
Citation: Li, Z.; Wang, C.; Ju, H.; Li,

X.; Qu, Y.; Yu, J. Prediction Model of

Aluminized Coating Thicknesses

Based on Monte Carlo Simulation by

X-ray Fluorescence. Coatings 2022, 12,

764. https://doi.org/10.3390/

coatings12060764

Academic Editor: Przemysław

Podulka

Received: 11 May 2022

Accepted: 30 May 2022

Published: 2 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Prediction Model of Aluminized Coating Thicknesses Based on
Monte Carlo Simulation by X-ray Fluorescence
Zhuoyue Li , Cheng Wang *, Haijuan Ju, Xiangrong Li, Yi Qu and Jiabo Yu

Fundamentals Department, Air Force Engineering University, Xi’an 710051, China; lz_980512@163.com (Z.L.);
jhjcumtgx@163.com (H.J.); lixiangrong0925@126.com (X.L.); strsky778@163.com (Y.Q.);
b2283216046@163.com (J.Y.)
* Correspondence: valid_01@163.com

Abstract: An aluminized coating can improve the high-temperature oxidation resistance of turbine
blades, but the inter-diffusion of elements renders the coating’s thickness difficult to achieve in
non-destructive testing. As a typical method for coating thickness inspection, X-ray fluorescence
mainly includes the fundamental parameter method and the empirical coefficient method. The
fundamental parameter method has low accuracy for such complex coatings, while it is difficult to
provide sufficient reference samples for the empirical coefficient method. To achieve accurate non-
destructive testing of aluminized coating thickness, we analyzed the coating system of aluminized
blades, simulated the spectra of reference samples using the open-source software XMI-MSIM,
established the mapping between elemental spectral intensity and coating thickness based on partial
least squares and back-propagation neural networks, and validated the model with actual samples.
The experimental results show that the model’s prediction error based on the back-propagation
neural network is 4.45% for the Al-rich layer and 16.89% for the Al-poor layer. Therefore, the model is
more suitable for predicting aluminized coating thickness. Furthermore, the Monte Carlo simulation
method can provide a new way of thinking for materials that have difficulty in fabricating reference
samples.

Keywords: X-ray fluorescence; aluminized coating; Monte Carlo simulation; turbine blades; back-
ward propagation neural network; XMI-MSIM

1. Introduction

Airline flight safety is a primary concern for countries worldwide, and airline crashes
cause significant economic losses and are also devastating to the families of victims. A reli-
able engine is key to protecting the aircraft for safe flights. For Turbine blades as the engine
power-energy transfer exchanger, frequently in high-temperature, high-pressure states, this
state on the turbine blade’s material performance put forward higher requirements [1–4].
Generally, the turbine blade substrate is made of a nickel-based high-temperature alloy
with an aluminizing treatment on the surface to prevent high-temperature oxidation [5].
However, the harsh service environment damages the aluminum coating on the blade’s
surface, affecting the high-temperature oxidation resistance of the blade [1,6]. Therefore,
it is necessary to monitor turbine blade coating conditions. The commonly used method
for checking coating thickness is the cross-sectional metallographic method [7], which
is straightforward and effective but will damage the blade. The method is costly and is
usually performed on a random sample. Hence, developing a non-destructive testing
(NDT) method for the Al coating on turbine blade surfaces is urgently required.

Various NDT methods have been tested with an aim to achieve non-destructive testing
of the thickness of diffusion coatings on turbine surfaces, but each method has its limitations.
The ultrasonic method is generally used for coatings with obvious physical boundaries,
while the physical boundaries of diffusion coatings are not obvious. The eddy current
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method is generally used for non-metallic coatings on non-magnetic metal substrates,
while both diffusion coatings and their substrates are metals. The magnetic thickness
measurement method is generally used for non-magnetic coatings on magnetic substrates,
and diffusion coatings are also not applicable [8].

As an elemental analysis technique, X-ray fluorescence (XRF) is not only used in
element identification and element quantification but also widely used in coating thickness
measurement [9–13]. The current XRF coating thickness measurement is mainly based on
the fundamental parameter method without standard samples and the empirical coefficient
method with standard samples [14–16]. For gold and silver coatings on the surface of
precious objects, Brocchieri [10,17] used the empirical coefficient method combined with
partial least squares regression for coating thickness prediction, obtaining relatively consis-
tent results with the expected thickness. Takahara [18] introduced the advantages of the
fundamental parameter method for thickness measurement when no standard samples are
available and explained the details of the fundamental parameter method for thickness
measurement using an ITO film sample as an example. However, for turbine blades in
service with a large variety of elements and mutual diffusion between coating and substrate
elements [19], the fundamental parameter method is not accurate enough for calculation,
and it is not possible to provide sufficient reference samples for the empirical coefficient
method. Therefore, a Monte Carlo simulation is considered to provide the spectra of the
reference samples.

Monte Carlo simulation uses a statistical method to simulate the process of photon-
matter interaction. Schoonjans [20–22] developed the open-source software XRMC and XMI-
MSIM for EDXRF Monte Carlo simulations, which can be performed by setting parameters
such as excitation source, instrument geometry layout, detector, and sample composition.
Giurlani [11,12] used this method to establish standard curves for determining the thickness
of single and multilayer metal coatings and obtained significantly better results than the
fundamental parameter method. Trojek [23] used iterative Monte Carlo simulations to
determine the copper alloy composition and the thickness of the cover layer and verified
the efficiency and robustness of the method. A series of studies applying Monte Carlo
simulation methods in archaeology is also available [24–26].

In this study, in order to achieve a non-destructive detection of aluminized coating
thickness on the in-service turbine blade’s surface, we first analyzed the blade cross-section
to determine the layering and composition of the coating, obtained XRF spectra at different
thicknesses using Monte Carlo simulation, established a coating thickness prediction model
using chemometric methods, and finally verified the accuracy of the model by testing the
XRF spectra on the blade’s surface.

2. Materials and Methods
2.1. Principle of XRF Thickness Measurement

The basic principle of XRF elemental analysis is as follows: primary X-rays excite
the elements in the sample to produce XRF, identify the elemental species based on the
difference in XRF energy of different elements, and determine the content of the elements
in the sample based on XRF intensity [16]. Traditional methods for mapping relationships
between XRF intensity and elemental content include the empirical coefficient method [14]
and the fundamental parameter method [15]. The empirical coefficient method establishes
a calibration curve by measuring a series of reference samples. The fundamental parameter
method requires knowing the exact parameters of each element and determining the
geometric factor of the instrument by testing the spectra of several pure elements to enable
a broader range of standardless measurements [27]. There are three methods of determining
coating thickness by XRF as follows [28]:
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1. Emission method: The research object of the emission method is the coating element.
The thicker the coating, the greater the XRF intensity of the coating element.

2. Absorption method: The research object of the absorption method is the substrate ele-
ment. The thicker the coating, the more the XRF of the substrate element is absorbed,
and the smaller the intensity.

3. Relative method: The relative method calculates the ratio of the XRF intensity of
the coating element and the substrate element to determine the thickness [16]. Since
the method uses relative values to calculate thickness, variations in measurement
conditions have little effect on the calculation error.

It is difficult for aluminized coatings on turbine blade surfaces to obtain accurate results
simply using the above thickness measurement methods due to the inter-diffusion between
elements. We need to explore the mapping between the XRF intensity of multiple elements
and coating thickness by measuring a series of reference samples of aluminized coatings
with different thicknesses. However, such reference samples are difficult to fabricate. The
Monte Carlo method can simulate interactions, including scattering effects, photoelectric
effects, and Auger electrons, considering the entire spectrum of analytes. Therefore, we use
the Monte Carlo method to simulate a series of reference samples to establish the mapping
relationship between XRF intensity and coating thickness.

2.2. Experimental Procedure

The experiments mainly include characterization, simulation, and validation processes,
and mathematical modeling is included in the simulation process. The flow chart of the
research process is summarized in Figure 1.
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Efforts in the characterization process include sample preparation, micromorpholog-
ical characterization, analysis of the coating system, and elemental content. A type of
in-service turbine blade provided by Xiangyang Hangtai Power Machine Factory was used
for characterization experiments. The blade substrate is DZ422B nickel-based superalloy,
protected by an aluminized layer on the surface. It was the first to cut into eight pieces
equidistantly along the blade body of the turbine blade using an EDM wire cutting machine
(DK7725H, ZHCF, Suzhou, China). The cross-section of the pieces was then sanded and pol-
ished with graded grit sandpapers to achieve a roughness where the surface coating could
be clearly observed. Prior to SEM (VEGA-3 XMU, TESCAN, Brno, Czech Republic) obser-
vation, the slices were cleaned using an ultrasonic cleaner (KM-410C, KJM, Guangzhou,
China), dried, and wiped on the surface with alcohol to avoid contaminants from affecting
characterization results. The slices were placed on the sample stage with the smooth section
facing upward through the conductive adhesive, the acceleration voltage was set to 20 kV,
and the current was set to 1 nA. The electron beam was switched on, and the magnification
was 1000×. The backscatter detector was selected to make the interface contrast between
the coating and the substrate more obvious. After the analysis area was selected, a surface
scan of the area was performed using EDS (AZtecOne & x-act, Oxford, London, UK) to
obtain the overall distribution of various elements, and the EDS worked with the same
parameters as SEM. A line scan was performed along the coating depth direction to obtain
the trend of different elements in that direction. Finally, a point scan was performed for the
areas with apparent boundaries to obtain the elemental content values of each area.

The simulation process is based on the characterization process and the determination
of the EDXRF instrument (XAU-4CS, YL, Suzhou, China) parameters. Monte Carlo simula-
tions were performed using the open-source software XMI-MSIM developed by Schoonjans
T. [21]. The software can automatically generate the simulated energy spectrum of primary
X-rays by inputting parameters, adjusting parameters to set the geometric layout between
excitation source-sample-detector, and inputting elemental content to set the sample’s
composition, including the air layer. The main parameter settings of the simulation process
are shown in Table 1. The sample composition was set according to the coating system and
elemental content obtained during the characterization. The remaining parameters of the
Monte Carlo simulation were set according to the excitation conditions, geometric layout,
and detector type of the EDXRF instrument. The coating system studied in this paper is
divided into three layers. The first layer is set up with 13 different thickness values in the
range of 0-60 µm at every 5 µm step. The second layer is set up with 11 different thickness
values in the range of 0–40 µm at every 4 µm step. The third layer is set up with 4 different
thickness values of 0 µm, 8 µm, 15 µm, and 22 µm. The spectra and XRF intensities of the
main elements were recorded in detail for each simulation to obtain 13 × 11 × 4 = 572 sets
of data. Before establishing the mathematical model of XRF intensity of the major elements
versus coating thickness, the ratio (R) of the XRF intensity value (Ic) obtained from the
simulation of the major elements in the coating to the XRF intensity value (Is) obtained from
the simulation of the corresponding elements in the substrate was calculated to mitigate
the deviation formed during the testing of the instrument and simulation software. The
data obtained from the simulation were randomly divided in the ratio of training set: test
set = 4:1, and then the more mature chemometric methods, such as partial least squares
(PLS) and backward propagation neural networks (BPNN), were used to model the data
and compare their goodness of fit. The mathematical methods mentioned above have been
widely used in XRF [29–33].
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Table 1. Parameters for Monte Carlo simulation.

Project Segmentation Parameter Density (g/cm3) Thickness (cm)

General

Number photons
per interval 10,000

Number of
photons per
discrete line

100,000

Number of
interactions per
trajectory

4

Geometry

Sample-source
distance (cm) 2

Primary X-ray
incidence angle (◦) 90

X-ray fluorescence
emission angle (◦) 45

Active detector
area (cm2) 0.0531

Excitation

Tube voltage (kV) 40
Tube current (mA) 1.00
Anode W 19.3 0.0002
window Be 1.848 0.0125

Composition

Air, Dry C, N, O, Ar 0.001205 2
Al-rich layer

Reference
Table 2

5.24 0~0.0022
Al-poor layer 6.05 0~0.0040
IDZ layer 6.83 0~0.0060
Substrate 7.28 1

Detection
Detector type SDD
Number of
spectrum channels 4096

Active detector
area (cm2) 0.25

Table 2. Elemental composition of coatings and substrate (wt.%).

Element C Al Cl K Ti Cr Co Ni Nb Yb Hf W

Al-rich layer 7.64 20.52 0.33 0.16 0.42 3.54 8.20 53.68 0 0 0 5.51
Al-poor layer 6.47 11.47 0.25 0 1.71 6.36 9.51 60.35 0.38 0 0 3.51

IDZ layer 7.16 6.21 0.21 0 2.80 11.21 9.39 41.57 1.40 0 0 20.06
Substrate 5.37 2.81 0.22 0.09 2.48 8.25 9.48 56.14 1.01 2.07 1.47 10.61

The validation process is based on the slices obtained from the characterization process
and the mathematical model obtained from the simulation process to verify the model’s
accuracy. The cross-section of the slices was first observed using an SEM to calibrate the
coating’s thickness. Although the slices belong to the same turbine blade, the different
locations are subjected to different impacts and loads in high-temperature environments;
therefore, their coating thicknesses also differ. The EDXRF instrument was then used to
test the XRF spectra of the slices, and the instrument parameters were consistent with those
set for the simulation process. The ratio of the XRF intensity of the main elements to the
corresponding elements of the substrate is calculated and substituted into the mathematical
model established by the simulation process to predict the coating’s thickness. Finally,
the predicted thickness was compared with the calibrated thickness to verify the model’s
accuracy in the actual test.

The dependence between the individual coating thicknesses was not considered
during the experiments; thus, some of the simulated conditions would not occur on
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the actual blade’s surface. However, these simulated data are still consistent with the
variation pattern of XRF intensity in the coating and have a negligible impact on the
mathematical model.

3. Results and Discussion
3.1. Characterization of the Coating System

Prior to performing Monte Carlo simulations, the sample’s exact elemental compo-
sitions and distributions need to be clearly known. For this purpose, the turbine blade
cross-section was characterized using SEM, and the mass fraction of each coating and
substrate element was analyzed by EDS. The analysis result is shown in Figure 2.
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fraction of elements from the test points in (a).

In Figure 2a, it can be observed that the aluminized coating on the in-service turbine
blade surface is divided into three layers. The darker color of the outermost layer indicates
the higher aluminum content of this layer (under backscattering irradiation, the contrast
between light and dark reflects the atomic number relationship of the elements: the darker
the atomic number, the smaller and brighter the opposite is). The outermost layer corre-
sponds to the 0–35 µm segment in Figure 2c, which we call the Al-rich layer. The second
outer layer is slightly brighter than the outermost layer, corresponding to the 36–57 µm
section in Figure 2c, dominated by the nickel-rich NiAl phase, which we call the Al-poor
layer. For the third layer, brighter and darker areas are interspersed. This layer is formed
by the mutual diffusion of the alloying elements in the substrate and the coating elements,
which corresponds to the 58–82 µm segment in Figure 2c. The mass fraction of elements in
this layer fluctuates widely, and we call it the interdiffusion zone (IDZ) layer. The last one is
the uncoated DZ22B substrate. According to Figure 2b,d, the trends of elemental contents
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are shown from the surface and point perspectives, respectively. Al content decreases along
the depth direction, while the W content is the highest in the IDZ layer, Ni content is lowest
in the IDZ layer, and Ti, Cr, and Nb contents are lower and not uniformly distributed.
Co content has no significant changes in the entire system. Overall, the elemental mass
fraction of each coating layer is relatively stable, and the average elemental mass fraction
of each coating area can be taken as the composition value of this layer and is inputed into
XMI-MSIM for simulation. The composition of each layer is shown in Table 2.

3.2. Monte Carlo Simulation

The EDXRF simulations were performed using the sample composition information
obtained in Section 3.1 and the parameter settings in Table 1. The Al-rich layer, Al-poor
layer, and IDZ layer were changed in equal steps within their corresponding ranges
of 0–60 µm, 0–40 µm, and 0–22 µm, and the substrate was set to 1cm, which could be
considered as infinite thickness in XRF simulation. For each thickness group, XRF spectra
were obtained separately. The areas of the spectral peaks in the energy range of Ni Kα,
Cr Kα, Co Kα, W Lα, Ti Kα, Nb Kα, Yb Lα, and Hf Lβ were calculated to obtain the XRF
intensity values of the corresponding spectral lines. Compared with the XRF intensity
values of the substrate’s corresponding elements, obtain the XRF intensity relative values,
as shown in Figure 3, where the three axes correspond to three coating thicknesses. The
size of the sphere indicates the relative value of elemental XRF intensity magnitude.

In Figure 3, the XRF intensity of Ni and Co elements is the smallest, and the XRF
intensity of Cr and W elements is the largest when the IDZ layer is the thickest, and the
thicknesses of Al-rich and Al-poor layers are 0 µm. When the thickness of the Al-rich and
Al-poor layers gradually increases, the XRF intensity of the Ni element gradually increases,
and the increasing trend gradually slows down until it no longer increases. Due to the high
mass fraction of Ni in the sample and the coating reaching a certain thickness, the XRF of
the Ni element reaches the maximum information depth. At this time, the XRF intensity no
longer changes as thickness increases. Therefore, when using the XRF intensity of the Ni
element to determine the thickness of the coating, only coatings with thin thickness can be
identified, and when the maximum information depth is reached, only a range of coating
thicknesses can be determined. The decreasing trend of the Cr element’s XRF intensity in
the direction of increasing thickness of the Al-poor layer is smaller than that of the Al-rich
layer, and the maximum information depth is also reached up to a certain thickness.

The XRF intensity values of Co, W, and Ti show different trends as the thickness of
the Al-poor and Al-rich layers increases. However, all reach the maximum information
depth when thickness increases to a certain level. In addition, since the mass fraction of
Co varies less throughout the coating system, the variation in XRF intensity values for
different thickness groups is also tiny. This situation is undoubtedly a challenge for the
prediction of coating thickness. Fortunately, the “insignificant” (small mass fraction) Nb
element has a clear pattern of variation with coating thickness and does not reach the
maximum information depth. The main reason for this situation is probably the sizeable
atomic number of the Nb element. Thus, the higher energy of the excited generated XRF,
which can penetrate a thicker coating, has not reached the maximum information depth.
For Yb and Hf elements, both show almost the same trend of XRF intensity with coating
thickness, resulting from the fact that these two elements are only present in the substrate
and have not inter-diffused with the coating elements. However, the mass fraction of the
two elements in the substrate is so tiny that the count rates of the corresponding spectral
lines are too low when the coating is thick. The resolution of EDXRF would be insufficient to
calculate the spectral peak areas effectively, and significant statistical errors would seriously
affect the calculation’s results; thus, these two elements would not be available as selected
elements for modeling and validation.

Combined with the above analysis, the XRF intensity values of the remaining six
elements can be used as input variables to build the thickness prediction model, with the
exception of Yb and Hf elements, which are difficult to detect.



Coatings 2022, 12, 764 8 of 15Coatings 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 3. Relative values of XRF intensity as elements at different thickness combinations. (a–h) 
corresponds to Ni, Cr, Co, W, Ti, Nb, Yb, and Hf elements. 

Figure 3. Relative values of XRF intensity as elements at different thickness combinations.
(a–h) corresponds to Ni, Cr, Co, W, Ti, Nb, Yb, and Hf elements.

3.3. Thickness Prediction Modeling

Based on the Monte Carlo simulation results, suitable elements were selected, and
appropriate chemometric methods were used to build the thickness prediction model.
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3.3.1. Thickness Prediction Model based on PLS

PLS is a hidden variable method for solving the fundamental relationship between
two matrices, combining the advantages of multiple linear regression analysis, typical
correlation analysis, and principal component analysis. Among the 572 sets obtained from
the simulation, the XRF intensity values of six elements Ni, Cr, Co, W, Ti, and Nb were used
as input variables to build a 572 × 6 matrix (X). The thickness of the three coatings was used
as output variables to build a 572 × 3 matrix (Y). The input variables were normalized, and
then a ten-fold cross-validation method was used to find the number of PLS components
that minimized the mean squared error (MSE).

Figure 4 represents the relationship between the number of PLS components and MSE,
and it was observed that MSE was minimized when the number of PLS components is
four. After adding additional PLS components, MSE increases instead. After determining
the number of PLS components, the 572 sets of data were divided in the proportion of
the training set: test set = 4:1, and 457 sets of data were obtained for building the coating
thickness prediction model, and the remaining 115 sets of data were used for testing
the model accuracy. The program obtained the relationship between the output variable
Ytrain547 × 3 and the normalized input variable Xtrain547 × 6, obtained by the program shown
in Equation (1).

yAl−rich = −0.7919xNi − 3.9057xCr − 13.8979xCo − 7.3017xW + 9.7004xTi − 20.9559xNb + 30.0109
yAl−poor = −1.2328xNi + 6.8520xCr + 18.7438xCo + 13.0860xW − 5.8353xTi − 5.9412xNb + 19.8074

yIDZ = −0.2143xNi + 1.1263xCr + 4.6451xCo + 3.8509xW − 3.0958xTi + 1.9016xNb + 11.0875
(1)
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3.3.2. Thickness Prediction Model Based on BPNN

BPNN is an algorithm that trains a multilayer feedforward network by error back-
propagation to reveal the mapping relationship between input and output. The hidden
layer between the input and output layers plays a crucial role in model building. The
activation function, which connects these three basic units, is the core of BPNN in dealing
with nonlinear problems. Therefore, selecting the activation function and the number
of nodes of the hidden layers is crucial for obtaining a model with an excellent fitting
effect and high accuracy. The same data set partitioning as in Section 3.3.1 was used in
this section, with 457 data sets used to train the model and 115 data sets used to test
the accuracy of the model. Based on experience, by trying different parameters such as
activation function, number of hidden layers, number of hidden layer nodes, and learning
rate, the best combination of parameters was obtained, as shown in Table 3. The BPNN
topology diagram is shown in Figure 5.
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Table 3. BPNN parameter settings.

Parameters Values

Activation function tanh
Hidden layer sizes (15, 10)

Learning rate 0.02
Max iteration 5000
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Figure 5. Topology of BPNN coating thickness prediction model.

3.3.3. Comparison of Model Results

The Al-rich and Al-poor layers will be able to form protective Al2O3 to improve the
high-temperature oxidation resistance of turbine blades when exposed to air. In contrast,
the IDZ layer contains less Al and cannot form adequate protection for turbine blades. In
addition, for the XRF determination of the coating thickness method, the more inner layers
there are, the greater the error in predicting the thickness due to the error propagation
effect. Therefore, in this study, the predicted results only show the thickness of the Al-rich
and Al-poor layers.

Based on the coating thickness prediction models developed in the previous two
sections, the prediction results for the test set are shown in Figure 6. From the four
prediction results, the best result is the prediction of Al-rich layer thickness by BPNN
(Figure 6a), and the prediction of the middle part is very close to the actual thickness
except for the relatively large deviation of the prediction at the two ends of the thickness
range. The main reason for this marginal effect is divided into two aspects. For the thinner
coatings, the XRF intensity values obtained from the tests showed little difference from
the substrate, and the background noise and statistical errors would significantly impact
the prediction results. For thicker coatings, elemental spectral peaks such as Ni Kα, Cr Kα,
Co Kα, W Lα, and Ti Kα will or have reached the maximum information depth, and the
changes in thickness have little effect on XRF intensity values. Hence, the deviation of the
prediction results is large.
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Figure 6. Coating thickness prediction results. (a) Prediction results of the BPNN model for Al-rich
layer thickness; (b) prediction results of the BPNN model for Al-poor layer thickness; (c) prediction
results of the PLS model for Al-rich layer thickness; (d) prediction results of the PLS model for
Al-poor layer thickness.

Comparing the predicted results of the Al-rich layer and Al-poor layer thickness, the
deviation of the predicted results of the Al-rich layer is significantly smaller than that
of the Al-poor layer. Comparing the prediction results of the two models, we find that
the model based on BPNN is significantly better than PLS, and the deviation of BPNN
for Al-poor layer thickness prediction is similar to that of PLS for Al-rich layer thickness
prediction. The PLS prediction of Al-poor layer thickness even has a negative value. The
main reason for this situation is probably the nonlinear variation of the elemental XRF
intensity mismatched with the linear model established by PLS. With the increase in coating
thickness, the XRF of some elements reaches the maximum information depth, while the
remaining elements do not, forming a nonlinear mapping overall. However, the final
equation obtained in the PLS model is still a multiple linear regression model no matter
what kind of transformation. Only the weights and thresholds change. The BPNN has the
support of activation function, and it becomes comfortable to deal with nonlinear problems.
Therefore, the BPNN-based coating thickness prediction model with higher accuracy was
used in the validation process.

3.4. Experimental Validation

The surface coating thickness of turbine blade slices was calibrated using SEM, and
XRF spectra were tested using an EDXRF instrument. The obtained XRF intensity was
substituted into the BPNN model established in the previous section to predict the coating
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thickness and compared with the calibrated thickness to verify the accuracy and reliability
of the model.

SEM calibrations were performed for different positions of the seven slices separately,
and seven sets of coating thickness values were obtained, as shown in Table 4. The
comparison of the substrate’s measured spectra (slice cross-section) and the coating (blade
surface) is shown in Figure 7. For the XRF spectra of the coatings, the count rates of the
main elements are lower than those of the substrate, except for the Ni Kα spectral line,
which has a higher count rate. The results obtained from the BPNN model predictions
are shown in Figure 8. For the Al-rich layer thickness (Figure 8a), the deviation between
the predicted and calibrated values is small, and the average relative error was calculated
to be 4.45%. For the Al-poor layer thickness (Figure 8b), the predicted deviation is larger
than the Al-rich layer, consistent with the situation at the time of model establishment and
mainly due to the error in propagation effects. The relative error was calculated at 16.89%
and influenced by sample #7. Overall, the model was experimentally validated to achieve
relatively high accuracy.

Table 4. Coating thickness calibration value (µm).

Sample 1 2 3 4 5 6 7

Al-rich
layer 22.6 31.15 34.39 36.07 36.89 42.81 47.27

Al-poor
layer 12.32 13.93 21.31 15.85 13.66 20.06 23.22
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4. Conclusions

In the present paper, we have simulated the reference samples spectra using the Monte
Carlo method and developed a model for predicting the thickness of the aluminized layer
on the turbine blade surface using a chemometric approach. Preliminary experimental
validation has shown that the method can predict coating thicknesses with relatively high
accuracy. The main conclusions of this paper are as follows:

1. The layering of aluminized layers. EDS analysis reveals that the aluminized layer on
the in-service turbine blade surface can be divided into three layers with relatively
stable elemental content: an Al-rich layer, an Al-poor layer, and an IDZ layer.

2. Variation of XRF intensity for the different elements with coating thickness. The
results of Monte Carlo simulations show that as the coating thickness increases, the
spectral lines with lower XRF energy gradually reached the maximum information
depth, while the spectral lines with higher XRF energy did not.

3. The BNPP model is superior to the PLS model. In terms of the consistency between
the predicted and actual thickness of the coating from the mathematical model, the
BPNN model has the best consistency with a slope of 1.00368 and an R2 of 0.99361 for
the Al-rich layer, and the PLS model has a slope of 0.94228 and an R2 of 0.95287. For
the Al-poor layer, the BPNN model has a slope of 0.92345 and R2 of 0.95242, and the
PLS model has a slope of 0.80951 and R2 of 0.83352. Comparing the coating thickness,
prediction models show that the nonlinear BPNN model is superior to the linear
PLS model.

4. The Al-rich layer thickness prediction accuracy is higher than that of the Al-poor
layer. The average relative errors of the BPNN model to predict the actual blade
coating thicknesses were 4.45% for the Al-rich layer and 16.89% for the Al-poor layer,
respectively. According to the prediction results, the prediction accuracy of the Al-rich
layer is significantly higher than that of the Al-poor layer for both simulated and
measured samples.

The present study results make it feasible to establish a prediction model for the
aluminized coating thickness of turbine blades using the spectra obtained from the Monte
Carlo simulation of reference samples. Further improvement in prediction accuracy may
be achieved in subsequent studies by combining the evolutionary laws among the layers.
In addition, for materials with a large variety of elements, complex coating systems, and
difficult to fabricate reference samples, the Monte Carlo simulation method may be utilized.
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