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Abstract: With the onset of the COVID-19 pandemic in late 2019, and the catastrophe faced by the
world in 2020, the food industry was one of the most affected industries. On the one hand, the
pandemic-induced fear and lockdown in several countries increased the online delivery of food
products, resulting in a drastic increase in single-use plastic packaging waste. On the other hand,
several reports revealed the spread of the viral infection through food products and packaging.
This significantly affected consumer behavior, which directly influenced the market dynamics of
the food industry. Still, a complete recovery from this situation seems a while away, and there is a
need to focus on a potential solution that can address both of these issues. Several biomaterials that
possess antiviral activities, in addition to being natural and biodegradable, are being studied for food
packaging applications. However, the research community has been ignorant of this aspect, as the
focus has mainly been on antibacterial and antifungal activities for the enhancement of food shelf
life. This review aims to cover the different perspectives of antiviral food packaging materials using
established technology. It focuses on the basic principles of antiviral activity and its mechanisms.
Furthermore, the antiviral activities of several nanomaterials, biopolymers, natural oils and extracts,
polyphenolic compounds, etc., are discussed.

Keywords: COVID-19; antiviral packaging; antiviral materials; antiviral mechanisms

1. Introduction

Coronavirus disease, popularly known as COVID-19, is a highly transmissible viral
infection caused by the SARS-CoV-2 viral strain. It was initially identified in December
2019, and the initial infections were presumed to be linked to the Huanan Seafood Market
in Wuhan city of China [1]. The transmission rate of this virus among humans was so
severe that it was ultimately declared a pandemic by the World Health Organization (WHO)
before too long in March 2020 [1]. This sudden unforeseen incident caused global turmoil,
especially among biotechnologists and virologists, who struggled to decode this puzzle.
Zhou et al. carried out the genetic sequencing of the SARS-CoV-2 virus. They compared
it with the bat coronavirus and found 96.2% similarity between the genetic organization,
suggesting the role of bats in the spread of this pandemic [2]. As the coronavirus research
evolved, the United States Center for Disease Control revealed that the first report on the
human coronavirus dates back to the 1960s. Several variants have been discovered to
date [3,4]. The viruses are capable of causing mild respiratory symptoms in humans and,
with genetic evolution over the years, have differentiated into several strains with different
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properties. SARS-CoV-2, which was the variant responsible for COVID-19, belongs to
the same category of coronaviruses to which Severe Acute Respiratory Syndrome (SARS)-
CoV and Middle East Respiratory Syndrome (MERS)-CoV belong [4]. Since the primary
transmission route of this category of viruses is the spread of droplets during coughing
and sneezing, they are capable of easily infecting a large population.

With the advancement of this pandemic, several countries enforced nationwide lock-
downs to control viral transmission. People were forced to stay indoors and work from
home, which, along with the total or partial closure of food establishments, made them
largely dependent on online ordering to meet their hunger needs [5]. This sudden and
unusual shift in the consumer behavior of ordering food online resulted in an exponential
increase in packaging-based non-biodegradable municipal solid waste, the highest contrib-
utor being single-use plastics. This further worsened the already existing massive problem
of municipal waste disposal, resulting in negative environmental consequences [5].

In addition to the negative consequences on the environment, the increased use of
packaging material led to negative health repercussions. It was reported that viral droplets
> 5 µm in size were too heavy to stay airborne and landed on surfaces and objects [6].
These infected surfaces and objects emerged as the indirect and more prevalent source of
cross-contamination, as the viruses were reported to stay active on surfaces depending
on the material type [5,7]. Studies reported that coronavirus persisted on plastic for 72 h
and cardboard surfaces for 24 h [7]. These materials, which play an important role in the
packaging of processed and ready-to-eat food, came under suspicion. The long stability of
SARS-CoV-2 on the surfaces of packaging materials created substantial risks and worries
regarding the global trade of packaged food, as the virus was capable of surviving on
the surface for the whole duration from production to consumption. Meanwhile, China
reported the presence of coronavirus strains on animal product packages of Brazilian origin,
which provided sufficient evidence that food packaging material may carry viruses, leading
to cross-contamination hazards [7]. The European Union also highlighted the possibility of
viral transmission via food packages [7].

These issues may be addressed by promoting the research on biopolymer compos-
ites for food packaging and developing practical applications. In the last decade, much
research has been conducted on natural biodegradable polymers for food packaging
applications [8–11]. Moreover, there have been many reports on the natural antibacte-
rial and antifungal additives present in these biopolymer films that could help in extending
the shelf life of packaged food products [12,13]. Furthermore, these biopolymer compos-
ites have been studied as a standalone packaging material and as surface coatings, either
directly on the food surface or as a coated layer on other packaging materials such as
paperboard [14]. Nevertheless, to date, the focus has been entirely on the antibacterial
and antifungal aspects of these functional biopolymer composite materials. Many of these
active components and base biopolymers possess antiviral properties that have long gone
unnoticed [15–18]. Biopolymers (such as chitosan [19] and carrageenan [20]), nanomaterials
(such as silver [21]), polyphenolic components (such as lignin [22]), and natural oils and
extracts (such as thyme [23], eucalyptus [24], and clove [25]), have been widely reported to
possess strong antiviral activities.

This review aims to cover the different perspectives of antiviral food packaging
materials using established technology. The prime focus is on the basic principles of
antiviral activity and its mechanisms. Furthermore, the antiviral activities of several
nanomaterials, biopolymers, natural oils and extracts, polyphenolic compounds, etc., are
debated. Finally, the current developments in the research on biodegradable antiviral
food packaging materials and coatings are reviewed, and possible future progress in this
research area is discussed.

2. Virus Structure and Infection Mechanisms

For the development of antiviral materials, understanding the virus types, their struc-
ture, and infection mechanisms is paramount. Viruses are tiny opportunistic intracellular
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parasites with a structure consisting of an outer protein coat covering nucleic acid (RNA or
DNA) in its core. A complete virus particle is called a virion. Viruses require a complex
metabolic and biosynthetic machinery of eukaryotic or prokaryotic host cells for prop-
agation and proliferation. Therefore, the virion transports its RNA or DNA genome to
host cells for it to be transcribed and translated. This leads to the formation of new virus
particles, where a new copy of the genome results from transcription, while their protein
capsid is formed due to translation. The viral genome and linked proteins are wrapped in
a symmetric protein capsid to form new virions. The nucleic acid-linked protein is called
nucleoprotein, and together with the genome, it forms the nucleocapsid. In enveloped
viruses, the nucleocapsid is encircled by a lipid bilayer derived from the modified host cell
membrane and studded with an outer layer of virus envelope glycoproteins [26].

Viruses are classified based on their nucleic acid content, the shape of their protein
capsid, their size, and the surrounding lipoprotein envelope. Their major taxonomic
distribution involves two classes based on nucleic acid content: DNA and RNA viruses [27].
The DNA or RNA viruses are further sub-divided based on whether they have double-
stranded or single-stranded DNA/RNA. An additional sub-division of the RNA viruses
is carried out based on the segmentation of the RNA genome. Single-stranded RNA
viruses are further classified into positive-sense viruses (i.e., RNA can be directly translated
into proteins) or negative-sense viruses (i.e., RNA requires a polymerase for transcription
into mRNA).

Coronaviruses are spherical, enveloped, single-stranded, positive-sense RNA viruses. In
clinical practice, the most frequent coronaviruses are OC43, 229E, HKU1, and NL63, which
characteristically depict common cold- and flu-related symptoms in immune-competent
people. SARS-CoV-2 is the third virus in the coronavirus family that has globally stimulated
serious ailments in humans [28] after Severe Acute Respiratory Syndrome (SARS) [29] and
Middle East Respiratory Syndrome (MERS) [30].

SARS-CoV-2 has a spherical shape with a diameter ranging from 60 nm to 140 nm and
distinctive spikes ranging from 9 nm to 12 nm. This gives SARS-CoV-2 virions a look similar
to that of the solar corona (Figure 1) [31]. SARS-CoV-2 is assumed to infect new hosts by
changing its spike protein and structure through genetic recombination and variation.

The virus infection cycle commences with the invasion of the host cell by the virion.
The virion is adsorbed on the host cell surface and undergoes attachment in this step. After
that, it either infiltrates the exterior layer of the host cell to enter the cytoplasm or instills
its genetic material into the cell interior while the outer protein capsid and/or envelope
relics at the surface of the host cell. A consequent uncoating step occurs inside the host cell
when the virion structure infiltrates completely. This step releases genetic material from the
virion to the host cell. In both scenarios, the virus’s genetic material cannot initiate protein
synthesis until it is released from the virion structure.

In the case of coronaviruses (SARS-CoV and SARS-CoV-2), when viral infection occurs
and the virion comes in contact with the host cell, the viral surface glycoprotein attaches to
the ACE2 receptor on the host cell surface. As this happens, viral endocytosis is triggered,
and endosome formation is initiated. The S glycoprotein comprises two subunits, S1 and
S2. As endocytosis commences, the S1 subunit undergoes proteolytic cleavage by cellular
proteases, exposing the S2 subunit, a fusion peptide responsible for fusing the viral envelope
with the endosome membrane. This process ultimately releases the viral capsid, exposing
the viral RNA. Following this, the single-stranded, positive-sense RNA of the virus is
translated to produce nonstructural proteins that assemble to form a replicase–transcriptase
complex (RTC) responsible for the RNA synthesis, replication, and transcription of nine
subgenomic RNAs. These subgenomic RNAs are finally translated to generate S, E, and
M structural proteins, which are forwarded to the endoplasmic reticulum (ER). In this cell
organelle, the viral genomes are encapsulated by N proteins and assembled with these
structural proteins to form new virions, which are finally transported to the cell surface in
vesicles and released in a pathway mediated by exocytosis [32]. The basic infection cycle of
a SARS-CoV-2 virion is depicted in Figure 2.
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Figure 1. Schematic structure of SARS-CoV-2. The viral structure is primarily formed by structural
proteins, such as spike (S), membrane (M), envelope (E), and nucleocapsid (N) proteins. The S, M, and
E proteins are embedded in the viral envelope, a lipid bilayer derived from the host cell membrane.
The N protein interacts with the viral RNA in the core of the virion. Adapted with permission from
ref. [32], published by Frontiers, 2020.
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Figure 2. Schematic representation of SARS-CoV-2 replication cycle in host cells. SARS-CoV-2 at-
taches to the host cells by interacting with the ACE2 receptors and spike proteins. After entry, the
viral uncoating process releases the viral genome, and the replication stage occurs (translation and
transcription). Structural proteins are produced in the intermediate compartment of the endoplasmic
reticulum with the Golgi complex and forwarded to assembly, packaging, and virus release. Com-
pounds with antiviral activity against SARS-CoV-2 are indicated in each step of the virus replication
cycle. Adapted with permission from ref. [32], published by Frontiers, 2020.
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3. Antiviral Materials and Mechanism of Action
3.1. Nanomaterials

Nanoparticles are the most commonly employed antimicrobial agents, and they are
known to be the most effective in inhibiting microbial growth. Specifically, it has been ob-
served that many nanoparticles show excellent antiviral activity [33,34]. In this section, the
antiviral properties of various types of nanoparticles, such as metal (silver and gold), metal
oxide (zinc oxide and copper oxide), quantum dots, and other nanomaterials (graphene ox-
ide, mesoporous silicon, functionalized nanoparticles, etc.), are briefly overviewed. Various
types of nanomaterials known for antiviral applications are shown in Figure 3.
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Even though silver nanoparticles have been the most popular antimicrobial agent used
since ancient times [12], their antiviral activity has not been clearly elucidated. Studies show
that silver nanoparticles effectively reduce the growth of many viruses, such as hepatitis,
H1N1, influenza, HIV, HSV1, and HSV2 [21,35,36]. Silver nanoparticles reportedly bind to
the viral surface of glycoproteins, blocking their adsorption and interaction with the target
host cell. However, it is also known that silver nanoparticles generate reactive oxygen
species (ROS) to exert an antiviral effect [34]. Besides silver, gold nanoparticles have also
been extensively utilized in biomedical applications. Various researchers have reported that
the antiviral activity of gold nanoparticles is effective against HSV1, hepatitis, influenza,
HIV, and many more [37,38]. Similar to silver, gold nanoparticles also exert an antiviral
effect by preventing the entry of virions into the host cells [34]. It is to be noted that the
antiviral action of metallic nanoparticles is highly reliant on the size and shape of the
nanoparticles [39]. Moreover, surface modifications play a major role in determining their
efficacy [34].
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Metal oxide nanoparticles are another most widely studied class of antimicrobial
nanoparticles. Zinc oxide nanoparticles have been extensively studied and reported to
exhibit antiviral activity [40–42].

Surface-modified zinc oxide nanoparticles can block the multiplication of HSV1, HSV2,
and H1N1 viruses [42,43]. In addition to blocking the interaction between virions and host
cells, zinc oxide nanoparticles are known to exert antiviral effects by releasing Zn2+ ions
in host cells and increasing their intracellular concentration, which results in a hindered
replication of a variety of RNA viruses [44]. Copper oxide has also been used to control viral
infection. Copper oxide-incorporated antiviral materials have been found to effectively
control HSV1 [45–47].

Apart from metal and metal oxides, other nanoparticles also possess antiviral potential.
Graphene oxide in its native form, or after functionalization, is also known to show antiviral
activity against RSV, HSV1, and HIV viruses [48,49]. The antiviral action of graphene oxide
is mainly presumed to be due to the inactivation of the virus and most likely due to the
inhibition of viral replication and hindrance in host–virus attachments [50]. Ag2S is also
antiviral against RNA viruses such as diarrhea viruses [51].

Quantum dots are zero-dimensional nanoparticles, usually below 10 nm in size. They
are emerging nanomaterials that have been used in the biomedical field, especially for
cell imaging, due to their photoluminescence property [52]. Although quantum dots have
mostly been used in electronics and related applications, some recent studies focused
exclusively on their immense antimicrobial potential [53]. Recently, the antiviral activity
of CdTe quantum dots against pseudorabies virus has been reported [54]. The antiviral
action is mainly due to the inhibition of the formation of viral antisense RNA. Recently,
the antiviral potential of low toxic carbon dots has been established [55,56]. Carbon dots
effectively eliminate diarrhea viruses, porcine parvovirus, and adenovirus [57].

Nanomesoporous silicon is another candidate effective against many viruses, such
as VEEV and HIV [58]. Silicon-based nanomaterials can also act as drug carriers [59].
Silicon-based antiviral nanomaterials are superior to their metallic counterparts due to their
excellent stability and lower toxicity [60].

Moreover, some organic nanoparticles have exhibited decent antiviral efficiency.
Polyhexylcyanoacrylate nanoparticles have been reported to inhibit HIV. Poly(lactic-co-
glycolic acid) (PLGA) nanoparticles have been found to block the replication of the HCV
virus [61,62]. Polymer-based nanomaterials are also known as suitable antiviral agents due
to their ability to carry and sustainably release antiviral drugs [63].

As already discussed in previous sections, viral infection comprises multiple stages
(Figure 2). Nanoparticles exert antimicrobial activity using several mechanisms as illus-
trated in Figure 4. The most common is the hindrance caused by nanoparticles in the
attachment of virus cells to the host cells’ surface receptor proteins [64]. Engineered
nanoparticles can block this primary viral infection step, thus protecting the host from
infection [65]. Viral infection can also be inhibited by hindering the entry of the virus inside
the target cell. In this context, nanoparticles can effectively modify the host cell membrane
and surface protein structures such that the virions are left unable to penetrate the host
cells [34]. Another effective strategy to control viral infection is to obstruct viral replication
by regulating the enzymatic machinery for viral DNA or RNA replication [64]. The last
strategy to prevent viral infection is preventing the budding of the host-infected virus [66].
It is a well-known phenomenon that the progenies of viruses can be more virulent to
the host than the parent virion. To this end, engineered functional nanoparticles can be
useful to block budding processes. The antiviral activity mechanisms of various kinds of
nanoparticles are provided in Table 1.
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Table 1. Antiviral activity mechanisms of various nanoparticles. Adapted with permission from
ref. [66], published by Elsevier, 2020.

Nanomaterial Virus Mechanism

Graphene oxide Respiratory syncytial
virus

Directly inactivates the virus and
inhibits attachment

Nanogel PRRSV Shields attachment and penetration

Silver nanoparticle Herpesvirus Affects viral attachment

Graphene oxide Herpesvirus Attachment inhibition

Gold nanoparticles Herpesvirus Prevent viral attachment and
penetration

Nanocarbon Herpesvirus Inhibits virus entry at the early stage

Silicon nanoparticles Influenza A Reduce the amount of progeny virus

Ag2S nanoclusters Coronavirus Block viral RNA synthesis and
budding

Gd2O3:Tb3+/Er3+

nanoparticles
Zika virus Antigen microcarriers for Zk2

peptide of ZIKV

Copper oxide nanoparticles Herpes simplex virus
type 1

Oxidation of viral proteins and
degradation of the viral genome

NiO nanostructures Cucumber mosaic
virus

Increase the expression of the pod,
pr1, and pal1 genes

Zirconia nanoparticles H5N1 influenza virus Promote the expression of cytokines

Zinc oxide nanoparticles H1N1 influenza virus Inhibit virus only after viral entry
into host cells



Coatings 2022, 12, 577 8 of 18

3.2. Natural Oils and Extracts

Natural compounds, such as essential oils and plant extracts, are also gaining atten-
tion as antiviral materials. The main functionality of essential oils and natural extracts
originates from their bioactive compounds, especially the polyphenols that are present
in them. These compounds are generally recognized as safe (GRAS) and are suitable
for consumption without any side effects [18]. There are numerous higher plan species
(~17,000) where essential oils are present, and over 3000 types have already been used [67].
At the same time, the antiviral properties of many of these essential oils have already been
established [68]. This section briefly overviews the antiviral properties and potential of
various plant-based materials.

In the case of the influenza virus, essential oils from sources, such as oregano, artemisia,
and salvia, were found to be very effective antiviral agents [18,68]. To inhibit HSV1 and
HSV2 infection, essential oils, such as anise, tea tree, eucalyptus, ginger, and artemisia,
were used [69–71]. Moreover, several essential oils were also found to be very effective
against many other viruses, such as dengue, polio, tobacco mosaic virus, herpes, mumps,
and HIV [71,72]. Interestingly, many essential oils were found to be highly effective
in controlling the novel coronavirus strain SARS-CoV-2, responsible for the COVID 19
pandemic [72–74].

Plant-based antiviral compounds commonly hinder viral growth and replication in
a dose-dependent manner. In this regard, it has been observed that essential oils exhibit
more efficient antiviral activity than commercially available drugs [68]. Even drug-resistant
viral strains have been found to be vulnerable to exposure to essential oils. For instance,
HSV1 virus strains were reportedly inhibited by Salvia desoleana essential oils [75]. Clove
(Syzygium aromaticum) essential oils are effective against different viruses, such as herpes
adenovirus, poliovirus, and coxsackievirus [18]. Moreover, it has also been revealed that
essential oils can effectively suppress viral infection with drugs. Recently, the combina-
tion of oseltamivir and Melissa officinalis essential oils showed synergistic effects against
influenza virus H9N2 [76]. Besides essential oils, natural extracts from several medici-
nal plants also possess strong antiviral effects. Tribulus (Tribulus terrestris) extracts are
reported to be composed of several flavonoids, tannin, and phenolic acids, which make
them biologically active and antiviral against HIV [18]. Anti-HIV activity is also found
in turmeric (Curcuma longa), which has curcumin as the active component. The antiviral
activity and other curcumin biological activities were previously verified and reported by
several researchers [77]. Cinnamon (Cinnamomum verum and Cinnamomum zeylanicum) and
ginger (Zingiber officinale) extracts also possess high anti-influenza virus activities [18].

The mechanism of the antiviral action of essential oils is dependent on various factors.
The first and foremost factor is the time that they are added during the viral infection
cycle [68]. For further insight into antiviral action, research on the morphological change in
viruses must be conducted. Essential oils can destroy or mask the action of a virus, and
electron microscopy has been used to study this aspect [78]. Earlier, it was reported that
murine norovirus treated with oregano essential oils had slightly modified morphology,
while treatment with carvacrol showed capsid disintegration [78]. Another key strategy of
antiviral activity is protein inhibition. Generally, viral surface proteins (such as hemagglu-
tinin) help in the attachment and invasion of the virus in the host cell, while some other
proteins (Tat protein) help in viral transcription [79]. Recently, it has been reported that
cedar leaf essential oils hinder the hemagglutinin protein, while thyme essential oils desta-
bilize the Tat protein [80,81]. Hence, essential oils render the viral metabolic machinery
inactive by inhibiting protein functions, resulting in antiviral effects. The target sites of the
antiviral action of essential oils are shown in Figure 5.
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3.3. Biopolymers

Polymeric materials are extensively used to develop various packaging materials,
including active packaging and smart packaging. Packaging systems should improve
food safety and enhance the food’s shelf life by protecting and maintaining its quality.
Polymeric materials possess characteristic features, such as easy processability, abundance,
and surface chemistry, that make them suitable for use in the development of antiviral
active packaging materials. Moreover, polymers are capable of easy strategic modifications,
including chemical modifications, physical modifications, blending, and incorporation with
active materials. Additionally, biopolymeric materials have been considered noteworthy
for food packaging due to their biodegradability and excellent sustained-release properties,
making them a lucrative option for use as a base material incorporated with various
active components [13,82]. Various biopolymers incorporated with nanomaterials, essential
oils, and plant extracts have been used to fabricate antiviral packaging film and coatings
(Table 2). These studies demonstrate the utilization of biopolymers as carrier materials
for active components with antiviral activities [16]. The active components are trapped
in polymeric materials and can be released depending on the storage conditions, such as
relative humidity, temperature, and pH.

Apart from utilizing biopolymers in the form of carrier matrices to active antiviral
components, several biopolymers are known to possess antiviral properties themselves.
Although they are widely distributed in several classes of biopolymers, a few important
ones are heparin, dextran sulfate, sulfoevernan, cellulose sulfate, carrageenan, chondroitin
polysulfate, chitosan, hyaluronic acid, etc. These polymers display decent antiviral activ-
ity [83,84].

Polyanionic biopolymers, including sulfated polysaccharides, such as dextran sulfate,
heparin, and agar, have been observed to show excellent antiviral activities [84]. The
mechanism by which polyanions exert an antiviral effect is adsorption inhibition. They
block cell attachment of the virions by adsorbing on the virus surface and preventing their
interaction with host cells (Figure 6). However, this virion–biopolymer interaction is also
reversible and, hence, not efficient. Another reported mechanism involves the production
of interferons by host cells on exposure to anionic polysaccharides [85]. Interferons are
signaling proteins released by a virus-infected cell to warn nearby cells so that they can pre-
pare and defend themselves against possible viral infection. It has been clinically confirmed
that sulfated polysaccharides, dextran sulfate, and heparin are strong HIV inhibitors [86].
Additionally, most polysaccharides obtained from sea algae, such as carrageenans, fu-
cans, alginates, galactans, naviculans, and sea algae extract, are known to possess strong
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broad-spectrum antiviral activity [84]. It has also been reported that the antiviral activity of
sulfated polysaccharides depends on their degree of sulfation (DS). DS refers to the number
of sulfate groups per monosaccharide unit. The λ-carrageenan (DS = 35%) is observed to
possess a 10 times higher antiviral potency against HIV than κ-carrageenan (DS = 25%) [86].
Other non-sulfated polyanions such as polyhydroxycarboxylates also possess antiviral
activity [84,85]. Non-sulfated mucopolysaccharide hyaluronic acid has also been reported
as a potential antiviral compound. It was reported as a wide-spectrum antiviral material
inhibiting the growth of coxsackievirus B5, mumps virus, influenza virus, herpes simplex
virus-1, etc. [87].
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Besides polyanionic biopolymers, biopolymers with a polycationic character, such as
chitosan, polylysine, polyarginine, and cationic dextran derivatives, are also reported to
be antiviral. The mechanism of antiviral action of polycationic biopolymers involves their
electrostatic interaction with the viral capsids and their destabilizations. Moreover, they
can inhibit virus–host cell interactions by binding to the negatively charged domains on
the virus surface [83,88]. Chitosan has been used for the inhibition of norovirus. However,
despite demonstrating an insufficient effect, some methods have been reported to elicit
its antiviral effect—higher concentrations, longer incubation times, a higher degree of
deacetylation, and higher molecular weight can result in the enhanced antiviral activity of
chitosan [83,88].

Therefore, several biopolymers widely studied in food packaging applications possess
innate antiviral activity that has not been explored until recently. As discussed in the
Introduction, the first signs of packaging-based cross-contamination from the SARS-CoV-2
virus emerged from animal product packaging. There have been several studies where
ionic polysaccharides, such as alginate [89], agar [53], carrageenan [90], and chitosan [91],
have been suggested for the packaging of animal products. Since it is widely reported that
these biodegradable food packaging materials are naturally antiviral, it can be logically
presumed that they can protect packaged food from viral infections. Hence, biodegradable
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polymer materials could be used as antiviral packaging materials, especially those based
on ionic polysaccharides.

4. Current Developments in Antiviral Food Packaging

Antiviral coatings and packaging systems are potential candidates for improving
food safety and quality against foodborne pathogens [16,92]. As already discussed, the
contamination of food products by viral pathogens occurs in seafood, vegetable products,
and fruit products, and it is a prime reason for the outbreak of viral diseases. Additionally,
the packaging material is suspected to play a critical role in indirectly transmitting viral
infection via cross-contamination. There has been a surge in research and development to
fabricate antiviral materials for targeted food packaging, such as active coatings, films, and
multilayer packaging systems (Table 2). As described in the previous sections, biopolymers,
essential oils, active components from plant materials, and antiviral active nanomaterials
have been widely used in antiviral food packaging. In this section, the use of multilayer
systems and edible films and coatings with antiviral activity for the packaging of food
products is discussed.

Multilayered packaging systems are developed to improve packaging properties, such
as barrier properties, mechanical properties, and storage stability. However, adding an-
tiviral materials as a layer to the packaging system is a strategic route to develop antiviral
packaging systems. Multilayered packaging systems are developed following lamination,
coextrusion, coating technologies, etc. Functional carbon dots, metal-nanoparticle-based
graphene oxide, and other nanomaterial-based coatings can be used as antiviral materials
to develop antiviral food packaging [92,93]. In active packaging, the organic compound
cinnamaldehyde with virucidal activity was used to develop biodegradable multilayer
systems [94], where the efficacy of cinnamaldehyde against norovirus surrogates, murine
norovirus, feline calicivirus, and hepatitis A virus was tested. Some researchers have
also reported biodegradable antiviral coatings on non-biodegradable packaging materials.
Antiviral materials based on rosemary, raspberry, and pomegranate extracts, prepared by
supercritical CO2 extraction, as active coatings are used to cover low-density polyethylene
(LDPE) films in order to develop functional food packaging, where the antiviral activity
has been found to decrease the number of Φ6 bacteriophage (a surrogate for airborne
viruses) [95,96]. Additionally, ZnO nanoparticles, carvacrol, and geraniol-based antivi-
ral external coatings have been found to be effective against Φ6 bacteriophage and can
be used to develop multilayer active polyethylene packaging [97]. An electrospun coat-
ing based on silver nanoparticles, silver nitrate, and polyhydroxyalkanoates was tested
against norovirus surrogates [98]. In a dose-dependent manner (2.1 and 21 mg/L), the
silver ions and nanoparticles could decrease norovirus surrogates (feline calicivirus and
murine norovirus).

Moreover, the safety of food products can also be improved by developing antiviral
active edible coatings and film materials. Edible films and coatings differing in their
method of application on food products are developed from biodegradable materials that
possess biodegradability similar to that of the food products [99]. An edible coating is an
edible food packaging system where a thin layer of edible materials is applied to food
products for improved shelf life and quality [99]. Edible food packaging is fabricated
from biomaterials, including polysaccharides, proteins, and lipids. At the same time,
incorporating edible active components, including plant extract, essential oils, and other
active polymeric materials, into edible coating solutions can provide them with the required
antiviral functionality [100]. However, edible films are used as sandwich materials or as a
wrapper on food products for improved food quality and properties [101]. Nanomaterials
and nanomaterial-based coating with antiviral activity protect from viral transmission [92].
The use of edible films and coatings can significantly reduce the viral contaminations on
the surface of the food products without affecting the physicochemical properties of the
food products.
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In this regard, several antiviral films and coatings have been reported. Edible films
and coatings based on chitosan and grape seed extract effectively reduced foodborne
viruses such as human norovirus [19]. A solution of chitosan (2% w/w) with added grape
seed extract (5%) reduced the virus by 4.00 log PFU/mL after 3 h [19]. Active edible
films based on alginate, lipid, grape seed extract, and green tea extract provide antiviral
activity tested against murine norovirus and hepatitis A virus [82]. A 2-log reduction for
alginate films incorporated with 0.75 g of extract (per g of alginate) was reported. Green
tea extract was found to be more efficient than grape seed extract, and it provided more
potency against infection. Another study reported edible coatings based on carrageenan
and green tea extract and their application to blueberries and raspberries. The addition of
green tea extract improved antiviral activity at ambient and refrigerated temperatures [20].
Additionally, the effectiveness of a food-grade edible coating based on alginate-oleic acid
incorporated with green tea extract exhibited more antiviral efficacy in strawberries than in
raspberries [102]. Compared to control, a reduction of 1.5–2 log of murine norovirus and
hepatitis A virus has been observed in fresh strawberries at 10 ◦C for 4 days’ storage. The
development of edible antiviral coatings of Persian gum, gelatin, and allyl isothiocyanate
was also effective against murine norovirus. At refrigerated conditions, the addition of
allyl isothiocyanate improved the antiviral property of Persian gum [103]. Thus, several
antiviral active edible films or coatings on food products have been developed, and they
can be useful to reduce viral contamination and improve food safety and quality.

Table 2. Antiviral active packaging system for food products.

Components Types of Packaging Tested Against Reference

Cinnamaldehyde
Zein
Polyhydroxybutyrate

Biodegradable
multilayer system

Murine norovirus
Feline calicivirus
Hepatitis A virus

[94]

Chitosan
Grape seed extract

Edible coatings and
edible films

Murine norovirus
(MNV-1) [19]

ZnO
Carvacrol
Geraniol

Active external
coating Φ6 bacteriophage [97]

Polyethylene film
Rosemary, raspberry, and
pomegranate extracts

Films covered with
active coatings
(functional food
packaging)

Φ6 bacteriophage [95,96]

Alginate
Lipid
Grape seed extract
Green tea extract

Emulsified edible
films

Murine norovirus
Hepatitis A virus [82]

Silver nanoparticles
Silver nitrate
Polyhydroxyalkanoates

Electrospun coating Norovirus surrogates [98]

Carrageenan
Green tea extract Edible coating Murine norovirus

Hepatitis A virus [20]

Alginate
Oleic acid
Green tea extract

Edible coating Human norovirus
Hepatitis A virus [102]

Persian gum
Gelatin
Allyl isothiocyanate

Antiviral edible
coating Murine norovirus [103]
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5. Conclusions and Future Perspectives

Since the onset of the SARS-CoV-2 virus-related global pandemic in 2019, the food
industry has faced many impediments, especially in food packaging. Since the majority of
the packaging material used throughout the world involves the use of non-biodegradable
plastics, it has caused two major issues: (a) with the global lockdown and upsurge in
food delivery services to meet the hunger needs of people, the utilization of plastic-based
packaging increased, which, in turn, led to an increase in non-biodegradable municipal
solid waste; (b) there had been reports on the transmission of viral infection due to cross-
contamination caused by the packaging material while in use or even after disposal, as the
coronavirus actively persists on plastic for long periods of 72 h.

Biopolymer-based food packaging materials are possible alternatives to non-biodegradable
packaging and can help solve these issues. Since biopolymers are biodegradable, their contribu-
tion to municipal solid waste will be markedly reduced. Moreover, several biopolymers, such
as alginate, carrageenan, and chitosan, commonly used in the fabrication of biodegradable food
packaging films, have been reported to possess antiviral activity. Packaging materials made
from antiviral biopolymers will prevent the persistence of viral particles on their surfaces and,
hence, will avert cross-contamination. Furthermore, incorporating sustainable additives into
these polymer films can enhance the antiviral potential of these films. Antiviral additives, such
as nanomaterials, natural oils, and herbal extracts, will help facilitate the packaging material’s
physicochemical properties while contributing to its antiviral efficacy. From a sustainability
perspective, biopolymer films incorporated with natural oils and plant extracts could be a com-
pletely natural, economic, safer, and eco-friendly option for the fabrication of biopolymer-based
antiviral packaging.

Biodegradable polymeric materials incorporated with natural oils and plant extracts
have long been studied for potential food packaging applications. Although these materials
have been widely studied for their several functionalities, such as antibacterial, antifungal,
and antioxidant properties, there is a scarcity of reports discussing their antiviral food
packaging properties. However, independent reports elaboratively discuss the antiviral
properties of ionic biopolymers, plant extracts, and essential oils, which can help researchers
reach a logical conclusion that many of the biodegradable packaging materials studied to
date tend to possess antiviral functionality. However, concrete quantitative and qualitative
research is still needed to prove this hypothesis. To ensure food safety and sustainability,
exploring the potential of natural antiviral bioactive components in food packaging is
essential. Moreover, it is presumed that the demand for biodegradable antiviral food
packaging and coatings will increase further in the post-pandemic period, and efforts are
required to analyze the practicality of these natural antiviral materials and their potential
to be quickly commercialized.
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