of SiC
particles in the NiW matrix will effectively reduce the contact between the sliding surfaces
due to the formation of stable SiO2. Figure 11 displays the wear volume rate of each coating
after the friction test.
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3.5. XRD Analysis (Influence of Annealing on Crystallite Sizes of DC Electrodeposited NiW,
NiW–hBN, and NiW–hBN–SiC)

Curves (a), (b) and (c) of Figure 12 display, respectively, the XRD patterns obtained
from the surfaces of as-deposited and heat-treated NiW, NiW–hBN, and NiW–SiC–hBN
at 350 and 500 ◦C on brass substrates. No significant differences were found between the
XRD patterns of heat-treated and as-deposited coatings. However, crystallite size and peak
intensity of the as-deposited coatings were lower than those of the annealed coatings. The
increase in peak intensity and crystallite size as a function of annealing temperature can
be attributed to FCC crystal grain growth, phase transformation from amorphous type to
crystalline structure, and reduction in internal micro-strains.

The crystallites size (D) of the coatings were calculated (Table 4) from the broadening
of the (111) peaks using Scherrer equation [47].

D = Kλ/βcosθ (3)

where D is the crystallite size (nm), K is the Scherrer constant (0.9), λ is the wavelength of
the X-ray source (Cu–Kα, 0.15406 nm), β is the FWHM (radians), and θ is the peak position
(radians).
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Table 4. Crystallite sizes of DC-deposited NiW, NiW–hBN, and NiW–hBN–SiC.

Coatings
Peak Position

of (111)
[◦2Th]

FWHM
[◦2Th]

Crystallite Size
[Å]

DC–NiW (as–deposited) 43.931 0.720 120
DC–NiW (heat–treated at 350 ◦C) 44.011 0.673 129
DC–NiW (heat–treated at 500 ◦C) 44.213 0.413 212

DC–NiW–hBN (as–deposited) 44.226 1.260 68
DC–NiW–hBN (heat–treated at 350 ◦C) 44.056 1.102 78
DC–NiW–hBN (heat–treated at 500 ◦C) 43.851 0.336 261

DC–NiW–hBN–SiC (as–deposited) 43.940 0.960 90
DC–NiW–hBN–SiC (heat–treated at 350 ◦C) 43.949 0.630 138
DC–NiW–hBN–SiC (heat–treated at 500 ◦C) 43.772 0.528 165

As we can see in Figure 12b, the diffraction peaks of DC-deposited NiW–hBN were
assigned to the Ni (111), Ni (200), Ni (220), Ni (311), Ni (222), hBN (002), hBN (100), hBN
(101), and hBN (004) planes, respectively. The intensity of the peaks and average crystallite
size as displayed in Table 4 increases from 68 Å up to 261 Å with rising the annealing
temperature. This was attributed to an increase in crystallinity of the coating and hence
increase in number of the crystallites with the increase of the temperature.
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heat treated at 500 ◦C of DC electrodeposits: NiW(a), NiW–hBN (b), and NiW–hBN–SiC (c).

It was noticed that the intensity of the Ni (111) was increased and additional peaks
of hBN (101) and Ni (200) were formed after heat treatment at 500 ◦C. Furthermore, the
average crystallite size increased with the increase of the temperature. The results of the
average grain size before and after annealing at 350 and 500 ◦C are presented in Table 4.

Similar results are obtained from Figure 12c which shows the XRD spectra from the
surface of as-deposited and annealed electrodeposited NiW–hBN–SiC at 350 and 500 ◦C.

As presented in Table 4, incorporation of SiC and hBN in the DC electrodeposited
NiW matrix resulted in a decrease in the crystallite size compared to DC–NiW due to
micro-strain, lattice distortion of the Ni (W) matrix and grain refinement effect of SiC and
hBN particles. The smaller grain size promotes the formation of highly dense and stable
passive films with a lower defect density due to a higher amount of active surface atoms.
This can repel the adsorption of chloride ions on the surface of the coating and remarkably
improves the pitting corrosion and wear performance of the coatings [48–51].

It was also observed that intensity of Ni (111), Ni (200) were higher with the increase of
the annealing temperature. However, some peaks of SiC (101) disappeared after annealing
at 500 ◦C which could be attributed to the decomposition of SiC at high temperatures.
Furthermore, the influence of annealing temperature on average crystallite size was investi-
gated. It was found that the average grain size increased from 90 to 165 Å by increase of
the annealing temperature from 350 ◦C up to 500 ◦C.

3.6. TEM Analysis

Crystal structure of the DC-electrodeposited NiW, NiW–SiC, NiW–hBN, and NiW–
hBN–SiC samples was investigated by TEM at 200 kV in bright-field (BF) imaging mode
(Figure 13). TEM samples were cut at the thickness of ~100 nm by focused ion beam (FIB) at
normal operating parameters to allow the electron beam to transmit through the ultra-thin
samples to form an image. The DC–NiW sample presented mainly a dominant amorphous
phase structure, while the DC-deposited NiW–SiC, NiW–hBN, and NiW–hBN–SiC samples
exhibited mostly crystalline structure with high crystallographic texture. Figure 13d–l
revealed plenty of nanotwin bundles for DC electrodeposited NiW–SiC, NiW–hBN, and
NiW–hBN-SiC with an average inter-plane distances of 0.63, 0.53, and 0.43 nm formed
throughout the surface of the samples. However, DC–NiW coating (Figure 13a–c) displayed
only few nano-scale twin bundles with average inter-plane distance of 0.47 nm. Nanograins
and nanotwins in the coatings can remarkably improve the mechanical, tribological, as
well as corrosion properties of coatings by serving as strong dislocation barriers, altering
the microstructure, and semiconducting response of the passive film [52,53]. Figure 13b
is the high resolution TEM (HRTEM) image revealing the presence of two nanograins
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with different orientations (marked in dotted box). In between two nanograins, there is a
presence of amorphous structure.

Figure 14 shows the selected area of the electron diffraction (SAED) pattern of DC-
electrodeposited NiW, NiW–SiC, NiW–hBN, and NiW–hBN–SiC coatings, respectively.
DC–NiW reveals diffused ring patterns suggesting the existence of dominant amorphous
phase, while the DC electrodeposited NiW–hBN and NiW–hBN–SiC exhibit the non-
continuous rings, which is indicative of a crystalline structure with preferred orientation
in the microstructure. The interplanar spacings between the atoms can be calculated
by measuring the radius of these circular rings. The value of miller indices (hkl) or the
phase structure of the materials can be obtained by comparing the estimated values of
interplanar spacings derived from SAED rings with the standard values available from
JCPDS data cards. According to these values, the primary constituent phase is FCC Ni with
random grain orientation. Therefore, the diffraction pattern analysis from Tem confirms
the XRD results.
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4. Conclusions

In this research work, NiW filled with hBN and SiC nanocomposite coatings were
successfully fabricated via DC electrodeposition and their morphological features, grain
structure, electrochemical and wear properties of the coatings were investigated, and the
following results were obtained:

• Inclusion of wide band gap semiconductors particles such as hBN and SiC within
NiW is shown to enhance the corrosion and wear performance of electrodeposited
NiW coatings by altering the morphological features, composition, grain structure,
and surface properties of the coatings.

• The coatings were uniform, compact without defects or any cracks. Elemental dis-
tribution map also confirmed that the SiC and hBN particles were homogeneously
distributed within the NiW matrix.

• Incorporation of hBN and SiC ceramic particles within the NiW matrix enhanced the
corrosion performance of the NiW coating. Several sets of experiments were performed
to investigate the corrosion performance of the NiW coatings reinforced with hBN
and SiC ceramic particles. It was observed that that reinforcement of hBN within
NiW and NiW–SiC significantly improved the corrosion performance of the coating
and NiW–SiC–hBN exhibited the highest corrosion performance compared to DC-
deposited NiW, NiW–SiC, and NiW–hBN. According to potentiodynamic polarization
test results, the corrosion resistance improves in the following order for deposits:

NiW < NiW-SiC < NiW-hBN < NiW-SiC-hBN

• According to wear performance results, NiW–hBN demonstrated the lowest wear rate
and coefficient of friction (0.04) compared to NiW–SiC–hBN (0.15), DC–NiW–SiC (0.4),
and DC–NiW deposits (0.6).

• The XRD results obtained from the surfaces of the as-deposited and annealed DC-
deposited NiW, NiW–hBN, and NiW–SiC–hBN at 350 and 500 ◦C also revealed that
the intensity of the peaks and the average crystallite size increased with the annealing
temperature up to 500 ◦C. Inclusion of hBN and SiC within NiW also reduced the
grain size due to micro-strain and lattice distortion of the Ni (W) matrix.
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• According to BF-TEM results, plenty of nanotwin bundles were formed across the sur-
face of DC-deposited NiW–hBN and NiW–hBN–SiC coatings. However few nano-twin
bundles were observed on the surface of DC-NiW coating. Nanotwins can effectively
hinder the dislocation motion, and therefore enhance the tribological performance of
the coatings.
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