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Abstract: The measurement and monitoring of the dimensional characteristics of the body-in-white
is an important part of the automobile manufacturing process. The process of using key point
regression technology to perform online detection of complex features on body-in-white currently
faces a bottleneck problem, namely limited training samples. Under the condition that the number of
labeled normal map samples is limited, this paper proposes a framework for domain-independent
self-supervised learning using a large number of original images. Under this framework, a self-
supervised pre-order task is designed, which uses a large number of easily accessible unlabeled
original images for characterization learning as well as a domain discriminator to conduct adversarial
training on the feature extractor, so that the extracted representation is domain-independent. Finally,
in the key point regression task of five different complex features, a series of comparative experiments
were carried out between the method in this paper and benchmark methods such as supervised
learning, conventional self-supervised learning, and domain-related self-supervised learning. The
results show that the method proposed in this paper has achieved significant performance advantages.
In the principal component analysis of extracting features, the representation extracted by the method
in this paper does not show obvious domain information.

Keywords: body-in-white; complex features; detection; self-supervised learning; the training sample

1. Introduction

The rapid development of the automobile industry makes it occupy an important
position in the global manufacturing industry and also makes automobile manufacturers
put forward higher requirements for product quality. Accurately measuring and monitor-
ing all kinds of dimensional features of an automobile body-in-white, especially complex
features, is an important means to improve the quality control of automobile manufac-
turing. Figure 1 shows the comparison between simple features and complex features.
Conventional 3D measurement technology is based on surface point cloud registration,
which can better capture the surface information of complex features, but it is difficult to
perform high-precision 3D reconstruction of these complex features [1–3]. This problem
can be solved by using the keypoint regression method [4,5]. However, the core algorithm
of this method is to regress keypoint coordinates from a two-dimensional normal map,
and its training process requires a large number of normal maps with keypoint location
labels. For industrial inspection and keypoint regression using surface normal maps, there
is currently no database available in the industry. The acquisition of the normal map
requires taking a large number of complex feature photos under multiple light sources
and using photometric stereo technology to reconstruct the surface normal vector. Key
point location calibration needs to go through relative position measurement of key points,
camera calibration and coordinate transformation, which leads to a considerable cost to
obtain the training data. Therefore, the question concerning how to complete the key point
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regression task based on normal map under the condition of limited number of labeled
samples has become a challenging topic in complex feature detection.
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At present, the research on the key point regression problem is generally based on the
deep learning technology of convolutional neural network, most of which are supervised
learning [6]. The training process of supervised learning often requires a large amount of
labeled data. In order to reduce the dependence of the keypoint regression method on the
labeled training data, scholars try to use unlabeled data for self-supervised learning [7].
Inspired by self-supervised learning, Doersch et al. [8] proposed to learn high-level image
representations by using predicting the relative positions of image patches as a pre-order
task of self-supervised learning. This work has spawned research on patch-based visual
representations for self-supervised learning, where Noroozi et al.’s model predicts the
arrangement of “jigsaw puzzles” created from complete pictures [9]. Others generate well-
designed image-level classification tasks in contrast to chunking-based methods. Caron
et al. [10] used image clustering to create class labels, with classification tasks as pre-
tasks. There are other pre-tasks for these methods such as image inpainting [11], image
colorization [12], motion segmentation prediction [13] and spatial output tasks with high
density. However, none of the above algorithms are applicable to the normal map-based
keypoint regression problem.

Many scholars have studied the use of original images for self-supervised learning,
and downstream tasks are also performed on the original images, but the representation
of complex features under the original images is not obvious. The key point regression
problem based on the original images is difficult to achieve satisfactory accuracy [14].
Research [15] shows that normal maps of complex features contain richer information than
raw images. If self-supervision is performed in the original image and downstream tasks
are performed in the normal map, the representation extracted by self-supervised learning
will contain domain information, that is, the domain gap between the two images makes
the representation learned by self-supervision in the poor performance in downstream
tasks [16].

To address this challenge, this study proposed a highly data-efficient domain-invariant-
self-supervised learning method (DISS). The model used by this method consists of two
parts: a feature extractor and a regressor. Feature extraction used a jig-saw-based self-
supervised pre-task (also translated as agent task) for training with both labeled and
unlabeled data. In order to eliminate the domain distance between the original image
and the surface normal map, this algorithm used a discriminator to assist training, and
reduced the “KL” divergence between the probability distribution of the original image
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and the surface normal map through adversarial training. The training of the regressor was
performed entirely using labeled data.

This paper was divided into four parts. Part 1 was the introduction. Part 2 elaborated
the framework of domain-independent self-supervised learning, including training data
and problem description, self-supervised pretext-task training, network architecture, and
training process. Part 3 was the experimental results and analysis, including the acquisition
of data sets, complex feature key point regression experiments, and principal component
analysis of extracted features. Part 4 was the conclusion.

2. Domain-Independent Self-Supervised Learning Framework
2.1. Training Data and Problem Description

Given a small amount of labeled normal map Dt =
{
(xt

i , yt
i)
}mt

i=1, in which mt repre-
sented the number of surface normal map, xt

i represented the surface normal map, and
yt

i represented the corresponding label. Given a large amount of unlabeled raw image
Ds =

{
(xs

i )
}ms

i=1, in which ms represented the amount of raw image, xs
i represents the raw

image. According to the assumptions of the question in this paper, there was ms � mt.
Given a test set Dv =

{
(xv

i , yv
i )
}mv

i=1, in which mv represented the number of test data, xv
i

represented the surface normal map, and yv
i represented the corresponding label. The goal

of DISS was to use only Dt and Ds for training and to minimize the error on the test set
Dv. The DISS training process was divided into two stages: training on the pre-task of the
feature extractor, and training on the downstream task of the regressor.

2.2. Pre-Task Training

In self-supervised learning, pseudo-labels are usually obtained from unlabeled data
to form pre-tasks. The design of the pre-task must meet two conditions: it can make the
neural network converge, and at the same time, it must learn useful knowledge. Typical
pre-tasks include: jig-saw puzzle, image rotation, image colorization, image completion, etc.
In this problem, the jig-saw puzzle works best. Since the surface normal map was obtained
from the original image through the photometric stereo algorithm, each normal map in
the dataset Dt corresponded to at least one original image, and these original images were
formed into a dataset Dr =

{
(xr

i , yr
i )
}mt

i=1. Given training dataset Dt, Dr and Ds, in which xs
i ,

xr
i and xt

i were divided into mp jig-saw pieces. The nine pictures were randomly shuffled in
order, and the shuffled different sequences were one-hot encoded to form pseudo-labels ys∗

i ,

yr∗
i and yt∗

i . They formed new data sets D∗t =

{
(xt

i,j, y∗ti )
mp

j=1

}mt

i=1
, D∗r =

{
(xr

i,j, y∗ri )mp

j=1

}mt

i=1

and D∗s =

{
(xs

i,j, y∗si )mp

j=1

}ms

i=1
, which were used to train the pre-task. Figure 2 simplified

the acquisition of the pre-order task using a four-piece puzzle. If the feature extractor can
correctly distinguish the order of the puzzles, the features extracted by the extractor must
also contain some kind of representation of the relationship between different parts of the
object.
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2.3. Network Architecture

The neural network architecture was shown in Figure 3. The network was divided
into four parts: feature extractor E, sorter S, domain discriminator C and regressor R. As
shown in the Figure 3, the training of DISS was divided into three stages. In the first stage
of pre-task training, the features extracted by the feature extractor were sent to the sorter
and the domain discriminator respectively. The target features extracted by the feature
extractor had domain-independent variability through adversarial learning. During the
regressor training process in the second stage, the parameters in the feature extractor were
frozen, and only the parameters of the regressor were updated in the network. In the
final fine-tuning stage, the parameters in the feature extractor and regressor were trained
simultaneously.
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The role of the feature extractor was to extract representations from the input that was
useful for downstream tasks. The feature extractor consisted of 3 convolutional layers and
a maxpooling layer, where the convolutional layers all used small convolution kernels.

The sorter was used for the pre-task. It sorted the features extracted by the feature
extractor, and extracted the information of the object structure by forcing the feature
extractor through learning. The sorter used a fully connected layer and a softmax layer as a
classifier to predict the shuffled order of the jig-saw puzzle in the pre-task. The total number
of categories of the pre-order task is equal to the factorial of the number of jig-saw puzzle
pieces, which will lead to very many classification categories, and too many categories
will cause training difficulties. Therefore, a small amount of all possible out-of-order
combinations was usually extracted, and then one-hot encoding was performed. In this
problem, 50 different out-of-order combinations were taken.

A large number of unlabeled samples in the training dataset came from the original
image dataset, whose data distribution had a domain distance from the surface normal
map dataset used for testing. The introduction of domain discriminator and adversarial
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training, on the one hand, was used to discriminate whether the extracted features were
from Dt or Ds, on the other hand, it could reduce the domain distance between the features
extracted from the original image domain and the surface normal map domain.

The regressor was used to estimate the complex feature keypoint locations through the
extracted features, which consisted of three convolutional layers and one fully connected
layer.

2.4. Training Process

The training process of DISS was divided into three stages: a pre-task stage, training
regressor stage, and fine-tune stage.

In the pre-task stage, the data sets D∗t =

{
(xt

i,j, y∗ti )
mp

j=1

}mt

i=1
, D∗r =

{
(xr

i,j, y∗ri )mp

j=1

}mt

i=1

and D∗s =

{
(xs

i,j, y∗si )mp

j=1

}ms

i=1
were used to train the feature extractor, domain discriminator

and sorter, and the process was shown in Figure 4. To simplify the description, the example
in Figure 4 was the case of a four-piece puzzle. The surface normal map xt

i was decomposed
into four small pictures, and four one-dimensional feature vectors were obtained through
the feature extractor E. The four vectors were shuffled in order y∗ti and concatenated into
one dimension to form the representation:

f ∗ti = Cat(
{

E(xt
i,j)
}mp

j=1
) (1)

where Cat( ) represented the vector concatenation operation. Did the same with D∗r and
D∗s to get the representation:

f ∗si = Cat(
{

E(xs
k,j)
}mp

j=1
), f ∗si = Cat(

{
E(xs

k,j)
}mp

j=1
) (2)
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After the features were extracted, the sorter needed to sort them. The representation
f ∗ti was input to the sorter:

p∗ti = S( f ∗ti ), p∗si = S( f ∗si ), p∗ri = S( f ∗ri ) (3)
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The domain discriminator needed to determine which domain (original image or sur-
face normal map) it came from, then the features were input into the domain discriminator
to get:

q∗ri = C( f ∗ri ), q∗ti = C( f ∗ti ) (4)

The ranking loss function Lp was defined as:

Lp =
ms

∑
i=1

Ce(p∗ri , y∗ri ) + Ce(p∗ti , y∗ti ) + Ce(p∗si , y∗si ) (5)

where Ce( ) was the cross entropy loss function.
Defined the discriminative domain loss function Ld

q :

Ld
q =

ms

∑
i=1
− log(1− q∗ri )− log(q∗ti ) (6)

Defined the extractor domain loss function Lg
q :

Lg
q =

ms

∑
i=1
− log(1− q∗ti ) (7)

When training the pre-order task, the feature extractor and the sorter were trained
simultaneously, and the domain discriminator was trained alternately with the other two
neural networks. The pseudocode of an epoch training process was shown in Algorithm 1.
Among them, λ was the learning rate, θE, θC, and θS were the neural network parameters
of the feature extractor, the domain discriminator, and the domain sorter, respectively.

Algorithm 1 Pre-task training algorithm

Input: D∗t =

[(
xt

ij, y∗tj

)mp

j=1

]mt

i=1
; D∗r =

[(
xr

ij, y∗rj

)mp

j=1

]mt

i=1
; D∗s =

[(
xs

ij, y∗sj

)mp

j=1

]ms

i=1
; λ

Initialize weights θE, θC, θS
for i = 1→ ms do

Extract features f ∗ti , f ∗si , f ∗ri according to formula (1) and (2)
if mod(i, 10) < 5 then

Calculate q∗ri , q∗ti according to formula (4)
Calculate the discriminative domain loss function Ld

q according to formula (6)
Calculate the extractor domain loss function Lg

q according to formula (7)
Update θC ← θC − λ∆Ld

q
else

Calculate the sort prediction p∗ri , p∗tj , p∗sj according to formula (3)
Calculate the ranking loss function Lp according to formula (5)
Update θE ← θE − λ∆(Lg

q + Lp)

Update θS ← θS − λ∆Lp
end if

end for

The training of downstream tasks was divided into two stages: training the regressor
and fine-tuning the model.

Regression training used only the dataset Dt =
{
(xt

i , yt
i)
}mt

i=1. The normal map in the
dataset was input into the pre-task trained extractor to get the representation:

fi = E(xt
i ) (8)

The features were fed into the regressor to get the predicted coordinates of the keypoints:

ŷi = R( fi) (9)
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The regression loss was calculated:

Lr =
mt

∑
i=1

MSE(ŷi, yt
i) (10)

Training process contained a total of δ epochs. The first δ f epochs were the training
regressor stage, which froze the model parameters of the feature extractor. After the δ f th
epoch, the fine-tuning stage was entered, and the feature extractor and regressor were
trained at the same time. The pseudocode of the training process was shown in Algorithm 2.

Algorithm 2 Regression task training algorithm

Input: D∗t = [(xt
i , yt

i )]
mt
i=1, λr, τ, δ, δ f

Initialize weights θR, θE
for j = 1→ δ do

for i = 1→ mt do
Extract features f t

i according to formula (8)

Extract features
∧
yi according to formula (9)

Calculate Lr
end for
if j < δ f then

Update θR ← θR − λr∆Lr
else

Update θR ← θR − λr∆Lr
Update θE ← θE − λr∆Lr

end if
if mod(j, τ) == 0 then

λr ← λr/2
end if

end for

3. Experimental Results and Analysis
3.1. Acquisition of Datasets

In order to evaluate the performance of the DISS framework proposed in this study,
a series of experiments were carried out in this paper. The experiment used the complex
feature database proposed by Liu et al. [15], in which the labels of the original image data
were completely hidden, and the labels of the normal map part were partly hidden, so as
to simulate the situation of missing data labels. Figure 5 described the process of obtaining
the four datasets used in this paper.
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Liu‘s dataset contains raw images, surface normal maps, labels, and was referred to
here as the original dataset. The mt sets of data containing the surface normal map and the
label were taken from the original dataset to form the normal map with labels dataset Dt.
The mr sets of data containing the original image and label were taken from this dataset to
form the original image with labels dataset Dr. Note that the Dt and Dr were aligned, so
they can use the same label data.

The ms sets of raw image data were taken from the original dataset to form the original
image dataset Ds. According to the hypothesis of the research question, there was mt � ms.
Finally, the mv sets of data containing the surface normal map and the label were taken
from the original dataset to verify the accuracy of the algorithm.

3.2. Complex Feature Keypoint Regression Experiments

The methods proposed in this paper were compared with the benchmark methods SL
(supervised learning), RSS (raw images self-supervised), and NRSS (normal maps and raw
images self-supervised). The SL adopted the direct regression method, which only used
labeled data for training. The RSS employed a Jig-saw-based self-supervised method, using
unlabeled data for pre-task training. The NRSS method did not use adversarial training
with a domain discriminator. The benchmark methods used for comparison were described
in detail in Table 1.

Table 1. Comparison of different methods in the experiment.

Method
Peculiarity

Use the Original Image Surface Normal Diagram Self-Supervision Confrontation Training

SL not Yes not not
RSS Yes Yes not not

NRSS Yes Yes Yes not
DISS Yes Yes Yes Yes

Here is a brief introduction to the difference between supervised learning and self-
supervised learning. Training samples for supervised learning must be labeled sample data.
Supervised learning is to train a model (learn a function) from a given labeled training data
sets. When new test data is input, the result can be predicted according to the function. Self-
supervised learning mainly uses proxy tasks to mine its own supervision information from
large-scale unlabeled data, and trains the network through the constructed supervision
information, so that it can learn valuable representations for downstream tasks.

Define the ratio of labeled data to unlabeled data,

α = mt/ms (11)

The ratio of unlabeled data to labeled data would affect how much the performance
improvement brought by self-supervised method would be. This parameter was proposed
for two reasons: First, it was to clarify the number of labeled data. Second, we could
analyze the impact of changes in the number of labeled samples on DISS by changing the
value of this parameter.

α = 5% was adopted in Experiment 1, and the results were shown in Table 2.
In the experiments, the DISS proposed in this paper had the lowest average error.

For the four complex features of N, P, S, and T types, DISS has the lowest error. For
complex features of B type, the error of the DISS method was also very close to the
lowest value. The experimental results fully reflected the advantages of DISS. Through
self-supervised training, DISS was able to learn useful information about the geometric
features of complex features in the pre-task using a large amount of unlabeled data, thereby
gaining an advantage in the downstream task. Compared with RSS and NRSS, which
also used self-supervised learning, DISS still had significant advantages. This was due to
the fact that although RSS used self-supervised learning, the input data for the pre-task
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and downstream tasks came from different domains, and this inter-domain bias resulted
in that self-supervision could only improve the final performance to a limited extent.
Comparing RSS and NRSS, it could be found that without using the domain discriminator
and adversarial training, adding the normal map to training dataset did not improve the
performance of the network on downstream tasks. This is due to the fact that although
the discriminator was able to rank the input data from two different domains correctly in
pre-tasks, there was no guarantee that the same representations were extracted from the
input data from the two different domains. The structure information of complex feature
learned by the feature extractor in the pre-task was mixed with different information from
the two domains. This made it impossible to ensure that useful information can be extracted
from input data from a single domain in downstream tasks.

Table 2. The average error of the proposed method and the three benchmark methods on five complex
features in Experiment 1.

The Characteristic Type Feature Recognition
Average Error (in Pixels)

DISS (Our Method) SL RSS NRSS

N-type features nut bolt 9.22 11.88 10.82 11.12
P-type features flat bolt 9.87 12.42 10.61 10.79
S-type features standard bolt 8.23 9.33 8.88 8.94
T-type features t-bolt 8.55 8.87 8.75 8.76
Type B features Ball-stud 7.43 7.42 7.44 7.56

average - 8.66 9.98 9.30 9.43

Compared with the SL method, DISS had more obvious advantages in N-type, P-
type and S-type features. The reason was that these three kinds of complex features were
relatively large in size and had rich texture and geometric features. In contrast, T-type
and B-type features were smaller in size and had centrosymmetric shapes. In the pre-
task, complex features with larger volume and richer surface information are easier to
distinguish, while complex features with small volume and centrosymmetric shape are
difficult to distinguish.

Experiment 2 was carried out when α takes three different values. Table 3 presented
the results of Experiment 2. For the sake of brevity, only the average error of all kinds of
complex features was shown here.

Table 3. The mean value of errors under different values of α.

α Value
Average Error (in Pixels)

DISS (Text Method) SL RSS NRSS

5% 8.66 9.98 9.30 9.43
10% 7.69 9.07 8.23 8.20
20% 5.88 6.38 6.40 6.48
40% 4.52 4.68 6.62 6.59

The results of experiment 2 showed that as the amount of labeled data increased,
the advantage of DISS over SL gradually decreased. This was due to the fact that the
fourth stage of DISS had the same effect as the last few epochs of SL. When the number of
labeled samples gradually increased, the effect of self-supervision was gradually masked
by supervised learning.

3.3. Principal Component Analysis of Extracted Features

In order to further analyze the influence of DISS on the feature extractor, a principal
component analysis (primary components analysis, PCA) experiment of extracted features
was carried out in this paper. The images xi in one dataset were imported into the fea-
ture extractor to get the representation of all samples, which were then expanded into
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n-dimensional vectors
→
f i
′ ∈ Rn×1, and all of the extracted features were represented as a

matrix:
F′ = [ f1

′ , f2
′ , . . . , fm

′ ] (12)

To normalize the data:

fi,j =
f ′ i,j − f i

′

√si,i
, i = 1, 2, . . . , n, j = 1, 2, . . . , m (13)

In which fi,j represented the elements in the normalized matrix F. To calculate its
sample correlation matrix as:

R =
1

n− 1
FFT (14)

The eigenvalues and eigenvectors of R were calculated to acquire two eigenvectors
corresponding to the largest two eigenvalues. The matrix combined by the two eigenvectors
was multiplied by the original normalized matrix:[

x̃
ỹ

]
=

[
α1
α2

]
F (15)

In which x̃, ỹ ∈ R1×m were the abscissa and ordinate of all dimensionality-reduced
data, respectively. The original image and the surface normal map in the dataset were input
into the feature extractor separately to get:

→
f

s

i,
→
f

r

i ∈ Rn×1, i = 1, 2, . . . , mp (16)

The two vectors were stitched into a matrix:

Fa = [
→
f

s

1,
→
f

s

2, . . . ,
→
f

s

i,
→
f

r

1,
→
f

r

2, . . . ,
→
f

r

i] ∈ Rn×2mp , i = 1, 2, . . . , mp (17)

Principal component analysis was performed on Fa according to the above method to
obtain dimensionality-reduced representations from different domains. Figure 6 showed
the results for different kinds of complex features.

It was easy to find from the experimental results that the features from the normal
map extracted by the DISS method are more indistinguishable from the features from the
original image. On the contrary, the features extracted by RSS and NRSS methods carried
obvious domain information. For example, the features from the normal map extracted
by the RSS and NRSS methods were clustered together, compared with the features from
the original image were more divergent. The features extracted by the DISS method did
not have this characteristic. Besides, the features extracted from the normal map by the
RSS and NRSS methods had a smaller abscissa, while the features of the original image
had a larger abscissa. This pattern was not obvious in the features extracted by the DISS
method. Overall, the feature distributions extracted by the DISS method for inputs from
the two domains were more similar. In contrast, the features extracted by RSS and NRSS
carry obvious domain information. In the training of the pre-task, the amount of original
image data was much larger than the amount of normal map data. How to effectively
utilize the features extracted from the original image was the key issue of self-supervised
learning in this research. The features extracted by the DISS method did not carry obvious
domain information, which enabled the features learned from raw images to be used in
downstream tasks using normal maps as well. The features extracted by the RSS and NRSS
methods had obvious domain information, and the distribution of the extracted features in
the two domains had obvious distance, which made the features learned from the original
image difficult to be used by downstream tasks.
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4. Conclusions

Aiming at the limited training samples of the complex feature detection technology of
body-in-white, the few-shot learning technique based on solving the domain gap problem
in this paper can effectively reduce the dependence of the complex feature measurement
system on the labeled normal map. The proposed self-supervised learning and domain-
adaptive learning method had 1.32 pixels lower error than the supervised learning method
using normal maps, 0.64 pixels lower than the self-supervised learning method using
the original image, and 0.51 pixels lower than the self-supervised learning method using
normal maps. In extracting feature principal component analysis, the representations
extracted by our method do not exhibit obvious domain information, which proves the
effectiveness of our method. The results of this paper are of great significance for improving
the data efficiency of complex feature detection methods and reducing implementation
costs.

Detection of fusion of complex features and simple features is the direction of fur-
ther research. There may be simple features with complex features in areas other than
automobile body-in-white dimension control. For example, it only has complex geometry,
but no complex reflection properties. How to use this characteristic to develop a higher
performance and lower cost detection system is a topic worthy of further study.
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