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Abstract: The variational mode decomposition mode (VMD) has a reliable mathematical derivation
and can decompose signals adaptively. At present, it has been widely used in mechanical fault
diagnosis, financial analysis and prediction, geological signal analysis, and other fields. However,
VMD has the problems of insufficient decomposition and modal aliasing due to the unclear selection
method of modal component k and penalty factor α. Therefore, it is difficult to ensure the accuracy
of fault feature extraction and fault diagnosis. To effectively extract fault feature information from
bearing vibration signals, a fault feature extraction method based on VMD optimized with infor-
mation entropy, and robust independent component analysis (RobustICA) was proposed. Firstly,
the modal component k and penalty factor α in VMD were optimized by the principle of minimum
information entropy to improve the effect of signal decomposition. Secondly, the optimal parameters
weresubstituted into VMD, and several intrinsic mode functions (IMFs) wereobtained by signal
decomposition. Secondly, the kurtosis and cross-correlation coefficient criteria were comprehensively
used to evaluate the advantages and disadvantages of each IMF.And then, the optimal IMFs were
selected to construct the observation signal channel to realize the signal-to-noise separation based
on RobustICA. Finally, the envelope demodulation analysis of the denoised signal was carried out
to extract the fault characteristic frequency. Through the analysis of bearing simulation signal and
actual data, it shows that this method can extract the weak characteristics of rolling bearing fault
signal and realize the accurate identification of fault. Meanwhile, in the bearing simulation signal
experiment, the results of kurtosis value, cross-correlation coefficient, root mean square error, and
mean absolute error are 6.162, 0.681, 0.740, and 0.583, respectively. Compared with other traditional
methods, better index evaluation value is obtained.

Keywords: variational mode decomposition (VMD); information entropy; robust independent com-
ponent analysis (RobustICA); fault feature extraction; rolling bearing

1. Introduction

Rolling bearing is one of the widely used parts in rotating machinery and equipment
in the manufacturing system. It widely exists in the power end, transmission end, and
execution end. Due to its complex working environment, it is very prone to failure. Ac-
cording to relevant statistics, about 30% of failures in rotating machinery are related to
rolling bearings. Therefore, the research on fault diagnosis of rolling bearing is of great
significance to ensure the production safety of relevant enterprises. However, in the actual
operation process, due to the influence of external noise, receiving distance, and sensor
working environment, the fault characteristics of this component are submerged in the
interference of intensebackground noise, which has a significantimpact on fault diagnosis.
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At present, the bearing fault diagnosis method based on signal processing has ex-
perienced three processes: time–domain analysis, frequency domain analysis, and time–
frequency domain analysis. Because the fault signal of rolling bearing is non-stationary
and nonlinear, the time–frequency domain analysis method is relatively suitable for pro-
cessing this signal. Since the development of the time–frequency analysis method, the
algorithms often used by relevant experts and scholars include Short-time Fourier trans-
form (STFT) [1,2], S-transform [3], Wigner Ville distribution (WVD) [4], wavelet transform
(WT) [5,6], etc., singular spectrum decomposition (SSD) [7], spectral kurtosis (SK) [8], mor-
phological filtering (MF) [9], and singular spectrum analysis (SSA) [10], etc. However, these
methods havetheir ownlimitations. For example, the window function of STFT is fixed,
which is not conducive to the analysis of non-stationary bearing fault signals. The standard
deviation of the S-transform in the Gaussian window function is fixed as the reciprocal of
the frequency, which makes the time–frequency aggregation of the high-frequency part of
the signal not ideal.WVD has good time–frequency aggregation, but there is cross-term
interference. Although WT has the time–frequency local analysis ability of adjustable
window, the scale of wavelet transform does not have a good corresponding relationship
with the frequency of signal. In SK algorithm, how to set the parameters of passband center
frequency and resonance bandwidth will affect its application effect. In MF algorithm,
it is difficult to effectively select the type and size of the structuring element. In SSA
algorithm, the embedding dimension and time delay of phase space reconstruction cannot
be set automatically. After continuous development, relevant scholars have proposed many
adaptive signal processing methods based on previous research results and applied them to
the fault feature extraction of rolling bearing. For example, empirical mode decomposition
(EMD) [11], ensemble empirical mode decomposition (EEMD) [12], local mean decomposi-
tion (LMD) [13], etc., Jiang et al. [14] proposed a fault feature extraction method combining
EMD and 1.5-dimensional spectrum. In this method, the signal components decomposed
by EMD are screened and reconstructed Then the reconstructed Hilbert envelope signal
is analyzed by a 1.5-dimensional spectrum to obtain the characteristic fault frequency of
bearing. The effectiveness of the proposed method is proved by experimental analysis.
Fan et al. [15] used EMD and pesudo-Wigner-Ville distribution (PWVD) to convert rolling
bearing vibration signals with different fault degrees into contour time–frequency images,
then extracted energy distribution values as features, and constructed a fault diagnosis
model based onfuzzy c-means (FCM). Experimental results show that this method has
high recognition accuracy. Hou et al. [16] proposed a fault diagnosis method composed
of EEMD, permutation entropy (PE), and Gath Geva (GG) clustering algorithm to solve
the problem that it is difficult to identify the fault type of rolling bearing. Experimental
results show that the proposed fault diagnosis method can achieve better clustering results.
Liang et al. [17] proposed a fault diagnosis method based on long-term and short-term
memory network (LSTM) and LMD, to improve the defects of the LMD method. The
results show that the method successfully extracts the characteristic frequencies of rolling
bearing. Although the above time–frequency analysis methods have achieved certain
results, they are based on the principle of recursive decomposition, so they have not been
well solved in the aspects of modal aliasing and endpoint effect. To solve this problem,
Dragomiretskiy et al. [18] proposed a new adaptive decomposition method variational
modal decomposition. The algorithm makes the decomposition result stable through the
construction of the variational problem and is applied to the fault diagnosis of rotating
machinery. Ye et al. [19] decomposed the bearing vibration signal by the VMD method
and introduced the characteristic capability ratio criterion to screen the qualified signal
components for reconstruction. Then, the multi-dimensional features of the signal are
extracted and input into the particle swarm optimization (PSO) andsupport vector machine
(SVM) classification model for fault diagnosis. The results show that the proposed method
has higher recognition accuracy than the existing methods. Li et al. [20] proposed a fault
diagnosis method combining VMD and fractional Fourier transform (FRFT) to solve the
problem that it is difficult to extract fault features and over decomposition when applying
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the VMD method to rolling bearing fault diagnosis. By analyzing the results of simulation
experiments, the method has a good effect. Xing et al. [21] combined VMD, Tsallis entropy,
and fuzzy c-means clustering (FCM) and applied them to fault diagnosis. Through the
analysis of the measured vibration signal of rolling bearing, the results show that this
method can obtain better results than EMD and LMD methods.

The signal processed by time–frequency analysis contains a lot of noise, which has a
specificimpact on the fault feature extraction. Therefore, the signal needs further processing.
In recent years, the technology based on blind source separation has become one of the
research hotspots. This technology optimizes multiple observation signals according to
the principle of statistical independence and decomposes them into several independent
components, so as to achieve the purpose of signal enhancement. Robust independent
component analysis (RobustICA), as an algorithm with outstanding advantages in blind
source separation methods, has been widely used in signal analysis, fault diagnosis, and
other fields because of its good effect in signal-to-noise separation effect and calculation
efficiency [22–24]. Yang et al. [25] proposed a signal noise-reduction method based on the
combination of complementary ensemble empirical mode decomposition (CEEMD) and
RobustICA to reduce the noise of pipeline blockage signals. Through the processing and
analysis of simulation signals and pipeline blockage detection signals, the results verify
the effectiveness of the proposed method. Yao et al. [26] studied the noise reduction of
internal combustion engine signals by using the combination of Gammatone filter bank and
RobustICA. Experiments show that the classification effect of signal and noise obtained by
this method is good. Zhao et al. [27] combined EEMD, RobustICA, and Prony algorithms
and applied them to the identification of low-frequency oscillation signals in the power
system. Experiments show that the proposed method has a strong anti-interference ability
and can effectively suppress noise.

In this paper, a fault feature extraction method based on VMD optimized with in-
formation entropy and RobustICA is proposed. Firstly, the fault signal is decomposed
by VMD, and the number of modal components k and penalty parameters α are selected
according to the optimization principle of minimum information entropy. Then, the optimal
parameters are substituted into VMD and the signal decomposition operation is carried out.
Secondly, the signal components are filtered through the constructed signal component
screening criteria, and the observation signal channel is constructed, so as to realize the
signal-to-noise separation based on RobustICA. Finally, the denoised signal is demodulated
by Hilbert envelope, and the fault characteristic frequency is extracted.

The main contributions of this paper are summarized as follows:

(1) A method of optimizing VMD by information entropy is proposed to set initialization
parameters so that VMD can adaptively expand signal decomposition;

(2) In this study, kurtosis and cross-correlation coefficient criteria are comprehensively
used to evaluate the advantages and disadvantages of each eigenmode function, and
the optimal eigenmode function is selected to construct the observation signal channel,
which completes the separation of useful signal and noise signal; and

(3) The effectiveness and feasibility of the proposed method are verified by experimental
analysis using simulation signals and actual bearing data sets.

The structure of this paper is as follows. Section 2 introduces the basic principles of
VMD, information entropy, and the RobustICA algorithm. Section 3 introduces the specific
implementation process of the fault feature extraction method based on information entropy
optimization VMD and RobustICA. In Section 4, the stimulation signal is experimentally
studied by using the proposed method. In Section 5, the effect of the method is further
verified by the actual bearing fault signal experiment. Section 6 is the discussion and
conclusions.
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2. Basic Methods
2.1. VMD

Variational modal decomposition (VMD) is developed by University of California
scholars Dragomiretskiy et al., in 2014 [18]. Based on Wiener filtering, this method searches
for the optimal solution of the input signal within the framework of variational model. It
can adaptively update the center frequency, bandwidth, and corresponding sub signals,
and decompose the independent components of the signal from the frequency domain. As
a non-recursive signal analysis method, the core idea of the VMD method is to determine
the intrinsic mode function (IMF) by solving the variational problem. Therefore, in the
VMD algorithm, the IMF component obtained by signal decomposition is different from
that in EMD and LMD algorithms. The original signal is non recursively decomposed into
several IMF components with limited bandwidth:

µk(t) = Ak(t)cos[φk(t)] (1)

In the above formula, Ak(t) is the instantaneous amplitude of µk(t), and Ak(t) ≥ 0.
φk(t) is phase and φk(t) ≥ 0. ωk(t) is the instantaneous phase of µk(t).

ωk(t) = φk′(t) =
dφk(t)

dt
(2)

In the above formula, µk(t) can be regarded as a harmonic signal, its amplitude is
Ak(t) and its frequency is ωk(t).

It is assumed that each mode has a limited bandwidth with central frequency, and
the central frequency and bandwidth will be updated continuously in the decomposition
process. Then the variational problem can be expressed as finding r modal functions µk(t)
and minimizing the estimated bandwidth forthe sum of all modal functions. The sum of
modes is the input signal.VMD algorithm can obtain k discrete modes µk(t) (r ∈ 1, 2, · · · , R)
by decomposing signal X(t). Then, the frequency bandwidth of each modal signal is
estimated in the following manner.

(1) Hilbert transform is extended to the modal function, and the marginal spectrum
is obtained. (

δ(t) +
j

πt

)
∗ µk(t) (3)

(2) Each estimated center band is modulated to the corresponding fundamental band.[
(δ(t) +

j
πt

) ∗ µk(t)
]

e−jωkt (4)

(3) The square L2 norm of the demodulated signal gradient is obtained.∥∥∥∥dt[(δ(t) +
j

πt
) ∗ µk(t)]e−jωkt

∥∥∥∥2

2
(5)

By constructing the VMD variational constraint model based on the above formula,
the following formula can be formed.

min
{µk},{ωk}

{
k
∑

k=1
‖dt[(δ(t) +

j
πt ) ∗ µk(t)]e−jωkt‖2

2

}
s.t.

k
∑

k=1
µk(t) = x(t)

(6)

In the above formula, {µk(t)} = {µ1, µ2, µ3, · · ·µk} is the function set of each mode.
{ωk} = {ω1, ω2, ω3, · · ·ωk} is the central frequency set. δ(t) is the unit pulse function. dt is
the derivative of the function over time t. s.t. is the constraint. x(t) is the original input
signal, where k is the number of decompositions.
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By introducing penalty factor and Lagrange multiplication operator b, the constrained
model problem in Equation (5) can be transformed into a non-constrained model problem,
as in Equation (6).

L({µk}, {ωk}, λ) = α
k

∑
k=1

∥∥∥dt[(δ(t) +
j

πt
) ∗ µk(t)]e−jωkt

∥∥∥2

2
+

∥∥∥∥∥x(t) −
k

∑
k=1

µk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), x(t)−

k

∑
k=1

µk(t)

〉
(7)

By constantly iteratively searching for the minimum point of Lagrange function L, the
original input signal a will be decomposed into k modal functions µk(t).

When using VMD decomposition algorithm to adaptively decompose the signal, the
decomposition parameters need to be set in advance. Theoretical research shows that the
parameters that have a great impact on the decomposition effect mainly include the number
of decomposition k and the penalty parameter α. Therefore, setting these two parameters
only by experience will bring great errors to the decomposition results of VMD. Among
them, the size of k value is directly related to the decomposition effect of VMD. If the value
of k is too small, it will lead to under decomposition of the signal, and the resulting signal
is not completely decomposed into components. If the value of k is too large, the signal will
be decomposed too much, resulting in over decomposition. At the same time, the value
of a has a certain impact on the bandwidth of the decomposed component. If the value of
a is too small, the bandwidth of the decomposed component will be too large, and some
components will include other components. If the value of a is too large, the bandwidth of
the decomposed component will be too small, and some components in the decomposed
signal may be lost.

2.2. Information Entropy

The concept of entropy originates from thermodynamics and is used to describe
the disorder degree of the system. Based on this idea, scholar Shannnon proposed the
concept of information entropy [28]. Information entropy is a concept used to measure
the amount of information in information theory. When a system is more orderly, the
value of information entropy will be smaller. On the contrary, when the disorder degree
of the system becomes higher, the value of information entropy will become larger. The
calculation formula of information entropy is as follows:

G(x) = −
n

∑
i=1

P(xi)logP(xi) (8)

where P(xi) represents the probability of occurrence of an event xi in the system, and n
represents the number of samples to be analyzed.

2.3. Robust Independent Component Analysis

RobustICA algorithm is proposed by Zarzoso et al. [29,30]. Because the observation
data used in it does not need whitening preprocessing, it can only meet the condition that its
mean value is zero, so the problem of introducing error is avoided. The algorithm realizes
the kurtosis optimization by using linear search and algebraic calculation of the global
optimal step size. The frame of independent component analysis is shown in Figure 1 [31].
Assuming that the mixed data containing noise is X and the output signal is Y = WX, the
kurtosis formula can be expressed as follows:

K(W) =
E
{∣∣ Y

∣∣4} − 2E2{∣∣ Y
∣∣2}−∣∣E{Y2}|2

E2{|Y|2} (9)

where E {·} represents mathematical expectation, W represents separation matrix.
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Figure 1. Frame of independent component analysis.

An exact linear search is performed by using the absolute value of kurtosis as the
objective function:

µopt = argmax
u
|K(W + µg)| (10)

The search direction g is usually gradient, namely. g = ∇wK(W). It is expressed
as follows:

g = ∇wK(W) =
4

E2{|Y|2}

{
E
{∣∣∣ Y2

∣∣∣}YX − E{YX}E
{

Y2
}
−

(E
{∣∣ Y

∣∣4} −∣∣E{Y2}∣∣2)E{YX}
E{|Y|2} (11)

where K indicates kurtosis. E {·} represents mathematical expectation. ∇w indicates
gradient.

In the process of each iterative operation, the operation steps of RobustICA is as follows:
(1) Find the coefficients of the optimal step polynomial:

P(u) =
4

∑
k=0

akuk (12)

(2) Extract the root of the optimal polynomial (12).
(3) In the search direction, the root value that maximizes the kurtosis is selected as the

optimal step
µopt = argmax

u
|K(W + µg)| (13)

(4) Update the separation vector: W+ : W+ = W + µoptg;
(5) Normalized the separation vector: W+ : W+ ← W+

‖W+‖ ;
(6) If there is no convergence, return to Step (1), otherwise the solution of the separation

vector is completed.

3. Fault Feature Extraction Based on VMD Optimized with Information Entropy and
RobustICA
3.1. Parameter Optimization of VMD

During the working process of rolling bearing, because the inner ring will rotate with
the shaft, the pressure of therolling bearing changes periodically. When the rolling bearing
fails, the damaged part’s surface will contact other parts and collide. Therefore, it will
produce periodic pulse impact. According to this bearing characteristic, the information
entropy theory can be used to measure the above changes. When the periodic impact is
more uniform, the signal is more orderly, so the value of information entropy will be smaller.
Therefore, if the IMF component obtained by VMD decomposition contains more fault
information, its performance will be more orderly, and the value of information entropy
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will be smaller. In this research, envelope entropy is introduced to measure signal sparsity.
The envelope entropy of IMFi(j) component of signal decomposed by VMD algorithm can
be expressed as follows:

Ei = −
n

∑
j=1

Pi,jlogPi,j (14)

Pi,j = ai(j)/
n

∑
j=1

ai(j) (15)

where, i represents the sequence number of IMF obtained by the decomposition of signal
x(j) (i = 1, 2, 3, · · · ). Pi,j represents the normalized result of ai(j). ai(j) is the envelope
signal of signal component IMFi(j) after Hilbert envelope demodulation. Based on this, this
paper adopts the principle of minimum envelope entropy to determine the initialization
parameters of VMD.

In parameter optimization, the value of α can be given first, and the optimal value of
mode k can be determined based on the principle of minimum envelope entropy. After
obtaining the value of k, the optimal value of α is further determined based on the value of
k. Its optimization objective can be expressed as shown in Formula (16). Where kmin and
kmax represent the minimum and maximum values of the interval range of modal k search,
respectively. αmin and αmax represent the minimum and maximum values of the interval
range searched by the penalty factor α, respectively. The specific optimization process is
shown in Figure 2. 

min{E}
s.t. kmin ≤ kz ≤ kmax
s.t. αmin ≤ αz ≤ αmax

(16)

The specific steps are as follows:

(1) Optimize the modal number k. First, set the initial value of mode number k to 3,
and use the default value of 2500 for the penalty factor α. Then, the fault signal is
decomposed by VMD, and the envelope entropy of all modes is obtained according
to the calculation formula of envelope entropy. According to the calculation results,
judge whether the envelope entropy obtainedthe minimum value. If it is the minimum
value, select the value at this time as the optimal value. If not, perform k + 1 operation
on the value of a modal number, and continue to repeat the above analysis steps until
the minimum envelope entropy value is found. Then record the corresponding k
value. In this research, the search range of k is from to 3 to 15, and the step size is 1.

(2) Optimize the penalty factor. Based on the value of k determined in the previous step to
further determine the optimal value. The search principle is the same as the previous
step. When the minimum envelope entropy value is found, the search is terminated.
Otherwise, perform the operation of α + 50 and repeat the above analysis steps until
the smallest value of envelope entropy is found, and then record the corresponding
value. In this research, the search range of α is set from 100 to 2500, and the step size
is 50.

(3) Based on the optimization results of the first and second steps, the optimal values of
k and α are substituted into VMD, and the parameters are initialized. Then perform
VMD to get the optimal IMF component.
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Figure 2. Parameter optimization process of VMD.

3.2. Screening Criteria for IMF Components

As a dimensionless parameter, kurtosis is often used for the distribution characteristics
of vibration signals. For the IMF signal components obtained by VMD decomposition,
when the signal component’s kurtosis value is more prominent, it contains more impact
components. At the same time, the cross-correlation coefficient represents the correlation
between signals. The greater the correlationcoefficient for the IMF signals components,
the more sensitive information it contains. Conversely, the more interference components
it contains. Based on this, in the fault signal processing of rolling bearings, this research
will comprehensively use the above two criteria to determine which signal components
are used to construct the observation signal channel of the RobustICA, and then achieve
the purpose of noise reduction. In selecting signal components, the principle adopted is
that the correlation number is more significant than 0.3 and the kurtosis value is greater
than 3. In this way, it is possible to avoid the problem of using a single index to select only
the signal component with the most significantkurtosis value, which leads to the loss of
sensitive information of part of the fault signal. The formula for calculating kurtosis and
cross-correlation coefficient is as follows:

Kurtosisi =
1
µ

n

∑
i=1

(
θi − x
l )

4
(17)
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In the original vibration signal, θi and x are its actual value and average value. l is the
standard deviation. µ is the number of samples.

Correlation =

n
∑

i=0
(θi − x)(δi − y)√

n
∑

i=0
(θi − x)2(δi − y)2

(18)

In the original vibration signal, θi and x its specific value and average value. Mean-
while, δi and y are the specific and average values of signal ϑ.

3.3. Algorithm Steps and Flow

The specific steps of the fault feature extraction method based on information entropy
optimization VMD and RobustICA are as follows. The fault feature extraction process is
shown in Figure 3.

(1) The vibration signal of rolling bearing is collected, and the VMD is optimized by
information entropy to find the optimal value of initialization parameter k and α.

(2) The obtained optimal parameters k and α are substituted into VMD, and the relevant
parameters are initialized. Secondly, the signal is decomposed into several IMF
components by VMD decomposition.

(3) Kurtosis criterion and cross-correlation coefficient criterion are comprehensively used
to evaluate the advantages and disadvantages of each IMF component, and the
optimal IMF component is selected to construct the observation signal channel.

(4) The observed signal and virtual noise channel signal are separated by RobustICAal-
gorithm, and the useful signal is obtained.

(5) Envelope demodulation is performed on the signal after RobustICAnoise reduction,
and the fault characteristic frequency is extracted. Then it is compared with the
theoretical value of bearing fault characteristics to identify the fault category.

Figure 3. Fault feature extraction method based on VMD optimized with information entropy and
RobustICA.

4. Simulations and Comparative Analysis

Bearing is one of the most commonly used general parts in all kinds of rotating
machinery. It plays a role in bearing and transmitting load in mechanical equipment, and it
is very prone to failure. Therefore, to verify the performance of the algorithm proposed



Coatings 2022, 12, 419 10 of 30

in this paper, a typical model was used to simulate the periodic impact signal caused by
bearing fault [32]. Firstly, a set of periodic pulse signals was simulated to simulate the fault
impact signal, and on this basis, Gaussian white noise was added to the fault impact signal
to simulate the bearing fault vibration signal polluted by environmental noise. In this study,
Matlab (version R2009a) was selected as the vibration signal modeling and simulation
software to build the signal model. The expression of the simulated signal is as follows:

s(t) = y0e−2π fnξtsin(2π fn

√
1− ξ2t) (19)

In the above formula: carrier frequency fn = 3000 Hz, displacement constant y0 = 5,
damping coefficient ξ = 0.1, period T = 0.01 s, sampling frequency fs = 20 KHz, and number
of sampling points n = 4096, where t represents the sampling time. Through calculation, it
can be seen that the fault frequency f 0 = 100 Hz. In order to simulate the noise interference
of rolling bearing during operation, SNR = −5 dB white Gaussian noise was added to the
original signal s(t).

The time–domain waveform of the original signal is shown in Figure 4. After adding
noise, the time–domain waveform and frequency–domain waveform of the mixedsignal
after adding noise is shown in Figures 5 and 6. Analyzing the above diagrams showsthat
most of the impact signal features were covered up under the interference of background
noise, which brings some difficulty to the fault feature extraction.

Figure 4. Time–domain waveform of the simulated signal.

Figure 5. Time–domain waveform of the mixed signal.
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Figure 6. Frequency–domain waveform of the mixed signal.

Since the mixed signal was severely interfered with by noise, next, the signal will be
decomposed by VMD. Before VMD decomposition, information entropy must be used
to optimize VMD to determine the parameters k and α in VMD. Firstly, our experiment
used the default value a, which was 2500. Meanwhile, we initialized k = 3, and the search
range of k was set to [3,15]. The value of optimal mode k was searched according to the
principle of minimum envelope spectral entropy. The relationship between k and envelope
spectral entropy is shown in Figure 7. From the transformation trend of the value of k in
the figure, it can be seen that with the increasing value of k, the corresponding envelope
spectral entropy was also increasing. Therefore, k = 3 was taken as the optimal value.

Figure 7. Curve of fitness varying with k value.

After selecting the value of the optimal mode K, the value of α was then initialized.
The search range was set to [100, 2500]. Similarly, the value of the optimal mode α was
searched according to the principle of minimum envelope spectral entropy. The relationship
with envelope spectral entropy is shown in Figure 8. From the transformation trend of the
value of α in the figure, it can be seen that with the continuous increase of α, the value of
the corresponding envelope spectral entropy was decreasing and gradually tends to be
flat. When the value of α was 2500, the optimal value can be obtained. Therefore, after
parameter optimization, the selected optimal parameter combination K and α was [3, 2500].
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Figure 8. Curve of fitness varying with α value.

Next, we performed VMD decomposition on the mixed signal. After VMD decom-
position optimized by information entropy, three IMF components were obtained. The
decomposition results are shown in Figure 9. In order to compare the effects of different
methods, the traditional LMD decomposition method, EMD decomposition method, and
EEMD decomposition method were used for the time–frequency analysis of mixed sig-
nals. The signal decomposition results obtained based on the above three methods are
shown in Figure 10a,b. Figures 10 and 11 showed that there were more signal components
decomposed by LMD, EMD and EEMD methods, and the signal components obtained
by EMD and EEMD had certain modal aliasing and endpoint effect. At the same time,
faultycomponents were generated.

Figure 9. VMD decomposition result.

To select the appropriate signal component from the decomposition results obtained by
the above methods, this experiment will combine kurtosis and cross-correlation coefficient
to select. Firstly, all signal components’ correlation coefficient C(t) and kurtosis value Q(t)
were calculated. The calculated results are shown in Tables 1–4. It can be seen from Table 1
that the IMF1 component and IMF2 component obtained by VMD decomposition meet
the conditions that the correlation value was more significant than 0.3 and the kurtosis
value was greater than 3. This shows that the correlation between the above two signal
components and the original signal was high, and the signal contained more impact
components. Therefore, the IMF1 and IMF2 components were selected to reconstruct the
observation signal channel. Secondly, it can be seen from Table 2 that the PF1 component
and PF2 component obtained by LMD decomposition met the conditions that the correlation
value is more significantthan 0.3 and the kurtosis value is greater than 3. Therefore, PF1
component and PF2 component were selected to reconstruct the observation signal channel.
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Meanwhile, it can be seen from Table 3 that the IMF1 component and IMF2 component
obtained by EMD decomposition met the conditions that the correlation value is more
significantthan 0.3 and the kurtosis value is greater than 3. Therefore, IMF1 and IMF2
components were selected to reconstruct the observation signal channel. It can be seen
from Table 4 that the IMF1 component, IMF2 component and IMF3 component obtained by
EEMD decomposition meet the conditions that the correlation value is more significant than
0.3 and the kurtosis value is greater than 3. Therefore, the above three signal components
were selected to reconstruct the observation signal channel, and the remaining signal
components were used to reconstruct the noise signal channel. Finally, on this basis,
the RobustICA algorithm was used to separate signal and noise. The noise-reduction
results obtained by using the method proposed in this paper and LMD–RobustICA, EMD–
RobustICA, and EEMD–RobustICA are shown in Figures 12–15.

Figure 10. LMD (a) andEMD (b) decomposition result.
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Figure 11. EEMD decomposition result.

Table 1. Index values of different IMF signal components (VMD).

Parameter IMF1 IMF2 IMF3

C(t) 0.433 0.575 0.389
Q(t) 4.402 6.221 2.916

Table 2. Index values of different PF signal components (LMD).

Parameter PF1 PF2 PF3 PF4 PF5

C(t) 0.835 0.418 0.222 0.111 0.062
Q(t) 4.630 4.161 3.572 4.207 3.535

Table 3. Index values of different IMF signal components (EMD).

Parameter IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

C(t) 0.727 0.516 0.283 0.191 0.139 0.107
Q(t) 3.606 4.216 2.833 3.124 2.859 3.116

Parameter IMF7 IMF8 IMF9 IMF10 IMF11 R
C(t) 0.057 0.038 0.018 0.001 0.009 0.009
Q(t) 4.671 2.318 2.316 3.145 1.505 1.323
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Table 4. Index values of different IMF signal components (EEMD).

Parameter IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

C(t) 0.791 0.587 0.353 0.238 0.189 0.127
Q(t) 4.069 3.981 3.248 3.662 3.072 2.818

Parameter IMF7 IMF8 IMF9 IMF10 IMF11 R

C(t) 0.077 0.045 0.020 0.009 0.013 −0.001
Q(t) 3.503 2.439 2.079 2.239 1.463 2.655

Figure 12. Noise-reduction results by the method proposed in this paper.

Figure 13. LMD–RobustICA noise-reduction results.

Figure 14. EMD–RobustICAnoise-reduction results.
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Figure 15. EEMD–RobustICAnoise-reduction results.

By analyzing the noise-reduction results in Figures 12–15, it can be seen that after
the noise-reduction method proposed in this article, the impact components in the signal
have been revealed. In contrast, the results obtained by the LMD–RobustICA, EMD–
RobustICA, and EEMD–RobustICA were not significant. To further analyze the effect of
noise reduction, the experiment selected four indicators of kurtosis value, cross-correlation
coefficient, root mean square error (RMSE), and mean absolute error (MAE) as evaluation
indicators. After calculation, the results obtained are shown in Table 5. In Table 5, by using
the method proposed in this paper, the correlation value and kurtosis value obtained after
noise reduction were the largest, while the RMSE and the MAE were the smallest. However,
the four groups of evaluation index values obtained after noise reduction using LMD–
RobustICA, EMD–RobustICA, and EEMD–RobustICA were relatively poor. Therefore,
after quantitative analysis, it can be known that the signal obtained after noise reduction
using the method proposed in this paper contained a higher impact component, a greater
degree of correlation with the original signal, and a relatively higher waveform similarity.

Table 5. Comparison of noise-reduction effect index values.

Evaluation Index LMD–RobustICA EMD–RobustICA EEMD–RobustICA Proposed Method

Kurtosis 4.231 4.609 4.614 6.162
correlation coefficient 0.462 0.505 0.518 0.681

RMSE 1.009 0.867 0.858 0.740
MAE 0.611 0.691 0.690 0.583

Next, Hilbert envelope demodulation was performed on the results obtained based
on the above three methods, and then the corresponding fault features were extracted.
The envelope spectrum is shown in Figures 16–19. It can be seen from Figure 16 that
the envelope spectrum obtained by the method proposed in this paper can clearly show
multiple peaks with higher amplitudes, and the above peaks correspond to the frequency of
one to eight times of the fault frequency, and so on. It shows that the useful signal and noise
have been separated well, and the fault feature can be successfully extracted. At the same
time, it can be seen from Figures 17–19 that the envelope spectrum obtained by the LMD–
RobustICA, EMD–RobustICA, and EEMD–RobustICA can extracted components such as
two to eight times of the fault frequency. However, it is difficult to clearly distinguish the
fundamental frequency of fault frequency from each peak. In addition, compared with
Figure 16, the amplitude of the fault frequency in Figures 17–19 was relatively low. It can
be seen that the effect of using the method proposed in this paper to extract fault features
was more significant.
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Figure 16. Analysis of signal envelope spectrum after noise reduction based on the proposed method.

Figure 17. Analysis of signal envelope spectrum after noise reduction based on LMD–RobustICA.

Figure 18. Analysis of signal envelope spectrum after noise reduction based on EMD–RobustICA.
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Figure 19. Analysis of signal envelope spectrum after noise reduction based on EEMD–RobustICA.

5. Case Analysis

To test whether the method proposed in this paper can effectively extract the fault
characteristics of rolling bearing, an example was given to verify it. The experimental data
used in the experiment were from Case Western Reserve University [33]. The structure
diagram of the rolling bearing test platform and rolling bearing is shown in Figure 20 [31].
The experimental platform mainly consists of the drive motor, torque speed sensor, and
power meter. Among them, the model of rolling bearing at the driving end was 6205-
2RSJEMSKF. Its specific parameters are shown in Table 6. During the experiment, the set
sampling frequency was 12 KHz. The acceleration sensor collected the vibration signals of
the inner and outer rings with a damage diameter of 0.007 inches for experimental analysis.
By substituting the relevant parameters in Table 6 into the calculation formula of fault
characteristic fundamental frequency of inner ring and outer ring of rolling bearing, it can
be calculated that the fundamental frequency of inner ring fault was 162.19 Hz and that of
outer ring fault was 107.36 Hz.

Figure 20. Illustration of the bearing experimental platform and rolling bearing. (a)Illustration of the
bearing experimental platform. (b) Rolling bearing.

Table 6. The bearing structure factor.

Inner Diameter
(Inches)

Outer
Diameter
(Inches)

Contact
Angle

(α)

Pitch Circle Diameter
D

(Inches)

Speed
(rpm)

0.9843 2.0472 00 1.5327 1797
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5.1. Inner Ring Signal Analysis

By processing the collected signal, the time domain waveform and frequency do-
main waveform of the fault signal of the inner ring of the rolling bearing are shown in
Figures 21 and 22 can be obtained. It can be seen from that the noise interference in the
signal was relatively small, and the fault impact characteristics were prominent. To test
the method’s effectiveness, SNR = −2 dB white Gaussian noise was added to the inner
ring fault signal in this experiment. The time–domain waveform and frequency–domain
waveform of the finally mixed signal is shown in Figures 23 and 24, respectively.

Figure 21. Time–domain analysis of the inner ring fault signal.

Figure 22. Frequency–domain analysis of the inner ring fault signal.

Figure 23. Time domain analysis of the mixed signal.
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Figure 24. Frequency domain analysis of the mixed signal.

Next, the fault signal of the inner ring of the rolling bearing after adding noise will be
processed. Firstly, the VMD was optimized by information entropy to select the values of
parameters α and k to be initialized in VMD. The default value of α was 2500. Then, we
initialized k = 3, and the search range of k was set to [3,15]. The value of optimal mode k was
searched according to the principle of minimum envelope spectral entropy. The relationship
between k and envelope spectral entropy as shown in Figure 25 can be obtained through
calculation. As can be seen from Figure 25, with the continuous increase of k value, the
value of the corresponding envelope spectral entropy was first decreased, then gradually
increased, and, finally, decreased. Therefore, k = 4 was taken as the optimal value.

Figure 25. Curve of fitness varying with K value.

Next, the value of α was determined by experiment. The search range of α was set as
[100, 2500], and then the value of the optimal mode was searched according to the principle
of minimum envelope spectral entropy. The relationship between α and envelope spectral
entropy as shown in Figure 26 can be obtained through calculation. As the value of α
increases, the corresponding envelope spectral entropy decreases and gradually tends to
be flat. When α = 2050, the envelope spectrum entropy was the smallest. Therefore, the
value of α was 2050. After the above parameter optimization, it can be obtained that the
value of the optimal parameter combination k and α was [4, 2050].
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Figure 26. Curve of fitness varying with α value.

Next, this experiment substituted the selected initialization parameters into VMD,
and then decomposed the signal. As is shown in Figure 27, after VMD decomposition
optimized by information entropy, four IMF components were obtained. Because VMD has
excellent advantages in suppressing mode aliasing and endpoint effect, it has better signal
characterization ability. Next, all signal components C(t) and Q(t) were calculated. The
calculated results are shown in Table 7. It can be seen that the IMF1 component and IMF1
component obtained by VMD decomposition met the conditions for screening the optimal
signal component. That is, C(t) was greater than 0.3, and Q(t) was more significant than
3. Therefore, the above two IMF components were selected to reconstruct the observation
signal channel. Finally, on this basis, RobustICA algorithm was used to separate signal
and noise. The signal noise-reduction results obtained by using the proposed method are
shown in Figure 28. Some impact characteristics of the signal can already be shown in
Figure 28.

Figure 27. VMD decomposition result.

Table 7. The correlation coefficient and kurtosis between IMFand original signal (VMD).

Parameter IMF1 IMF2 IMF3 IMF4

C(t) 0.354 0.396 0.512 0.524
Q(t) 2.661 3.044 4.174 4.082
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Figure 28. Noise-reduction results by the proposed method.

Finally, the denoised signal was demodulated by the Hilbert envelope, and then
the corresponding fault features were extracted. To compare the experimental effects of
different methods, LMD–RobustICA, EMD–RobustICA, and EEMD–RobustICA were used
to denoise the signal. Then Hilbert envelope spectrum was generated.The envelope spectra
obtained based on the above three methods are shown in Figures 29–32, respectively. After
analyzing the above four graphs, it can be seen that from the envelope spectrum of the
above methods, the one-time frequency of the fault frequency, as well as the two-time
frequency and five-time frequency of the fault frequency could be extracted. However,
the amplitude of the fault frequency in the envelope spectrum obtained based on the
method proposed in this paper was relatively high, especially the fundamental frequency
amplitude. Therefore, the effect of using the proposed method to extract fault features was
more significant.

Figure 29. Analysis of signal envelope spectrum after noise reduction based on the proposed method.
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Figure 30. Analysis of signal envelope spectrum after noise reduction based on LMD–RobustICA.

Figure 31. Analysis of signal envelope spectrum after noise reduction based on EMD–RobustICA.

Figure 32. Analysis of signal envelope spectrum after noise reduction based on EEMD–RobustICA.

5.2. Outer Ring Signal Analysis

By extracting the rolling bearing outer ring fault signal data, the time domain waveform
and frequency domain waveform of the outer ring fault signal is shown in Figures 33 and 34.
Similarly, SNR =−2 dB white Gaussian noise was added to the inner ring fault signal in this
experiment to test the method’s effectiveness.The time domain waveform and frequency
domain waveform of the finally obtained mixed signal are shown in Figures 35 and 36. Due
to noise interference, it wasnot easy to distinguish the impact features from the diagram.
Next, the signal was further processed.
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Figure 33. Time domain analysis of the outer ring fault signal.

Figure 34. Frequency domain analysis of the outer ring fault signal.

Figure 35. Time domain analysis of the mixed signal.

Next, the VMD was optimized by information entropy to select the parameters α and
k was initialized. Similarly, the value of α was the default value of 2500. First, k = 3 was
initialized, and the search range of k was set to [3,15]. The value of optimal mode kwas
searched according to the principle of minimum envelope spectral entropy. Through the
search, the results shown in Figure 37 can be obtained. It is shown that the corresponding
envelope spectral entropy’s value increased with the continuous increase of the k value.
Therefore, k = 3 was taken as the optimal value.
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Figure 36. Frequency domain analysis of the mixed signal.

Figure 37. Curve of fitness varying with k value.

Based on the above calculation results, the value of α was searched. The search range of
α was set as [100, 2500], and then the value of the optimal mode α was searchedaccording to
the principle of minimum envelope spectral entropy. Through calculation, the relationship
between α and envelope spectral entropy as shown in Figure 38 can be obtained. As shown
in Figure 38, with the increasing value of α, the corresponding envelope spectral entropy
was decreasing and gradually tends to be flat. When α = 1900, the envelope spectral
entropy was the smallest. Therefore, the value of α was 2050. After the above parameter
optimization, it can be obtained that the value of the optimal parameter combination k and
α was [3, 1900].

Figure 38. Curve of fitness varying with a value.
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Next, the optimal parameters obtained by the search were substituted into the VMD,
and then the signal was decomposed. As is shown in Figure 39, after VMD decomposition
optimized by information entropy, three IMFs were obtained. Based on the above decom-
position results, the C(t) and Q(t) of IMF1, IMF2, and IMF3 are further calculated. The
calculated results are shown in Table 8. It can be seen that the IMF2 component and IMF3
component obtained by VMD decomposition met the conditions for screening the optimal
signal component. That is, C(t) was greater than 0.3 and Q(t) was more significant than
3. Therefore, the above two signal components were selected and used to reconstruct the
observation signal channel. Then, RobustICA was used for signal noise reduction. The
final signal noise-reduction result is shown in Figure 40. It can be seen that the periodic
impact had a high similarity with the waveform of the original signal.

Figure 39. VMD decomposition result.

Table 8. The correlation coefficient and kurtosis between IMFand original signal (VMD).

Parameter IMF1 IMF2 IMF3

C(t) 0.363 0.489 0.623
Q(t) 2.894 3.373 4.323

Figure 40. Noise-reduction results by the proposed method.

Next, the outer ring fault signal after signal noise reduction was demodulated by the
Hilbert envelope to extract the fault feature. To furtheranalyze the fault feature extrac-
tion effect of the proposed method more intuitively, LMD–RobustICA, EMD–RobustICA,
and EMD–RobustICA methods were used to denoise the signal. Then Hilbert envelope
spectrum was generated. The envelope spectra obtained based on the above methods are
shown in Figures 41–44, respectively. Through the analysis of Figures 41–44, it can be seen
that the frequency doubling component of the outer ring fault characteristic frequency
could be extracted by using the above methods for fault feature extraction. Meanwhile,
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the peak value of the components of the fault frequency from one to six times frequency is
much higher than that obtained by the other three methods. The surrounding interference
could not affect the identification of frequency doubling. However, the peak value of fault
characteristic frequency in the envelope spectrum based on the other three methods was
relatively low, and the interference components near these frequencies were close to the
fault characteristic frequency. This brought some interference to fault feature extraction.

Figure 41. Analysis of signal envelope spectrum after noise reduction based on the proposed method.

Figure 42. Analysis of signal envelope spectrum after noise reduction based on LMD–RobustICA.

Figure 43. Analysis of signal envelope spectrum after noise reduction based on EMD–RobustICA.
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Figure 44. Analysis of signal envelope spectrum after noise reduction based on EEMD–RobustICA.

6. Conclusions

In this paper, a fault feature extraction of the rolling bearing signal under strong noise
background is studied by using the combination of VMD optimized with information
entropy and RobustICA. The conclusions were as follows.

(1) Although VMD can analyze the signal in the frequency domain, the effect is limited
by the impact of modal component k and penalty factor α. This study used information
entropy to optimize VMD to set initialization parameters. Compared with the way of
setting parameters by experience, this method can search for a better combination of VMD
parameters. This method can overcome the problems of modal aliasing and endpoint effect
caused by impact component and noise interference in traditional EMD, LMD and EEMD,
and has a good processing effect on the extraction of fault characteristic frequency of non-
stationary and nonlinear signals. It can extract fault features more accurately. Compared
with the traditional method, the experimental results show that this method can highlight
the fault characteristic frequency and distinguish the fault.

(2) In this experiment, a typical simulation signal model is selected and Gaussian white
noise is added on this basis to simulate the periodic impact signal caused by bearing fault
under the condition of noise interference. Then, a signal component screening criterion
based on correlation coefficient and kurtosis is established, and the optimal signal compo-
nent is used to construct the observation signal channel of RobustICAalgorithm, so as to
achieve the purpose of noise reduction.Through the in-depth analysis of the constructed
simulation signal and the collected signal of the actual rolling bearing, it can be seen that
compared with the traditional methods based on LMD–RobustICA, EMD–RobustICA, and
EEMD–RobustICA, the method proposed in this paper can obtain better evaluation results
of noise-reduction index, and the time–domain waveform of the signal after noise reduction
is very similar to the waveform of the original signal.

(3) By comparing and analyzing the envelope demodulation results obtained by dif-
ferent methods, it can be seen that after the envelope spectrum analysis using the method
proposed in this paper, the amplitude of fault characteristic frequency has been enhanced,
and the surrounding interference will not affect the identification of fault fundamental fre-
quency and frequency doubling, which is more convenient for fault diagnosis and analysis.

As an effective adaptive signal processing method, VMD has achieved good results in
the field of fault diagnosis. However, the relevant parameters of this method need to be set
in advance. In the process of parameter optimization, there is no theoretical basis for the
definition of parameter search range. Therefore, in the next work, we will conduct in-depth
research and further improve the parameter optimization method of VMD method.
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