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Abstract: In this paper, we describe a new method for non-destructive testing (NDT) X-ray image
defect segmentation by introducing a variable attention nested UNet++ network. To further enhance
the performance of the faint defect extraction and its clear visibility, a pre-processing method based
on pyramid model is also added to the proposed method to effectively perform high dynamic range
compression and defect enhancement on the 16-bit raw image. To illustrate its effectiveness and
efficiency, we applied the proposed algorithm to the X-ray image defect segmentation problem and
carried out extensive experiments. The results support that the proposed method outperforms the
existing representative techniques in extracting defect for real X-ray images collected directly from
industrial lines, which achieves the better performance with 89.24% IoU, and 94.31% Dice.

Keywords: defect segmentation; X-ray image; variable attention; UNet++

1. Introduction

A variety of non-destructive testing (NDT) methods are used in industrial production,
to detect the internal defects of objects, among which NDT methods based on X-ray imaging are
most widely used, mainly because of their intuitive imaging and high spatial resolution of imaging,
especially for the detection of small defects in complex structural products [1–3]. At present, the
use of industrial film is still very large. Its disadvantages include slow imaging and being
not environmentally friendly, and the process of preliminary preparation, exposure, film
processing, interpretation, etc. is very time-consuming. For complex workpieces, it takes
several hours of inspection time to complete the whole process, and most importantly, it
is difficult to digitize, which brings difficulties to the storage and retrieval of film. With
the development of industrialization, a large number of products need full inspection. The
previous use of film imaging for random inspection can no longer meet the current pace of
inspection, and so the industry of NDT X-ray imaging has an urgent need for digitalization
and automation.

Early digital X-ray imaging technology uses an image intensifier (I.I.) as the imaging
device, which can output a digital image of up to 12-bits, using the intensifier to output an
analog signal and then a digital camera to enhance and digitize the analog signal. Spatial
resolution and contrast sensitivity are the most important imaging indicators in X-ray
imaging. However, these two indicators of the image intensifier imaging system are not
up to the level of film imaging; coupled with the lack of relevant testing standards to
support, its application in the field of industrial inspection is limited. In actual industrial
applications, large-scale use of image intensifiers for defect detection occurs only in two
fields: automotive wheel castings [4,5] and some electronic devices, and small-scale use
of the field of welding seams [6] and cylinder inspection [7]. Other areas with strict
requirements for detection choose to use film imaging.

The latest X-ray imaging technology uses digital flat panel detectors as imaging
devices, which can output 16-bit digital X-ray images with contrast sensitivity indexes
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that can exceed film imaging. In recent years, the price of flat-panel detector hardware
has been reduced to a level generally accepted by industry, and the development of deep
learning-based correlation segmentation and identification algorithms has made automated
X-ray imaging-based detection possible. However, the diversity of inspected products and
their respective complex structures, as well as small and ambiguous defect structures, make
automatic defect detection on 16-bit image data extremely complex and challenging.

Defect detection can be roughly divided into three steps: (a) locating and segmenting
defects on the X-ray digital image of the inspected product, (b) identifying and quantita-
tively analyzing the segmented defects, and (c) judging whether the product is qualified
according to the relevant analysis data combined with the inspection process requirements.
Step (a) is the most difficult one, and it is very important to accurately and completely
segment the defects from the image containing the complex structure of the inspected
product for later quantitative analysis.

In general, methods for automatic defect segmentation can be divided into two cate-
gories: unsupervised and supervised. A variety of unsupervised techniques are used to
extract target defects from complex backgrounds [8,9], including matched filtering, mor-
phological processing, defect tracking, etc. One advantage of unsupervised segmentation
methods is that no sample annotation is required; however, the practical performance of
these methods is not good, especially for small-sized defects with more blurred edges [10].
However, most of the methods in unsupervised learning are based on traditional image
processing algorithms, which are not ideal for detection when encountering various com-
plex and variable practical applications, because it is difficult to extract effective features
and summarize prediction rules. For example, in the paper [3], the authors used tradi-
tional image processing algorithms, mainly median filter and morphological processes
for segmentation of defects. The experimental part of the data is relatively small and
does not work well on images with slightly complex backgrounds. In [11,12] the authors
used the SDD segmentation algorithm to segment ventricles in MRI images and cells or
nanoparticles in microscopic images, which have the best performance among the listed
single-threshold segmentation methods. However, due to the complicated structure of
the workpieces, the grayscale distribution of image background is not uniform. It can
be inferred that methods in [11,12] are not very applicable for the industrial X-ray defect
segmentation tasks. For supervised methods, the sample image first needs to be manually
labeled to mark the defects in it [13], and then the features are separated into background
and defects using a trainable classifier. In most cases, the supervised methods perform
better than the unsupervised based methods [14,15]. A recent review of deep learning for
general object detection can be found in [16], where the authors provide a comprehensive
survey of the recent achievements about deep learning for generic object detection.

In recent years, with the rise of deep learning research, several researchers have
introduced supervised methods based on deep learning to the task of defect segmentation
in X-ray images [17,18]. A very basic fully convolutional network (FCN) for weld defect
identification is presented in [19], in which the author illustrates some inspection results on
the GDXray database, but comparisons to other deep learning methods and more in-depth
tests are lacking. The U-Net algorithm is built on an FCN, consisting of an encoder and a
decoder, and the shape of the network resembles a “U” shape, hence the name “U-Net”.
U-Net is very different from other common segmentation networks in that U-Net uses a
completely different feature fusion method: splicing, where U-Net splices features together
in the channel dimension to form thicker features [20–22].

Subsequently, the better-performing UNet++ was developed based on U-Net [23].
UNet++ improves segmentation accuracy through a series of nested, dense jump paths that
meet the high accuracy requirements for defect detection [24]. The redesigned jump paths
make it easier to optimize feature mapping with semantically similar features. Dense jump
connections improve segmentation accuracy and improve gradient flow. Deep supervision
allows model complexity tuning to balance speed and performance optimization.
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UNet++ has been widely used in biological image segmentation, such as retinal
vascular segmentation, liver CT image segmentation [25], lung CT image segmentation [26],
ultrasound medical image segmentation [27], COVID-19 infection localization [28], heart
CT image segmentation [29], etc., and has achieved good results. There are also applications
in other scientific and industrial fields, such as the detection of impact craters on the lunar
surface [30], road detection [31], etc.

In recent years, there are also some other excellent deep learning network structures
for detecting objects in a variety of application scenarios. Vgg16 is a CNN network that
simply superimposes convolutional or fully connected layers with weights to 16 layers. As
the size of the input image is limited to 224 × 224 × 3, it is difficult to detect smaller defects
at the pixel level, and only locates out with boxes for weld defects, with no quantitative
output [32]. A spatial attention bilinear convolutional neural network (SA-BCNN) was
introduced and tested against other CNN based methods [33]. Faster R-CNN is recog-
nized to have better performance and much research has been done by many scholars.
Based on a basic Faster R-CNN system, Feature Pyramid Network (FPN) shows signifi-
cant improvement as a generic feature extractor in several applications [34]. It achieved
state-of-the-art single-model results on the COCO detection benchmark without bells and
whistles, surpassing all existing single-model entries including those from the COCO 2016
challenge winners at the time. A method based on Feature Pyramid Network (FPN) and its
subsequent improvements was used to detect defects in radiographic images of casting
aluminum parts [35,36]. The experimental results outperformed Faster R-CNN; it was an
instance segmentation method that could not segment the defects at pixel level and thus
could not produce quantitative defect detection results. A very similar pyramid approach
is used in networks for deep learning [37], wherein the spatial pyramid pooling is used
to remove the uniform limitation on the size of the input image; the pyramid method is
a common and useful tool for adapting to different resolutions and scales. Mask R-CNN
is introduced through extending Faster R-CNN by adding a branch for predicting an
object mask in parallel with the existing branch for bounding box recognition so that it
can efficiently detects objects in an image while simultaneously generating a high-quality
segmentation mask for each instance, which means it is more suitable for quantitative
defect detection [38].

There is no available large-scale defects database of X-ray images, and many scholars
use Generative Adversarial Networks (GAN) to generate more defect data for learning
in networks such as CNN. A CNN-based method for X-ray prohibited item recognition
has been proposed [39], and additionally, generative adversarial networks (GANs) are
used for data augmentation. In another CNN-based casting defect detection work [40],
the author builds the dataset by using synthetic defects, which are simulated using 3D
ellipsoidal models and Generative Adversarial Networks (GAN). This is done not only for
X-ray images: in [41] the authors also use GAN to generate more visible defect images to
improve defect detection.

In this paper, we propose a novel variable attention-based nested segmentation net-
work that improves the lower segmentation accuracy of the standard UNet++ network
using fixed perceptual field convolution. It can automatically adjust the perceptual field of
the network by the attention mechanism to more effectively utilize the spatial information
extracted at different scales and introduces an attention mechanism between the nested
convolutional blocks so that features extracted at different levels can be selected for merging
relevant to the segmentation task, as a way to improve the defect segmentation effect of the
whole network on sample images with complex background structures. In addition, a new
image pre-processing algorithm based on the pyramid model is proposed in this paper,
which effectively performs high dynamic range compression and defect enhancement
on the original 16-bit images. The grayscale distribution of the processed image is more
balanced, and the faint defects that are not easily detected by human eyes are clearly visible,
which is convenient for manual labeling.
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We further describe the comparison between the proposed method and other related
typical methods involved, and to see the advantages and disadvantages of each method
more clearly, we summarize them in a table as follows in Table 1.

Table 1. The comparison between the proposed method and other industrial X-ray defect detec-
tion methods.

Types Methods and Brief
Description Advantages Disadvantages

Unsupervised

Median and
morphological filters,

Ref [12]
Very easy to implement.

Does not work well on
images with slightly

complex backgrounds.
Defect detection

based on traditional
algorithms, Ref [4]

Better performance than
simple morphological

and threshold.

Poor results on complex
background images.

Supervised

LBP descriptor with
an SVM-linear

classifier, Ref [16]

Simple features and
framework structure.

Not a pixel-level defect
segmentation.

U-Net, Ref [21] Thicker features, defect
fusion at different scales.

The evaluation score of
80% indicates that the

system needs
modification for better

performance.

Proposed method

Developed HDR
pre-processing to

enhance more details,
large quantity and huge

variety of images for
training

A little bit
time-consuming; it is still
acceptable for practical

applications.

The experimental results show that after combining the image pre-processing algo-
rithm, the variable attention-based nested UNet++ network proposed in this paper has
better detection effect and higher accuracy for X-ray image defects than the other selected
network. It was observed that the proposed segmentation method exhibits the top segmen-
tation performance, which holds the leading position with 89.24% IoU, and 94.31% Dice.

2. Methods Section: Algorithm

Using the Pytorch deep learning framework, a variable attention-based nested segmen-
tation network with selective kernel convolution was built. The structure of the proposed
network in this paper is based on the U-Net++ network with a nested architecture. For
the convolutional module in the network, an improved SK module was used instead of
the traditional ordinary convolutional module, and an attention mechanism is introduced
between the nested convolutional blocks of the network so that features extracted at dif-
ferent levels can be selectively merged to improve the efficiency of propagating semantic
information through jump connections. The proposed network suppresses background
regions that are irrelevant to the segmentation task, while having the ability to increase the
weight of the target region, which in turn improves the accurate segmentation of defects.

The flow chart of the entire defect detection method is shown in Figure 1, the main
important process is divided into: input image, pre-processing, automatic defect detection,
and output detection result. The detailed description of each module will be detailed in the
subsequent part of this chapter.
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Figure 1. The flow chart of the entire defect detection method.

2.1. Image Pre-Processing

The original image acquired by the X-ray flat-panel detector is a 16-bit grayscale
image with a large dynamic range, and the difference between the grayscale values of the
defects themselves and those of the background is small, and the grayscale distribution
of the background is not uniform due to the inherent X-ray beam-hardening imaging
characteristics. We propose a new image pre-processing algorithm based on the pyramid
model to effectively perform high dynamic range compression and defect enhancement on
the 16-bit raw image. The grayscale distribution of the processed image is more balanced,
and the faint defects that are not easily detected by human eyes are clearly visible, which is
convenient for manual labeling.

The core idea of our proposed pre-processing algorithm is to decompose the image
into pixels representing individual details of the image, then do enhancement on these
pixels, and finally perform inverse reconstruction. We choose the Laplace pyramid function
for image decomposition, which meets the following two basic conditions: (1) it must
include all levels to represent the structure of any size, and (2) it must be continuous
without interruption. The effect of pre-processing is shown in Figure 2. On the left is the
original image, and on the right is the pre-processed image, where the faint porosity defects
in the weld are clearly visible after processing.

2.1.1. Image Decomposition and Reconstruction

The basic idea of Laplace pyramid function decomposition is that first, the original
image is low-pass filtered to reduce the closeness of the pixel-to-pixel connection, interval
sampling compresses the image data, which means the image sample density is reduced,
then interpolation is performed, and finally the resulting image is subtracted from the
original image as the first layer in the Laplace pyramid. Repeating the above operations
based on this layer of images expands into a pyramid-shaped multi-scale data structure.

Laplace pyramid is built on Gaussian pyramid and consists of a series of L0, L1, L2,
L3, L4, etc. As shown in Figure 3, each L is the set of differences between two adjacent
Gaussian pyramids, i.e.,

L (t) = G (t) − expand (G (t + 1)), (1)
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Figure 2. (a) Original casting image, (b) pre-processed image of (a), (c) original weld image, (d) pre-
processed image of (c).

Figure 3. Laplace Pyramid Structure. G0, G1, G2, G3 are the Gaussian pyramid images. In a Gaussian
pyramid, subsequent images are weighted down using a Gaussian average and scaled down. L0, L1,
L2 are the Laplace pyramid images which save the difference image of the Gaussian images between
each levels.

In the image decomposition process, each image is reduced by half (i.e., reduced to
one-half of the original sample density) from the previous one, at which point the whole
process presents a pyramid data structure. During image reconstruction, the Gaussian
pyramid needs to be scaled up and added to the Laplace pyramid of a lower level, i.e.,

G (t) = L (t) + expand (G (t + 1)), (2)
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2.1.2. Image Detail Enhancement

The main purpose is to enhance the details of the image by adjusting the spatial
frequency characteristics of the image to highlight the subtle defective features in the image,
specifically to achieve

Y = X + a × B (X) × (X − X1), (3)

where Y, X, and X1 represent the pixel values of the resultant image, the original image, and
the image after low-pass filtering, (X − X1) represents the high-frequency part of the image,
and the coefficient a determines the degree of enhancement of the high-frequency part.

First, the original image is low-pass filtered, that is, smoothed to obtain a smooth im-
age, and then the difference between the original image and the smoothed image to obtain
the difference image. The difference image represents the high-frequency information part
of the image, usually the edge and detail information part of the image, according to the
different data density parts of the image for the corresponding degree of image enhance-
ment, where the coefficient a, function B (X) is given in advance. Here, the coefficient a
and function B (X) are given in advance, and will vary according to the image type, image
effect requirements, and image data density distribution. The image data density distri-
bution in the algorithm is particularly important, because in the later algorithm Laplace
pyramid decomposition, hierarchical enhancement coefficients are related to the density of
the image data.

2.1.3. Reduced Dynamic Range

The dynamic range of the image is reduced in the low-frequency part, and the density
compensation of the region of interest is implemented:

Y = X + a × (A − X1) (4)

where X denotes the original image, X1 denotes the smoothed and filtered image, a is the
correction factor where a < 1 (used to control the degree of dynamic compression), and A is
a constant.

Firstly, the original image is smoothed by low-pass filtering to obtain a smoothed
image, then the difference is made with the given A to obtain a difference image, and then
multiplied with the given coefficient a. The meaning is to perform dynamic compression
of image data density, i.e., the low frequency part of the image is removed and the high
frequency part is retained, because the important detail information of the image often
exists in the high frequency. The final image obtained is compared with the original image.
The final image is obtained by summing with the original image.

2.2. Defect Segmentation Network

The Pytorch deep learning framework is used to build this network, and the structure
of the proposed convolutional neural network in this paper is shown in Figure 4, which
is based on the UNet++ network and uses a nested architecture to integrate U-Net of
different depths.

The network designed in this paper nests four layers of U-Net as the basic network
framework, where encoders and decoders are symmetrically distributed on both sides of
the network. All layers of U-Net share one feature extractor so that we only need to train
one encoder. A modified SK block is used to replace the traditional convolutional block
in the network, and a convolution with a perceptual field of 5 is generated by using two
3 × 3 convolutions in series in the SK block, which both improves the depth of the network
and reduces the computation and number of parameters, as shown in Figure 5. By using
the SK block, the perceptual field can be automatically adjusted to make more efficient use
of the feature information extracted at different scales. The encoder has a total of five layers,
each of which consists of two modified SK blocks + Relu. Each layer undergoes a maximum
pooling of size 2 × 2 with a step size of 2 after feature extraction. Each subsequent layer of
the structure is down-sampled in the same order.
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Figure 4. Schematic diagram of the structure of the proposed defect segmentation network. SK block
is adopted instead of convolutional block with an attention gate.

Figure 5. Schematic diagram of the structure of the improved SK module. The SK block consists of
two branches. The first one utilizes one conventional 3 × 3 convolutions, while the second one uses
two 3 × 3 convolutions to generate a perceptual field of 5.

To focus on features related to the target or goals, we add a simple but effective
attention gate to the nested architecture, as shown in Figure 6. This attention gate has two
inputs: an up-sampled feature Fg in the decoder and a feature Fx of equal depth in the
encoder. The selected signal Fg in the attention gate selects the more useful features from
the encoded feature Fx and sends them to the upper decoder.

The contextual information extracted by the encoder is propagated to the decoder of
the corresponding layer through a dense jump connection, thus allowing the extraction
of more efficient layered features. In the case of dense jump connection, the input of
each convolutional block in the decoder consists of two equal-scale feature maps: (1) the
intermediate feature map from the output of the previous potential gate along the same
depth of the jump connection; and (2) the final feature map from the output of a deeper
deconvolution block operation. After receiving and concatenating all the to-be-feature
maps, the decoder recovers the image in a bottom-up manner.
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Figure 6. Schematic diagram of the structure of the attention gate. Encoder features are scaled with
attention coefficients calculated in the attention gate.

We define the feature mapping to represent the output of the convolutional block,
where i represents the depth of the feature in the network and j represents the sequence of
convolutional blocks in layer i connected along the jump, as follows.

Xi,j =

{
φ[Xi−1,j] j = 0

φ
[
∑

j−1
k=0 Ag(Xi,k), UP(Xi+1,j−1)

]
j > 0

, (5)

where φ[] denotes the concatenated merging of convolutional blocks. UP[] and Ag[] denote
up-sampling and attention gate selection, respectively.

Deep supervision is introduced in the network structure by attaching a 1 × 1 con-
volution with a C kernel and a sigmoid activation function to the outputs of nodes X0_1,
X0_2, X0_3 and X0_4, where C is the number of classes in which a given dataset is available.
A hybrid segmentation loss is then defined for each semantic scale, including pixel-level
cross-entropy and Dice coefficient loss. The hybrid loss can take advantage of the two loss
functions: smooth gradients and class imbalance handling. It is defined as follows.

L(Y, P) = − 1
N

C

∑
c=1

N

∑
n=1

(yn,c log pn,c +
2yn,c pn,c

y2
n,c + p2

n,c
), (6)

of which yn,c ∈ Y and pn,c ∈ P denote the target labels and predicted probabilities for class
c and n pixels in a batch, and N denotes the number of pixels in a batch.

Because the output of each sub-network is already the segmentation result of the
image during deep supervision, we can cut out those redundant parts if the output result
of the smaller sub-networks is already good enough.

The main advantages of the defect segmentation method proposed in this paper
include the following:

1. The traditional convolutional blocks are replaced by SK blocks, and the convolutional
blocks with a perceptual field of 5 in the SK blocks are replaced by two 3x3 convolu-
tions in series, which not only improve the depth of the network but also reduce the
computation and the number of parameters. By using the SK block, the perceptual
field can be automatically adjusted to utilize the feature information extracted at
different scales more effectively.

2. Adding attention gates between nested convolutional blocks enables increase of the
weight of the target region while suppressing background regions that are not relevant
to the segmentation task.

3. It enables model pruning during testing by introducing deep supervision, which can
reduce a large number of model parameters and thus speed up the model segmentation.
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3. Experimental Section

In this section, both quantitative and qualitative results are reported with an extensive
set of comparative evaluations for defect segmentation.

3.1. Experimental Equipment and Database

Unlike the vast database of publicly available medical X-ray images, currently, the
only publicly accessible X-ray imaging database for industrial NDT is GDXray, which was
published by D. Mery in 2015 [42]. The database includes five groups of X-ray images:
castings, welds, baggage, natural objects, and settings. However, the image number of
GDXray’s database is too small, with only 2727 images from different angles on 67 samples
of castings, and only 88 images from different positions on three samples of welds. In
addition, most of the images were taken with the Image Intensifier (I.I.) and saved in 8-bit
BMP or JPG format. Thus, the image quality and spatial resolution were not high enough,
and could not be adapted to the contemporary needs of industrial inspection. Figure 7
shows almost 40 images generated at different shooting angles from one single aluminum
casting wheel in GDXray’s database. Therefore, we needed to build our own database.

Figure 7. Selected images from GDXray’s database [42].

We have cooperated with Deepsea Precision Co. Ltd. (Shenzhen, China) [43], a
manufacturer specializing in X-ray inspection equipment, to collect a large amount of high-
quality, high-resolution X-ray image data from actual production lines and laboratories
over a period of three years. As shown in Figure 8, this is industrial X-ray inspection
equipment from Deepsea Precision Co. Ltd., and our database was collected from this
equipment and more than a dozen other similar machines. The basic configuration of the
core imaging chain components from this typical X-ray inspection equipment of Figure 8a
is shown in Table 2.

Table 2. The basic configuration of the core imaging chain components from the X-ray inspection
equipment of Figure 8a.

Device Name Brand/Model Basic Configuration

X-ray emission device
(macro-focus) Gulmay/CF500 500 kV, focus size 0.4/1.0 mm

X-ray emission device
(micro-focus) WorX/XWT-225-CT 225 kV, focal size 5 µm

X-ray receiver device
(flat panel detector) Deepsea/DS4343HR 430 mm ∗ 430 mm, pixel size

139 µm
Workstation Software Deepsea/DeepVISION GPU-based architecture

The database we created is named DSXImage, and its architecture is shown in Table 3.
It is divided into two main types, castings and welds, and the image format is fully
compliant with the industrial NDT standard ASTM E2339-15 [44] and is saved in 16-bit
DICONDE format. The breakdown within each main category is as follows.
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Figure 8. Some typical X-ray inspection equipment from Deepsea. (a) A 500 kV X-ray inspection
machine, steel weld sample; (b) a 225 kV X-ray inspection machine, aluminum casting sample from a
bicycle; (c) a 225 kV X-ray inspection machine, aluminum casting sample from automobile.

Table 3. DSXImage database architecture.

Types Sample Name Amount

Castings

engine cylinder heads 10,500
steering knuckles 8602
shock absorbers 15,610

valves 9500
power supply housings 6500
3C products and others 18,805

Welds

rocket engine ducts 12,655
aircraft seat bases 5431

gas pipe welds 25,820
steel welds from 3C and others 12,907

1. Most of the castings are aluminum alloy parts for automobiles, such as engine cylinder
heads, steering knuckles, shock absorbers, valves, power supply housings, etc. A
small portion are magnesium alloy parts for 3C products, such as Bluetooth headset
metal frames, laptop bezels, etc.

2. Welds are stainless steel/titanium alloy, collected from rocket engine ducts, aircraft
seat bases, gas pipe welds, etc. A small portion are steel welds from 3C.

The DSXImage database is still in continuous improvement; however, the existing size
of the database is sufficient for training and evaluation of deep learning networks. The
database may be released to the public at the right time.
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The project team worked with Deepsea to generate the DSXImage training dataset
using the open-source labeling tool Labelme., which is a graphical image annotation tool
inspired by MIT. The user can use it to easily implement image annotation work for vision
tasks such as classification, detection, and segmentation, etc. The annotation result of one
sample consists of three images and two label files. The architecture is summarized in
Table 4. The image annotation work is a time-consuming and labor-intensive task that took
nearly a year to label the entire database. The specific annotation process and output are
summarized roughly as follows.

Table 4. The architecture of one annotation result, basic configuration of the core imaging chain
components from the X-ray inspection equipment of Figure 7a.

The Original Image The Label Image The Label Visualization Image

1. Open the image, perform manual annotation, outline each defect and save it as a json
label file.

2. Open a json file and convert the json into a mask label image.
3. After the conversion is completed, a label folder is generated, including the original

image img.png, label image label.png, label visualization image label_viz.png, txt file
of label name, and yaml format label name file.

The design principle of the database is to conform to the current mainstream image
specifications and try to take into account the previous image specifications so that not only
can previous algorithms use the database, but future algorithms can also be adapted by
simple expansion and upgrade of the current database.

1. Image bits. Most modern flat panel detectors output 16-bit images, older detectors are
12 or 14 bit, and earlier image intensifiers are 8 or 10 bit. The database uses the original
16-bit image with the addition of a pre-processed 16-bit image and an 8-bit image.

2. Image resolution. Depending on the specifications of the flat panel detector, there is
no uniform specification for the resolution of the images in the database. The pixel
sizes of most images are 3072 × 3072, 1536 × 1536, 2000 × 2000, which users can
choose according to their needs and can even be freely cropped if necessary.

3. Image format. The 10-bit, 12-bit, 14-bit, and 16-bit images in the database use the
industry standard image format, i.e., DICONDE format, and also keep a copy in TIFF
format. 8-bit images are saved in PNG format.

3.2. Experimental Setup

The defect segmentation task was conducted over the DSXImage dataset comprising
126,330 sample X-ray images with corresponding image annotation. In all our experiments,
we assumed an 80/20 split for train and test purposes respectively. Besides, 20% of training
data was used as a validation set for model selection and to avoid overfitting. PyTorch
library with Python 3.7 was used to train and evaluate the variable attention nested UNet++
network, running on a PC with Intel® Core™ i9-9900KF CPU at 3.6 GHz (Santa Clara, CA,
USA), with 64 GB RAM, and with a 12 GB NVIDIA GeForce GTX 2060 GPU card (Santa
Clara, CA, USA) [45,46].

Some of the original images in the DSXImage datasets are shown in Figure 9.
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Figure 9. Some of the original images in the DSXImage dataset.

3.3. Segmentation Evaluation Metrics

The performance of the defect segmentation networks was evaluated using two
evaluation metrics, namely, Dice (Dice Similarity Coefficient) and IoU (Intersection over
Union) [28]. The corresponding equations are as follows.

Dice = 2 ∗ TP/(2 ∗ TP + FP + FN), (7)

IoU = TP/(TP + FP + FN), (8)

Here, TP, TN, FP, FN represent the true positive, true negative, false positive, and false
negative, respectively. Both IoU and Dice are statistical measures of spatial overlap between
the binary ground-truth and the predicted segmentation masks, where the main difference
is that Dice considers double weight for TP pixels (true defect predictions) compared to IoU.

3.4. Segmentation Results

The performance of the all the selected segmentation methods over the test set is
tabulated in Table 5. We have selected some classical and recent deep-learning-based
segmentation algorithms with better performance. For all models, it was observed that the
proposed segmentation method exhibits the top segmentation performance, holding the
leading position with 89.24% IoU, and 94.31% Dice. Some examples of segmentation results
obtained by different methods listed in Table 5 are shown in Figures 10 and 11. Figure 12
shows more examples of the segmentation results of the proposed method. Furthermore,
the proposed method has been customized for different applications as illustrated in
Figure 13.

Table 5. The performance of the all the selected segmentation method over the test set—DSXImage database.

Models IoU Dice #Parameters Time per Epoch

Median and morphological filters, Ref [3] 0.3012 0.4630 – –
Defect detection based on traditional algorithms, Ref [4] 0.4155 0.5871 – –

Mask R-CNN 0.7360 0.8479 25.3 M 38 s
U-Net 0.7251 0.8406 32.5 M 16 s

Standard UNet++ 0.7629 0.8656 35.6 M 39 s
Proposed Method 0.8924 0.9431 36.8 M 42 s
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Figure 10. A typical example of defect segmentation: (a) the original image, (b) ground-truth image,
(c) result of median and morphological filters, Reference [3], (d) result of a traditional defect detection
algorithm, Reference [4], (e) result of Mask R-CNN, (f) result of UNet, (g) result of standard UNet++,
(h) result of proposed method.

Figure 11. Another example of defect segmentation: (a) the original image, (b) ground-truth image,
(c) result of median and morphological filters, Reference [3], (d) result of a traditional defect detection
algorithm, Reference [4], (e) result of Mask R-CNN, (f) result of UNet, (g) result of standard UNet++,
(h) result of proposed method.
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Figure 12. Segmentation examples of proposed method. (a–d) are the original images; (e–h) are the
ground-truth images; (i–l) are the corresponding segmentation results.

Figure 13. Cont.



Coatings 2022, 12, 634 16 of 19

Figure 13. Applications of proposed method: (a) automatic welding defect detection, (b) automatic
casting defect detection.

4. Discussion

In this section, we will discuss the results obtained by the proposed defect detection system
as well as other methods including some deep learning models and conventional defect detection
methods. The segmentation results accordingly are shown in Figures 10 and 11. According to our
experimental results, deep learning methods provide better segmentation performance in
comparison to conventional image processing methods. In general, conventional methods
generate high false positive rate due to the characteristics of industrial X-ray images.

Figure 12 shows that our model performs well on complex images and is able to
detect different kind of defects. The performance of the proposed model and some other
models are evaluated in Table 5. Mask R-CNN and U-Net showed similar accuracy in
the experiments. In addition, the proposed modified UNet++ model outperformed the
standard UNet++. Due to the improvement of image quality through proposed pre-
processing, our defect segmentation method achieves 89.24% and 94.31% in terms of IoU
and Dice, respectively.

Although the overall performance of the proposed method has been demonstrated,
there are still some missed detections in the experiments. This is mainly because some thin
defects are slightly stronger than the background, increasing the difficulty of detection.
Moreover, some incorrect detections were also observed due to the similarity between the
edges or holes of the parts and the defects.

5. Conclusions

In this paper, we describe a new method for X-ray image defect segmentation by
introducing a variable attention nested UNet++ network. In comparison with the existing
techniques, the proposed algorithm has the following features: (i) a pre-processing method
based on pyramid model is proposed to further enhance the performance of the faint defect
extraction and its clear visibility; (ii) the traditional convolutional blocks are replaced by SK
blocks, and adding attention gates between nested convolutional blocks enables increase in
the weight of the target region while suppressing background regions that are not relevant
to the segmentation task; (iii) it enables model pruning during testing by introducing deep
supervision, which can reduce a large number of model parameters and thus speed up
the model segmentation. Moreover, the proposed segmentation method proved reliable in
localizing defects from the DSXImage database, achieving IoU and Dice values of 89.24%
and 94.31%, respectively.
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In the future, we plan to explore robust quantization and model compression tech-
niques to further reduce the model complexity and accelerate the inference process. More-
over, the current proposed defect detection system is developed to identify the defects
without classification. In the future work, this system will be modified and improved to
identify different types of defects such as gas holes, gas porosity, and shrinkage cavity.

We will continue to push forward in the construction of the database, and with
the consent of Deepsea, we hope to make the database public in the near future so that
more people can participate in the work, continue to improve the defect segmentation
performance, and make the algorithms better serve the industry.
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