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Abstract: The micropatterning of thin films represents a challenging task, even for additive man-
ufacturing techniques. In this work, we introduce the use of inkjet-printing technology coupled
with a gas-foaming process, to produce patterned porosities on polymeric thin films, to develop
a bubble-writing method. Inkjet printing of an aqueous solution of poly (vinyl alcohol) (PVA), a
well-known gas-barrier polymer, allows the selective coating of a thin poly (lactic acid) (PLA) film,
which is, successively, exposed to a gas-foaming process. The foaming of the thin PLA film is effective,
only when PVA is printed on top, since the PVA barrier hinders the premature loss of the gas, thus
allowing the formation of cavities (bubbles) in the covered areas; then, removing the PVA coating by
water washing forms a bubble pattern. As a proof of concept, the surface-morphology features of the
patterned porous PLA films have been proven effective at driving endothelial cell growth. A new
technological platform is, hence, introduced in the field of tissue engineering and, in general, in fields
involving thin films, where a patterned porous structure may add value.

Keywords: inkjet printing; thin film; pattern; porosity; foam; poly (lactic acid); tissue engineering;
endothelial cells

1. Introduction

The possibility to control the thin film topology is key in a large number of applications,
such as biomedicine, health, engineering, and food.

In the biomedical sector, the patterning of surfaces with specific topology is used to
study cell attachment and growth on surfaces and to control the organization of cell cultures.

The modification of the surface topology of biomaterials is widely employed, success-
fully, in tissue engineering and regeneration [1–12]. Surface patterning is, also, used to
engineer diagnosis platforms. For instance, smart coatings can impart selective features to
the surface of materials, to promote specific interactions with cells [13–16].

In general, as well as supporting the cell, the substrate can be used as a guide for
adhesion, proliferation, morphology, and spreading, by providing physical and chemical
signals [17,18]. Indeed, substrate topography (physical shape and size, roughness, wettabil-
ity, porosity, surface energy, etc.) can affect the cellular functions differently, depending
on both the cell type and the chemical properties of the substrate material as well as the
substrate stiffness and the geometry of a potential regular pattern array, manufactured
on top [19–22].
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Topographical approaches take the advantages of the tools coming from the semicon-
ductor industry and additive manufacturing, to fabricate well-defined surface features.
The most common are based on soft lithography [7,20], laser-direct cell writing [7,20,23,24],
photolithographic techniques [7,20], coatings of nanoparticles [11], 3D printing [12,25], 3D
bioprinting [26], microcontact printing [7,13,14], and melt electro-writing [27].

In recent years, inkjet printing (IJP) has attracted attention as a flexible, low-cost tech-
nology to directly pattern solution-processable materials, at low temperature and without
vacuum [28,29]. It consists of mask- and contact-free direct deposition and patterning,
of sub-nL volumes of functional inks, onto different types of substrates, flexible or not.
As a digital technology, it permits to design and fabricate different patterns (also with
complex geometry) through suitable graphic software [30]. Moreover, since deposition and
patterning are obtained in one step in a non-contact way, this technique allows to minimize
contamination as well as reduce the waste amount and the consumption of expensive inks,
with respect to other traditional deposition methods [28,29].

In general, IJP can be used both to deposit functional layers onto the substrate and
to modify the properties of the substrate, by inducing micro-structuration [31–34], surface
energy patterns [35–37], and differentiated adhesion forces [37,38]. The possibility of
providing new functionalities to a specific substrate and mostly flexible substrates opened
the way for new applications of inkjet printing technology in different research fields, such
as optics [28,31,39], electronics [29,36,40], and biomedicine [37,38,41,42].

In order to produce specific patterns in thin polymeric films, IJP can be used alone or
in hybrid combination with other traditional methods.

In this work, we use IJP as a tool to produce a pattern of a sacrificial barrier polymeric
coating onto a thin polymer film, successively submitted to a gas-foaming process. The
aim of the current research is to investigate the feasibility of producing bubbles close to the
substrate surface and distributed in areas having their geometry controlled by the desired
patterns. The idea is to develop a bubble-writing method, by combining the patterning
capability of IJP technology with the ability of the gas-foaming process to induce porosity
in a polymeric substrate. By using inkjet printing as tool to pattern the surface of thin-
film polymer substrates with a material able to prevent gas loss prior to gas foaming, it
is possible to produce a pattern of areas with bubbles on the substrate. Following this
root, the limits of gas forming for the production of patterns of bubbles (cavities) on the
surface of thin films can be overcome. Indeed, two reasons have, so far, prevented the
use of gas foaming for the production of thin films with a patterned presence of bubbles
on their surface: (i) when dealing with thin films, the blowing agent is easily lost in the
surroundings at pressure quench, before any bubble is allowed to form [43]; and (ii) in gas
foaming, the bubble formation is stochastic, so it is quite hard to control their position [44].

After foaming, the additive inkjet-printed coating layer is dissolved, and the substrate
with the patterned bubbles can be used in different applications.

In order to test an initial potential application for this new type of substrate, with a
micropattern of areas containing bubbles, a two-step process was carried out on a biocom-
patible substrate, based on poly (lactic acid) (PLA), and tested as a system, to induce the
selective cell growth. PLA was chosen because it is an environmentally friendly polymer,
being synthesized from renewable resources, such as starch, and has several interesting
properties, among them biocompatibility and biodegradability, which make it versatile in
different applications (food, packaging, biomedical devices, drug delivery system, opto-
electronics) [8–10,45–48]. Here PLA was selected for both its biocompatibility properties
and, also, considering its wide availability as a commercial product, in the form of thin and
uniform films. The material used as barrier polymer to induce bubbles in the PLA, during
gas foaming, is poly (vinyl alcohol) (PVA), a low-cost polymer known for its efficacy as a
barrier to CO2, due to the low diffusivity of this gas through it [49,50], water solubility, low
toxicity and high biocompatibility [51].

The efficacy of the patterned cell growth achieved as an example of bioengineering
application, by the double-step process presented here, demonstrates the functionality of
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the method itself. To the best of our knowledge, this is the first report where cell culture is
performed on PLA films patterned with gas foaming The novel proposed method takes
advantage of being a combination of two low-cost, low-temperature, non-contact, high-
throughput industrial technologies, employed to produce a bubble-patterned substrate
that induces a specific cell interaction without applying chemicals, thus avoiding possible
contamination and cell alteration, with reduced process timing and phases as well as no
additional multistep treatments [7,11–14] and scalability potential.

2. Materials and Methods
2.1. Materials and Ink Preparation

Poly (lactic acid) (PLA) films were purchased from Bleher Folientechnik GmbH (Ditzin-
gen, Germany), with a thickness of 50 µm. Poly (vinyl alcohol) (PVA) powders of different
average molecular weights (Mw) (in the range 67,000–130,000 g/mol) were purchased by
Aldrich and tested to produce water-based inks.

A PVA ink with chemico-physical properties suitable for the inkjet-printing process
was obtained, by dissolving PVA (Mw~67,000, 86.7–88.7 mol% hydrolysis, 10.0–11.6%
of residual content of acetyl) in ultra-pure water, at a concentration of 20 mg/mL. The
solution was stirred at 50 ◦C for 2 h and, then, filtered with a 0.45 µm PVDF (polyvinylidene
difluoride) filter, to remove possible residual agglomerates.

2.2. Characterization of Inks and Substrates

The PVA inks were characterized by a viscosimeter (SV-10, A&D Europe Gmbh, Darm-
stadt, Germany), in order to determine their viscosity, and a contact angle instrument
(OCA20, DataPhysics Instruments GmbH, Filderstadt, Germany) was used to evaluate
their surface tension (ST). ST measurements were performed in a pendant drop configu-
ration, and the result was the average value of 10 repeated measurements carried out on
each sample.

The OCA20 system was employed, also, to measure the surface energy of PLA sub-
strates. This was estimated by dispensing on the cleaned substrate drops of water, as
polar solvent, and diiodomethane, as apolar solvent, and fitting the respective contact
angle results by OWRK method (Owen, Wendt, Rabel and Kaelble method). Moreover,
in this case the result was the average value of 10 repeated measurements carried out for
each sample.

2.3. Inkjet-Printing Process and Printed-PVA-Layer Characterization

The IJP system used to deposit and pattern the PVA ink was a Dimatix Materials
Printer (DMP2831, Fujifilm Dimatix, Santa Clara, CA, USA). This system is equipped with
a cartridge printhead, with 10 pL nominal drop volume. The printhead has 16 nozzles,
with a nozzle opening of about 21.5 µm diameter.

Before printing, PLA films, employed as substrates, were cleaned with ethanol and
dried with nitrogen flow. The printing parameters were optimized, in order to manufacture
different arrays of PVA lines with different geometries (width, thicknesses of lines, and
gaps between contiguous lines). This was performed by fixing the drop space (distance
between the centers of contiguous drops) equal to 15 µm and employing different nozzle
numbers (from 1 up to 5 nozzles). The number of overlapped layers investigated for each
line was changed from 1 to 4.

The morphology and thickness of the PVA layers onto PLA substrates were analyzed,
by means of the optical microscope of a Dimatix camera and optical profilometer (Taylor-
Hobson, model CCI HD4K, Leicester, UK).

2.4. Gas Foaming Process and PLA Substrate Characterization

For the production of foamed samples, a thermoregulated pressure vessel, having
a volume of 0.3 L, (BC-1, High Pressure Equipment Co., Erie, PA, USA) was used. The
pressure discharge system consisted of a discharge valve (15–71 NFB, High Pressure
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Equipment Co., Erie, PA, USA), an electromechanical actuator (15–72 NFB TSR8, High
Pressure Equipment Co., Erie, PA, USA), and an electrovalve. The pressure history was
registered by using a data-acquisition system (DAQ PCI6036E, National Instruments,
Austin, TX, USA) and a pressure transducer (P943, Schaevitz–Measurement Specialties,
Hampton, VA, USA). In a typical experiment, the samples (PLA film partially covered by a
PVA layer with a defined pattern) were loaded into the vessel, pressurized with the blowing
agent at 14.0 MPa and 70 ◦C for 2 h, and pressure quenched at 100 MPa/s. PLA films were
recovered, by dissolving the PVA films in water at room temperature, and washed with
water five times. To verify the film morphology by SEM, foamed films were coated with
gold (208HR high-resolution sputter coater, Cressington Scientific Instruments, Watford,
England) and imaged with a field-emission-gun-scanning electron microscope (FEG-SEM;
Carl Zeiss AG, Oberkochen, Germany).

2.5. Cell-Culture Experiments

Cell-culture experiments were conducted on the surface of the micropatterned films.
To that end, human BJ fibroblasts (CRL-2522), purchased from ATCC®, were used. Cells
were first expanded in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma-Aldrich,
St. Louis, MO, USA), in T25 bottles at 37 ◦C, under an atmosphere enriched with 5% CO2.
Cells were harvested at 70% confluency, after three days of culture. For the experiments
reported here, cells from a third to sixth pass were used.

Before cell seeding, the films were sterilized by exposure to an ethylene-oxide atmo-
sphere (5 h at 25 ◦C) and coated with fibronectin to favor cell attachment. Seeding was done
by depositing a drop of cell suspension (1.5 × 106 cells·mL−1) on the surface of the films.
Films were incubated for 6 days, and the culture medium was changed every third day.

At day 6, the samples were stained using Alexa Fluor® 488 phalloidin/4’,6-diamidino-
2-phenylin-dole (DAPI, ThermoFisher Scientific, Waltham, MA, USA) in accordance with
the instructions of the vendor, for actin/cell nuclei observation. An Axio Observer.Z1 mi-
croscope (Zeiss, Jena, Germany) was used to capture bright-field and fluorescence images.
ImageJ (NIH) was used to assess cell orientation, using image analysis. For this, imaginary
lines were drawn from each nucleus to the most elongated extreme of the cell. Then, the
orientation angle of the imaginary line was measured, with respect to the main axis of the
printed arrays. Cell-orientation angles were grouped in six different groups (i.e., alignment
bins), to calculate the angle distribution. The observed angle distribution was compared to
a homogeneous distribution (i.e., the distribution where all alignment bins exhibited an
equal frequency of 16.66%) using a Chi-squared statistical test in Prism 8.4.3 (GraphPad,
San Diego, CA, USA). A two-sided confidence level of 95% was chosen, to determine
statistical significance.

3. Results and Discussion
3.1. Description of the Investigated Process

We investigated the possibility of creating a controlled pattern of bubbles in polymer
film, by a combination of two processes: an inkjet-printing deposition of a polymer coating
and, in sequence, foaming of the patterned bilayer. The adopted approach is schematically
displayed in Figure 1. As described in the introduction section, gas foaming of thin films is
not feasible, due to gas escape prior to bubble nucleation (case A in Figure 1). The use of the
PVA, a known barrier polymer for CO2, prevents gas escape and allows bubble formation
in thin films (case B in Figure 1). By taking advantage of selectively inkjetting the PVA
solution on the PLA film, it is possible to localize bubble formation (case C in Figure 1).
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3.2. Patterning of PLA Substrate by Inkjet Printing Deposition of PVA Layer

In order to produce a PVA-based ink with chemico-physical properties suitable for
the inkjet process, different formulations of PVA in aqueous solutions were prepared, by
changing the concentration and weight-average molecular mass (Mw) of the polymer (in the
range of 67,000–130,000 g/mol). Preliminary tests were carried out, to check the jettability
of the formulated inks. According to the literature [52], we observed the formation of
extended and stable ligaments, as polymer molecular weight and concentration increased.
Instead, a stable jet was obtained by dissolving PVA of 67,000 g/mol in ultra-pure water, at
a concentration of 20 mg/mL. The developed ink was characterized by a surface tension of
55 mN/m and a viscosity of 2 mPa·s, which are operating parameters suitable for the inkjet-
printing process (Table 1). Moreover, the tension energy of the ink is only slightly higher
than the surface energy of the substrate, so this is a good compromise between wettability
and the spread of the drop hitting the substrate, in order to produce continuous lines.

Table 1. Results of PVA ink and PLA substrate characterization.

PVA Ink
PLA Substrate

Contact Angles Surface Energy

Viscosity
(mPa·s)

Surface Tension
(mN/m)

θH2O
(◦)

θCH2I2
(◦)

Dispersive
Component

(mN/m)

Polar
Component

(mN/m)

Total Surface
Energy
(mN/m)

2.07 55.3 ± 0.55 73.9 ± 1.2 50.3 ± 0.9 34.13 7.26 41.39

Successively, we focused our study on investigating the right thickness of the PVA
coating, suitable to block the gas escape out from the PLA substrate in the foaming pro-
cess, making the bubble production effective. Indeed, to avoid blowing-agent loss in the
expanding polymer, prior to foaming, a minimum thickness of the barrier polymer, PVA, is
required. An estimate of the required thickness can be given, based on the bubble nucle-
ation induction time, τn, provided by Taki et al. for the PLA/CO2 system [53,54], of the
order of 10−1 s, and on the diffusivity of the CO2 in PVA, of the order of 10−12 m2·s−1 (as
compared to 10−9 m2·s−1 for the PLA/CO2 system), giving a value of the order of 0.1 µm
(≈D τn)1/2 [49].

Therefore, in the first part of the work, we fixed the geometry of the pattern (based on
an array of lines with a gap of 300 µm between each other) to deposit onto the PLA substrate
and tested the effect of multilayer deposition (overlapped layers) on the morphology and
uniformity of the printed PVA lines. Both the optical microscopy and optical profilometer
images of the line profile are displayed in Figure 2, where it is clearly noticeable that the
accumulation of PVA at the edges of each line, due to the diffusion process of solute toward
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the line rim, as a consequence of the concentration gradient, increases, as the number of
layers, also, increases. This effect is intrinsic to the multilayer inkjet process, where the
deposition of the subsequent layer promotes a more pronounced coffee-ring effect. The
measurements of the geometric parameters of the printed lines, by changing the overlapped
layer number, are reported in Figure 3. As expected, the multilayer deposition induces an
increment of the line thickness (Figure 3A). We put the attention on thickness at the inner
flat region of the printed line, as it is a crucial element to block the escape of gas, during the
subsequent foaming process. Additionally, the ratios between the thicknesses of the central
flat section of the line and the two lateral ridges stay almost constant, around the value of 0.3,
for all cases, suggesting that no partial dissolution of previously printed layers is induced
by the successive layers, with respect to the single-printed-layer configuration. Hence, the
multilayer printing process additively piles PVA equally along the line, increasing the peak
and the inner-area thicknesses, proportionally. Concerning the width of each line, it slightly
increases, inducing a decrease in the gap between consecutive lines (Figure 3B).
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Figure 2. Optical microscopies (A–C) and optical profiles (D–F) of the PVA surface arrays printed
onto PLA substrates, obtained by fixing the drop space and the nozzle number (DS = 15 µm; 4 nozzles)
and by changing the number of overlapped layers: 1 layer (A,D), 3 layers (B,E), 4 layers (C,F).

The results of Figure 3A demonstrate that a thickness of 0.1 µm, evaluated as the
minimum value to make the foaming effective, was assured by all the investigated configu-
rations. Anyway, the risk to produce pinholes in the single printed layer could be higher
than for multilayers, which would induce an imperfectly uniform film. At the light of the
obtained considerations, we evaluated that the lines printed with three overlapped layers
represent an intermediate comfortable condition, to guarantee regular (even) lines with the
reduced process steps (minimum printed layer number).

Consequently, in the second part of the work, the arrays of PLA lines with different
geometry were printed on PLA. In detail, we fixed the drop space (DS = 15 µm), the number
of overlapped layers (2 layers), and the width of lines (200 µm) as well as changed the gap
between consecutive lines, as schemed in Figure 4—left. In Figure 4—right, the optical
image of a few lines, as a part of the printed array, is displayed as an example, where
different gaps between lines are clearly visible.
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Coatings 2022, 12, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 3. Geometric parameters measured for the PVA lines deposited on PLA substrate (see op-

tical images, displayed in Figure 2). (A) Thickness (Φ) of the flat region and lateral peaks of the 

printed line and their ratio. (B) Line width and gap between consecutive lines. The arrays are ob-

tained by changing only the number of overlapped printed layers. 

The results of Figure 3A demonstrate that a thickness of 0.1 μm, evaluated as the 

minimum value to make the foaming effective, was assured by all the investigated con-

figurations. Anyway, the risk to produce pinholes in the single printed layer could be 

higher than for multilayers, which would induce an imperfectly uniform film. At the 

light of the obtained considerations, we evaluated that the lines printed with three over-

lapped layers represent an intermediate comfortable condition, to guarantee regular 

(even) lines with the reduced process steps (minimum printed layer number). 

Consequently, in the second part of the work, the arrays of PLA lines with different 

geometry were printed on PLA. In detail, we fixed the drop space (DS = 15 μm), the 

number of overlapped layers (2 layers), and the width of lines (200 μm) as well as 

changed the gap between consecutive lines, as schemed in Figure 4—left. In Figure 

4—right, the optical image of a few lines, as a part of the printed array, is displayed as an 

example, where different gaps between lines are clearly visible. 

 

Figure 4. Scheme of deposited PVA pattern (left) and optical microscopy image (right) of an array 

of PVA lines printed onto PLA substrate, obtained by fixing the drop space (DS = 15 μm) and the 

overlapped layer number (2) as well as changing the gap between consecutive lines. The measured 

line width and thickness are 190 nm and 290 nm, respectively. 

3.3. Gas Foaming of PLA Substrate Patterned with PVA Coating 

Scanning-electron analysis revealed the efficacy of the barrier-layer approach on 

PLA films’ selective foaming. Figure 5 shows images of PLA films subjected to the inkjet 

and foaming process. Figure 5A displays the image of a PLA film sample, which was not 

covered by the barrier layer before foaming. In this case, foaming did not induce bubble 

formation, due to blowing-agent loss before bubble nucleation. Figure 5B shows the im-

Figure 4. Scheme of deposited PVA pattern (left) and optical microscopy image (right) of an array
of PVA lines printed onto PLA substrate, obtained by fixing the drop space (DS = 15 µm) and the
overlapped layer number (2) as well as changing the gap between consecutive lines. The measured
line width and thickness are 190 nm and 290 nm, respectively.

3.3. Gas Foaming of PLA Substrate Patterned with PVA Coating

Scanning-electron analysis revealed the efficacy of the barrier-layer approach on PLA
films’ selective foaming. Figure 5 shows images of PLA films subjected to the inkjet and
foaming process. Figure 5A displays the image of a PLA film sample, which was not
covered by the barrier layer before foaming. In this case, foaming did not induce bubble
formation, due to blowing-agent loss before bubble nucleation. Figure 5B shows the image
of the PLA film and that it was preliminarily covered by the PVA layer, uniformly on the
whole surface, by solution casting: the presence of bubbles, due to foaming, is evident
here, proving the efficacy of the PVA layer in preventing the blowing-agent loss and the
resulting ability of the blowing agent to form bubbles. Figure 5C,D report images of films,
where the PVA barrier layer was first inkjetted on selected areas of the PLA film, then the
whole film was subjected to foaming, and, successively, the barrier layer was washed away
by water rinsing. Images show a selective presence of the bubbles, both on the surface
and in the film thickness, only where the barrier layer was deposited. Films with the
patterned porosities were, then, utilized for cell-culture experiments, to assess the effect of
the patterned morphology on cell-harvesting guidance.
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Figure 5. SEM images of morphologies (bars are 50 µm) of PLA films obtained after a gas-foaming
process. (A) A PLA film that was not covered with the barrier layer; (B) a PLA film that was
preliminarily covered on the whole surface with the barrier layer; (C) a PLA film that were partially
covered by the barrier layer (on the right side) and shows the presence of surface pores, only where
the barrier layer was present; (D) a PLA film with aligned porosity.

3.4. Cell-Culture Experiments

A vast body of experimental evidence demonstrates that cells are highly responsive to
topological cues [55–60]. Surface-patterning technologies have been frequently explored to
influence cell morphology. To assess the effect of our patterns in cellular organization, we
cultured human fibroblasts on the PLA film, shown in Figure 4 (previously coated with
fibronectin, to favor cell attachment), and monitored cell growth by optical microscopy for
6 days (Figure 6a). In general, more fibroblasts attached to the smooth surfaces than to the
foamed areas. Furthermore, cells that grow at the frontiers between the smooth and bubble
arrays aligned parallelly to the patterns (Figure 6b).

We, also, assessed cell orientation using image analysis. To this aim, we defined four
different zones in the printed films: smooth-surface center (SC), smooth-surface edge (SE),
bubbles-array center (BC), and bubbles-array edges (BE). We measured the cell orientation,
with respect to the printed lines; cells parallelly orientated to the printed line exhibited an
angle of 0◦, while cells perpendicularly orientated exhibited an angle of 90◦ (Figure 7a).
Our cell-culture experiments suggest that bubble patterning is effective in inducing cell
orientation. Figure 7b presents the overall distribution of angles, exhibited by cells within
lines. We observed a clear trend of cell alignment toward the printed arrays, over time. The
frequency of low-number angles (0–15◦) increases from day 2 to 6, while the frequency
of high-number angles (76–90◦) decreases (Figure 7c). Counterintuitively, cells did not
preferentially attach on bubbled patterns, where the surface area was increased. Previous
reports showed that adding roughness to PLA surfaces (pores, pits, islands, and nano-
roughness) enhanced cell attachment [9,61,62]. In our case the analysis of micrographs
suggests that foamed lines act as obstacles, which the cells avoid, and serve as a guide for
alignment. This is consistent with observations from previous studies [63], which have
found that sections of surfaces patterned with arrays of nano-craters repel the anchorage of
cells and, therefore, may be used to induce specific predesigned cell patterns. The different
behaviors observed, when comparing different processes applied to modify the biomaterial
surfaces, are complex functions involving a multiplicity of interconnected parameters that
control the processes themselves and, consequentially, the properties of the materials [8].
That makes the comparison among similar cell-substrate systems, from the literature,
difficult [8]. In any case, by comparing with other strategies that were adopted to modify
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the surfaces promoting effective cell attachment and alignment [11,12], the technology
presented here offers, among several advantages [7,11–14], a notable one: that the foamed
product is only PLA (i.e., does not carry contaminants nor involve the use of other materials
or fillers that could be cytotoxic).
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Figure 6. Fibroblasts cultured on PLA films with foamed patterns. (a) Bright-field micrographs of the
cells growing on the surfaces, over time. (b) Image of a phalloidin/DAPI-stained sample, at day 6.
Foamed lines are shadowed in red.

Surfaces repellent to cells are, also, of interest in diagnosis applications. Potential future
avenues of this work include the development of sensors for biomedical applications [13,14].
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Figure 7. Effect of foamed patterns on cell orientation. Schematic representation of the degree
of cell alignment, with respect to printed arrays, within four different zones in the PLA films (a).
Evolution of the cell angles, with respect to the printed arrays over time, (b) within the entire
PLA surface and (c) within the different surface zones. A Chi-squared statistical test was used to
determine the statistical significance of the difference of distribution of cell angles, with respect to
a homogeneous distribution. NS indicates no significant difference. Symbols *, **, and *** indicate
statistical significance at p < 0.05, p < 0.001, and p < 0.0001, respectively.
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4. Conclusions

We introduced a combined technique, based on inkjet printing and polymer foaming,
to form thin PLA films with a patterned porosity. Namely, inkjet printing of a PVA/water
solution was adopted to form, onto the PLA films, stripes of PVA at water evaporation. Gas
foaming with CO2 was, then, adopted on the PVA-pattern-covered PLA films, to induce se-
lective foaming of the PLA. During the foaming operations, PVA, a barrier polymer toward
CO2, prevented premature CO2 escape, from the thin film at pressure quench, and allowed
selective foaming. Inkjet-parameters optimization allowed the formation of PVA stripes
of shape and thickness suitable for the barrier role, as they were designed considering the
gas foaming and diffusion-characteristic times. Different pattern morphologies, in terms
of the macroscopic pattern as well as the microscopic pore architecture, were achieved.
Porosity-patterned PLA films were tested as tissue-engineering substrates, to guide cell
adhesion and harvesting. Cells oriented in the pattern direction after 6 days, proving the
effectiveness of the method to produce 2D devices for tissue engineering. More generally,
we showed that the coupled technique can represent a new technological platform in fields
involving thin films, where a patterned porous structure may add value.
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