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Abstract: This work aimed to establish a numerical simulation of kerosene oil as a host Casson fluid
flowing around a cylindrical shape with an applied magnetic field crossing through it, under constant
wall temperature boundary conditions. Nanoparticles of zinc, aluminum, and titanium oxides were
included to reinforce its thermal characteristics. The governing model was established based on
the Tiwari and Das model. Graphical and numerical results for correlated physical quantities were
gained through the Keller Box method, with the assistance of MATLAB software (9.2). The combined
convection (λ > 0 & λ < 0), magnetic parameter (M > 0), Casson parameter (β > 0), and nanosolid
volume fraction (0.1 ≤ χ ≤ 0.2) were the parameter ranges considered in this study. According to the
current findings, the growth of mixed convection parameter or volume fraction of ultrafine particles
contributes to boosting the rate of energy transport, skin friction, and velocity distribution. Zinc
oxide–kerosene oil has the highest velocity and temperature, whatever the parameters influencing it.

Keywords: casson nanofluid; cylindrical shape; kerosene oil; MHD; combined convection

1. Introduction

A Casson liquid is indeed a non-Newtonian liquid that behaves similarly to an elastic
material in which no motion occurs with a low yield stress (see [1]). It’s suitable for heating
or cooling operations due to its efficient impact on the energy transmission rate, giving
it eligibility for utilization in many applications relevant to food processing, metallurgy,
drilling, and bioengineering operations. Casson [2] was the first to address the Casson fluid
model (rheological model). He demonstrated in his study that the Casson model is effective
in modeling the flow of pigment suspensions in lithographic polishes employed during the
production of printing ink. The Casson model is also capable of effectively describing the
flow characteristics of numerous polymers widely [3]. Furthermore, experiments conducted
on blood have shown that blood can act as a Cassone fluid, especially when the shear stress
is low, and the flow occurs through small blood vessels [4–6]. Human blood, honey, jelly,
tomato sauce, custard, toothpaste, starch suspensions, foams, molten cosmetics, yogurt,
and nail polish are familiar examples of this fluid. In view of the high efficiency of the
Casson model in predicting the behavior of non-Newtonian fluids, several studies have
recently been conducted that relied on the Casson model. Mustafa et al. [7] reported that the
velocity is a decreasing function of dimensionless time but that temperature is an increasing
function of it, and that raising the Casson parameter boosts shear stress and heat transfer.
Mukhopadhyay et al. [8] utilized the shooting method to examine the Casson liquid flow
and energy transmission on a stretching surface. Khalid et al. [9] addressed the magneto-
free convection of a Casson liquid from an oscillating vertical plate in a porous medium.

Coatings 2022, 12, 296. https://doi.org/10.3390/coatings12030296 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12030296
https://doi.org/10.3390/coatings12030296
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-1623-2178
https://orcid.org/0000-0002-2950-1293
https://orcid.org/0000-0002-7295-778X
https://doi.org/10.3390/coatings12030296
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12030296?type=check_update&version=4


Coatings 2022, 12, 296 2 of 23

Animasaun et al. [10] demonstrated that growth in the values of the Casson parameter
causes velocity curve augmentation and temperature curve reduction. EL-Kabeir et al. [11]
investigated the effect of chemical reactions on the mixed convection flow of Casson liquid
over a sphere. Makinde et al. [12] revealed that there is a critical relationship between the
impact of the Lorentz force and the flow of Casson fluid, with the natural impact of this
force occurring when the surface thickness is low, and the exact opposite of this influence
occurring when the surface thickness increases. In their examination of the magneto-3D
flow of non-Newtonian Casson liquid with thermal radiation, Thumma et al. [13] observed
that raising the Casson parameter values considerably reduces the velocity curve. For more
reading, see the following articles [14–17].

A notable number of thermal applications in industrial and engineering are extensively
dependent on convection through regular fluids. Therefore, the challenge for researchers
was how to enhance the energy transport rate by several methods. One of these creative
methods is addressed by Choi and Eastman [18]. They proposed that suspending copper
nanoparticles in regular fluids leads to an improvement in their thermophysical properties.
Subsequently, Eastman et al. [19] confirmed that there is a considerable effect of the shape
and volume fraction of Cu nanoparticles that are immersed in ethylene glycol on the ther-
mal conductivity. Choi and Eastman’s suggestion sparked a new challenge, which was to
find an ideal nanoparticle that would produce the maximum improvement in the rate of
heat transfer while maintaining the lowest possible density of the nanoliquid, considering
other aspects that could not be ignored, such as stability, cost, waste management ability,
etc. Several experimental studies have confirmed that metal oxides are almost ideal for
enhancing the rate of energy transfer of ordinary liquids. They have been widely syn-
thesized during the last few decades and used in a variety of applications. Among them
are included the ultrafine particles of zinc, aluminum, and titanium oxides (ZnO, Al2O3,
TiO2). They were investigated experimentally in a variety of energy systems, including heat
exchangers, cooling, pool boiling, and transformer systems [20–26], in addition to extensive
numerical simulation studies demonstrating the efficacy of these oxides in promoting heat
transfer [27–38].

Kerosene oil (KO) is a combustible hydrocarbon liquid that is extracted from petroleum.
It is extensively utilized as jet fuel and in some rocket engines, and is additionally employed
as a cooking and lighting fuel. In some regions of Asia, it is also used to power small
outboard motors or even motorcycles. In the field of energy transmission, kerosene is
mainly used in regenerative cooling techniques, as it is used to cool nozzles and chambers
in rocket engines [39]. Many researchers have considered kerosene oil as a base liquid in
their work, in addition to enhancing its thermal properties by incorporating nanoparticles.
Hussain et al. [40] reported the natural convection flow of kerosene and engine oil-based
micropolar nanofluid. Ellahi et al. [41] demonstrated that a nanofluid containing Al2O3 and
kerosene oil can improve chamber and nozzle cooling. Other interesting studies regarding
kerosene oil in the field of heat transfer can be found in the refs. [42–46]. In order to conduct
a useful and comprehensive examination, kerosene oil was adopted as the host liquid in
this work due to its unusual thermophysical properties, such as viscosity, heat capacity,
thermal conductivity, density, etc.

Flowing fluid around a circular cylinder in the boundary layer region is a key subject
in many industrial and mechanical operations, such as venomous fluid motion, film conden-
sation operation of a liquid, manufacturing, and extracting plates of caoutchouc, etc. Mag-
netohydrodynamics (MHD) has also played a critical part in a variety of current metallurgy
and metalworking industries, as well as numerous natural phenomena. Qasim et al. [47]
examined the convection slip flow of ferrofluid past a stretching cylinder under an MHD
effect. Tamoor et al. [48] analyzed the convection of Casson liquid with Joule heating
and MHD effects over a stretching cylinder. Alizadeh et al. [49] examined the impact of
radiation on combined convection flow, considering the magnetic force on a cylinder in a
porous medium. Krishna [50] studied the MHD convective rotating flow of second grade
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liquid past a heat generating vertical moving permeable surface with hall and ion slip
effects. Here are some related and important recent studies [51–59].

In 2006, Buongiorno [60] constructed a mathematical model that demonstrates the
significance of Brownian diffusion and thermophoresis in heat transmission via nanofluids,
whereas Tiwari and Das [61] highlighted the influence of nanoparticle volume fraction on
energy transmission in their single-phase model in 2007. Since then, these two models
have been the most commonly employed in predicting the behavior of nanofluids in heat
transfer-related issues. Constant wall temperature boundary conditions are widely used
in a variety of industrial processes, particularly in heat exchange applications such as
condensing vapors or boiling liquids. Also, in applications in which the energy transport
coefficient of the outer surface is greater than the inner surface, a constant wall temperature
can be taken into account. See [62–65] for details.

In this analysis, Tiwari and Das’s model was adopted to provide insight into the impact
of critical parameters on physical quantities concerning energy transfer in the presence of
an imposed magnetic field, considering the combined convection case of flowing kerosene
oil-based Casson fluid around a circular cylinder under constant wall temperature. In
particular, it provides answers about the extent of influence parameters of mixed convection,
magnetic, Casson, and the volume fraction of ultrafine particles, as well as their interaction
with each other. Furthermore, this work is seen as an extension and improvement of some
previous investigations noted below that are related to fluid flow around a cylinder in
the boundary layer region. Merkin [66,67] examined the flow of a fluid in free and mixed
convection. Nazar et al. [68,69] illustrated the combination of free and forced convection
flow of micropolar fluid subjected to two different boundary conditions. Tham et al. [70]
examined the combined convection flow of nanoliquid. Rashad et al. [71] analyzed the
combined convection of nanofluid in a porous medium. Alwawi et al. [72] reported the
enhancement of the energy transfer of methanol as a host Casson fluid with the effect
of MHD.

2. Modeling of the Problem

Suppose we have a kerosene oil flow containing suspensions of Al2O3, ZnO, and TiO2
nanoparticles in the presence of combined convection around a circular cylinder of radius
a under the impact of Lorentz force, with a constant wall temperature Tw, in addition to
the surrounding temperature T∞. Also, a heated and cooled circular cylinder (Tw > T∞ and
Tw < T∞, respectively) are taken into account. Figure 1 displays the flow layout and the
schematic diagram, where U∞ indicates free stream velocity, and g stands for heat gravity
vector. The x̂-coordinate will be measured along the circumference of the circular cylinder
at the point of stagnation (x̂ ≈ 0), while the ŷ-coordinates will be the normal distance to the
circular cylinder surface.
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Hussanan et al. [73] described the Casson liquid flow as:

τij =

{
2
(

µB + py/
√

2π
)

eij π > πc,
2
(
µB + py/

√
2πc

)
eij π < πc,

(1)

Using the previously stated assumptions, the Boussinesq approximation [74], and
boundary layers approximation [75], the governing system is (see [14,15,73,76,77]):

∂û
∂x̂

+
∂v̂
∂ŷ

= 0, (2)

û ∂û
∂x̂ + v̂ ∂û

∂ŷ = − 1
ρn f

∂P̃
∂ξ̃

+ vn f

(
1 + 1

β

)
∂2û
∂ŷ2

+
(

χρs βs+(1−χ)ρ f β f
ρn f

)
g(T − T∞) sin

( x̂
a
)
− δn f B2

0
ρn f

û,
(3)

û
∂T
∂x̂

+ v̂
∂T
∂ŷ

= αn f
∂2T
∂ŷ2 , (4)

Subject to (see [70]):

û = v̂ = 0, T = Tw, as ŷ = 0
û→ ûe(x), T → T∞, P̂→ P∞ as ŷ→ ∞,

(5)

The properties of nanofluid are (defined by [78]):

σn f
σf

= 1 + 3(σ−1)χ
(σ+2)−(σ−1)χ , σ = σs

σf
, µn f =

µ f

(1−χ)2.5 , ρn f = (1− χ)ρ f + χρs,(
ρcp
)

n f = (1− χ)
(
ρcp
)

f + χ
(
ρcp
)

s,
kn f
k f

=
(ks+2k f )−2χ(k f−ks)
(ks+2k f )+χ(k f−ks)

, αn f =
kn f

(ρcp)n f
,

(6)

The following variables are employed for non-dimensionalization (see [70]):

x = x̂
a , y = Re1/2

(
ŷ
a

)
, u = û

U∞
, θ = T−T∞

Tw−T∞

v = Re1/2
(

v̂
U∞

)
, ue(x) = ûe(x̂)

U∞
, ûe(x̂) = U∞ sin

( x̂
a
) (7)

where Re = U∞a/v f is the Reynolds number.
Using Equation (7) yields the dimensionless equations shown below.

∂u
∂x

+
∂v
∂y

= 0. (8)

u ∂u
∂x + v ∂u

∂y = − ∂p
∂ξ +

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
∂2u
∂y2

+
(

χρs βs/β f +(1−χ)ρ f
ρn f

)
λθ sin x − σn f B2

0 a
ρn f U∞

u,
(9)

u
∂θ

∂x
+ v

∂θ

∂y
=

1
Pr

(
kn f /k f

(1− χ) + χ
(
ρcp
)

s/
(
ρcp
)

f

)
∂2θ

∂y2 , (10)

Subject to:

u = v = 0 , θ = 1 as y = 0, u→ ue(x), θ → 0 as y→ ∞. (11)

where λ = Gr
Re2 , Gr = gβ f (Tw − T∞) a3

ν2
f
,, and Pr =

v f
α f

are the mixed convection parameter,

and Grashof and Prandtl numbers, respectively.
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By using the nondimensional form of generalized Bernoulli’s equation, which is given
by Dinarvand et al. [79] as follows:

ue
∂ue

∂ξ̃
= −

(
∂P
∂ξ

+
σn f B2

0a
ρn f U∞

ue

)
(12)

Equation (9) becomes:

u ∂u
∂x + v ∂u

∂y = ue
due
∂x +

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
∂2u
∂y2

+
(

χρs βs/β f +(1−χ)ρ f
ρn f

)
λθ sin x +

ρ f δn f
ρn f δ f

M(ue − u),
(13)

where M =

(
σf β2

0a
ρ f U∞

)
is the magnetic parameter.

To reduce the previous system, we’ll introduce the following transformation (given
by [14]):

ψ = xF(x, y), θ = θ(x, y), (14)

where ψ is the stream function, defined as:

u =
∂ψ

∂y
, and v = −∂ψ

∂x

Applying the transformation (14), the non-dimensional system turns into:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
∂3F
∂y3 + F ∂2F

∂y2 −
(

∂F
∂y

)2
+

ρ f δn f
ρn f δ f

M ( sin x
x −

∂F
∂y )

+ sin x cos x
x +

(
χρs βs/β f +(1−χ)ρ f

ρn f

)
λθ sin x

x = x
(

∂F
∂y

∂2F
∂x∂y −

∂F
∂x

∂2F
∂y2

)
, (15)

1
Pr

(
kn f /k f

(1−χ)+χ(ρcp)s/(ρcp) f

)
∂2θ
∂y2 + F ∂θ

∂y = x
(

∂F
∂y

∂θ
∂x −

∂F
∂x

∂θ
∂y

)
, (16)

and boundary conditions (11) become:

∂F
∂y = F = 0, θ = 1, as y = 0,

∂F
∂y →

sin x
x , θ → 0 as y→ ∞,

(17)

The system (15)–(17) converts to the following ODEs at the lower stagnation point of
the cylinder (x ≈ 0),

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
F′′′ + FF′′ − (F′)2

+
(

χρs βs/β f +(1−χ)ρ f
ρn f

)
λθ +

ρ f δn f
ρn f δ f

M (1− F′) + 1 = 0,
(18)

1
Pr

(
kn f /k f

(1− χ) + χ
(
ρcp
)

s/
(
ρcp
)

f

)
θ′′ + Fθ′ = 0, (19)

F′ = F = 0, θ = 1 as y = 0
F′ → 1, θ → 0 as y→ ∞

(20)

The most effective non-dimensional quantity for depicting shear stress is the skin
friction coefficient C f . It reflects the total frictional drag acting on an object and is directly
related to the heat transfer rate through convection on a surface. The skin friction coefficient
increase is considered a disadvantage in some technical applications. Besides that, the
Nusselt number Nu is a non-dimensional characteristic group that describes the ratio of
energy transmission via convection to energy transmission via conduction within the fluid.
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It is a key parameter in determining the mode of energy transfer and a non-dimensional
characteristic number for the energy transport rate. The small value of the Nusselt number
indicates that the energy transfer through convection almost does not exist, and the energy
transfer completely occurs through the conduction process, whereas the higher values
of the Nusselt number mean that the opposite entirely occurs and most of the energy is
transferred by the convection process. Molla et al. [80] expressed skin friction and the local
Nusselt number as follows:

C f =

(
τw

ρU2
∞

)
, Nu =

(
aqw

k f (Tw − T∞)

)
, (21)

where

τw = µn f

(
1 +

1
β

)(
∂û
∂ŷ

)
ŷ= 0

, qw = −kn f

(
∂T
∂η̃

)
ŷ = 0

. (22)

Applying (7) and (11), C f and Nu can be rewritten as follows:

Re1/2C f =
1

(1−χ)2.5

(
1 + 1

β

)
x
(

∂2F
∂y2

)
y = 0

, Re−1/2Nu =
−kn f

k f

(
∂θ
∂y

)
y= 0

(23)

3. Numerical Solution

A technique called the Keller box technique was introduced by Keller and Bramble [81]
in 1970. It gained popularity when Jones [82] employed it to tackle boundary layer-related
issues. In their book, Cebeci and Bradshaw [83] provided an extensive explanation of this
method. This approach is one of the most important strategies for solving parabolic flow
equations, particularly boundary layer equations. These schemes are implicit in second-
order precision in both space and time, and they allow for arbitrary step sizes in both time
and space (nonuniform). This makes it useful and efficient for solving parabolic partial
differential equations. Equations (15) and (16) are recast at the start of this approach to
produce first-order equations. The difference equations are then found using the central
differences approach. The resulting equations are then linearized utilizing Newton’s
technique. The matrix–vector form is then written. Finally, a tridiagonal matrix is generated,
and the linear system is solved using LU factorization.

3.1. The Finite Difference Technique

Equations (15) and (16) are converted into first-order equations using the following
transformation: O(x, y), Q(x, y), I(x, y), and H(x, y), where the variable T(x, y) was
used instead of the temperature variable θ(x, y), and

F′ = O
O′ = Q
H′ = I

(24)

Consequently, Equations (15) and (16) turn into:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
Q′ + FQ−O2 +

ρ f σn f
ρn f σf

M ( sin x
x −O)

+
(

χρs βs/β f +(1−χ)ρ f
ρn f

)
λT sin x

x + sin x cos x
x = x

(
O ∂O

∂x −Q ∂F
∂x

)
, (25)

1
Pr

(
kn f /k f

(1− χ) + χ
(
ρcp
)

s/
(
ρcp
)

f

)
I′ + FI′ = x

(
O

∂H
∂x
− I

∂F
∂x

)
, (26)

Subject to:
O(x, 0) = F(x, 0) = 0, H(x, 0) = 1,
O(x, ∞) = sin x

x , H (x, ∞) = 0,
(27)
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Here, the symbol prime indicates the first derivative with respect to x.
Now center Equation (24) about the midpoint (x n, yj−1/2) of the segment and center

Equations (25) and (26) about the midpoint. (xn−1/2, yj−1/2) of the rectangle as follows:

Fn
j − Fn

j−1 −
hj

2

(
On

j + On
j−1

)
= 0. (28)

On
j −On

j−1 −
hj

2

(
Qn

j + Qn
j−1

)
= 0. (29)

Hn
j − Hn

j−1 −
hj

2

(
In
j + In

j−1

)
= 0. (30)

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (
Qn

j −Qn
j−1

)
+
(

1+α
4

)
hj(Fn

j + Fn
j−1)(Q

n
j + Qn

j−1)

−
(

1+α
4

)
hj (On

j + On
j−1)

2 +
(

α
2
)
hjQn−1

j−1/2(Fn
j + Fn

j−1)

+ 1
2

(
χρs (βs/β f ) +(1−χ)ρ f

ρn f

)
sin xn−1l2

xn−1l2 λhj(Hn
j
+ Hn

j−1
)

+
ρ f δn f
ρn f δ f

Mhj(
sin xn−1l2

xn−1l2 −
On

j +On
j−1

2 )−
(

α
2
)
hjFn−1

j−1/2(Q
n
j + Qn

j−1)

+ sin xn−1l2 cos xn−1l2

xn−1l2 hj = (R1)
n−1
j−1/2

(31)

1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

)(In
j − In

j−1

)
− α

4 hj(On
j + On

j−1)(Hn
j + Hn

j−1) + 1+α
4 hj(Fn

j + Fn
j−1)(In

j + In
j−1)

+ α
2 hj(On

j + On
j−1)Hn−1

j−1/2 −
α
2 hjOn−1

j−1/2(Hn
j + Hn

j−1) −
α
2 hj(In

j − In
j−1)Fn−1

j−1/2

+ α
2 hj In−1

j−1/2(Fn
j + Fn

j−1) = (R2)
n−1
j−1/2

(32)

where α = xn−1l2

kn
, knis ∆x , and hj is ∆y

(R1)
n−1
j−1/2 = −hj


ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (
Qn

j −Qn
j−1

)
hj

+ (1− α)Fn
j−1/2Qn

j−1/2

+(α− 1)
(

On
j−1/2

)2
+

ρ f σn f
ρn f σf

M( sin xn−1l2

xn−1l2 −On
j−1/2) +

sin xn−1l2 cos xn−1l2

xn−1l2

+

(
χρs (βs/β f ) +(1−χ)ρ f

ρn f

)
sin xn−1l2

xn−1l2 λHn
j−1/2



n−1

(R1)
n−1
j−1/2 = −hj


ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (
Qn

j −Qn
j−1

)
hj

+ (1− α)Fn
j−1/2Qn

j−1/2

+(α− 1)
(

On
j−1/2

)2
+

ρ f σn f
ρn f σf

M( sin xn−1l2

xn−1l2 −On
j−1/2) +

sin xn−1l2 cos xn−1l2

xn−1l2

+

(
χρs (βs/β f ) +(1−χ)ρ f

ρn f

)
sin xn−1l2

xn−1l2 λHn
j−1/2



n−1 (33)

At x = xn, the boundary conditions are:

Fn
0 = On

0 = 0, Hn
0 = 1,

On
J = sin x

x , Hn
J = 0 , (34)

3.2. Newton’s Method

By applying Newton’s technique to the system (28)–(32), we get:

δFj − δFj−1 −
1
2

hj

(
δOj + δOj−1

)
= (r1)j−1/2 (35)

δOj − δOj−1 −
1
2

hj

(
δQj + δQj−1

)
= (r2)j−1/2 (36)
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δHj − δHj−1 −
1
2

hj

(
δIj + δIj−1

)
= (r3)j−1/2 (37)

(m1)jδQj + (m2)jδQj−1 + (m3)jδFj + (m4)jδFj−1 + (m5)jδOj

+(m6)jδOj−1 + (m7)jδHj + (m8)jδHj−1 = (r4)j−1/2
(38)

(
n1
)

jδIj + (n2)jδIj−1 + (n3)jδFj +
(
n4
)

jδFj−1 + (n5)jδOj
+(n6)jδOj−1 + (n7)jδHj + (n8)jδHj−1 = (r5)j−1/2

(39)

where

(m1)j =

[
ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
+ hj

(
(1+α)

2 Fj−1/2 − α
2 Fn−1

j−1/2

)]
(m2)j =

[
(m1)j − 2

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) ]
(m3)j = hj

[
(1+α)

2 zj−1/2 +
α
2 Qn−1

j−1/2

]
(m4)j = (m3)j

(m5)j = hj

[
− (1 + α)Oj−1/2 − 1

2
ρ f σn f
ρn f σf

M
]

(m6)j = (m5)j

(m7)j = hj

[
λ
2

(
χρs (βs/β f ) +(1−χ)ρ f

(1−χ)ρ f +χρs

)
sin xn−1l2

xn−1l2

]
(m8)j = (m7)j

(40)

(
n1
)

j =

[
1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

) + hj

(
(1+α)

2 Fj−1/2 −
α
2 Fn−1

j−1/2

)]
(n2)j =

[
2
Pr − (b1)j

]
(n3)j = hj

[
(1+α)

2 pj−1/2 +
α
2 In−1

j−1/2

](
n4
)

j = (n3)j

(n5)j = hj

[
− α

2 Hj−1/2 +
α
2 Hn−1

j−1/2

]
hj

(n6)j = (n5)j

(n7)j = hj

[
− α

2 Oj−1/2 −
α
2 hjOn−1

j−1/2

]
(n8)j = (n7)j

(41)

(r1)j−1/2 = Fj−1 − Fj + hjOj−1/2
(r2)j−1/2 = Oj−1 −Oj + hjQj−1/2

(r3)j−1/2 = Hj−1 − Hj + hj Ij−1/2

(r4)j−1/2 =
ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (
Qj−1 −Qj

)
− (1 + α)hj Fj−1/2Qj−1/2

+hj

(
αQj−1/2Fn−1

j−1/2 − αQn−1
j−1/2 Fj−1/2 − sin xn−1l2 cos xn−1l2

xn−1l2 + M
2

sin xn−1l2

xn−1l2

)
−hj

(
χρs (βs/β f ) +(1−χ)ρ f

(1−χ)ρ f +χρs

)
λ sin xn−1l2

xn−1l2 gj−1/2

(r5)j−1/2 = 1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

)(tj−1 − tj

)
− αhjtn−1

j−1/2Fj−1/2

−(1 + α)hjFj−1/2tj−1/2 + αhjtj−1/2Fn−1
j−1/2 + αhjwj−1/2sj−1/2

−αhjwj−1/2sn−1
j−1/2 + αhjwn−1

j−1/2sj−1/2 + (R2)
n−1
j−1/2

(42)

3.3. The Block Tridiagonal Matrix

The matrix form of the linearized tridiagonal system is:

Wδ = r, (43)

where
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W =



[M1] [L1]
[N2] [M2] [L2]

. . .

. . .

. . .
[NJ−1] [MJ−1] [LJ−1]

[NJ ] [LJ ]


, δ =


[δ1]
[δ2]

...
[δJ−1]
[δJ ]

, r =


[r1]
[r2]

...
[rJ−1]
[rJ ]

.

Boundary conditions (34) are satisfied with no iteration. This is attributed to main-
taining appropriate values in each iteration. We suppose that δF0 = 0, δO0 = 0, δI0 =
0, δwJ = 0, δHJ = 0, and dJ = − 1

2 hJ .
The entries of the matrices are:

[M1] =


0 0 1 0 0
d1 0 0 d1 0
0 −1 0 0 d1

(m2)1 (m8)1 (m3)1 (m1)1 0
0 (n8)1 (n3)1 0 (n1)1

 (44)

[
Mj
]
=


dj 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0

(m6)j (m8)j (m3)j (m1)j 0
(n6)j (n8)j (n3)j 0 (n1)j

, 2 ≤ j ≤ J, (45)

[
Nj
]
=


0 0 −1 0 0
0 0 0 dj 0
0 0 0 0 dj
0 0 (m4)j (m2)j 0
0 0 (n4)j 0 (n2)j

, 2 ≤ j ≤ J, (46)

[
Lj
]
=


dj 0 0 0 0
1 0 0 0 0
0 1 0 0 0

(m5)j (m7)j 0 0 0
(n5)j (n7)j 0 0 0

, 1 ≤ j ≤ J − 1, (47)

[δ1] =


δQ0
δH0
δF1
δQ1
δI1

,
[
δj
]
=


δOj−1
δHj−1
δFj−1
δQj−1
δIj−1

,2 ≤ j ≤ J,
[
rj
]
=


(r1)j−(1/2)
(r2)j−(1/2)
(r3)j−(1/2)
(r4)j−(1/2)
(r5)j−(1/2)

,1 ≤ j ≤ J (48)

Finally, the lower–upper decomposition method is employed to solve the system
(43). The MATLAB program has been used to perform numerical calculations considering
the wall shear stress δQ0 as a convergence criterion, which is often employed in laminar
boundary layer computations to achieve the required accuracy. This is most likely due
to the fact that the wall shear stress in the laminar boundary layer calculations has the
maximum error (see Cebeci and Bradshaw [83]). The iterations are implemented until some
convergence criterion is obtained, and terminated when

∣∣∣δQ(i)
0

∣∣∣ < ε1. However, ε1 = 10−7

is selected to be 10−7, which gives precision to our results up to six decimal places.
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4. Results and Discussion

In this section, MATLAB was employed to perform the numerical computations to ac-
quire graphical and numerical findings for the flow characteristics of kerosene oil as a host
Casson nanoliquid, considering the influence of some relevant parameters, as well as provid-
ing a thorough parametric analysis. In such an analysis, the numerical results are observed
when a single examinable parameter varies over the range, whereas other examinable
parameters remain constant. It is a typical analysis usually used by mathematicians, physi-
cists, and engineers in modeling and decision-making. The parameters that were taken into
account in the calculations are mixed convection λ, magnetic M, Casson β, and nanoparticle
volume fraction χ and have ranges of. −1.5 ≤ λ ≤ 10, 0.1 ≤ χ ≤ 0.2 ,M > 0, and β > 0.

Table 1 states the thermophysical properties of kerosene oil and the ultrafine particles
that were employed in this work. In order to emphasize the accuracy of the current work’s
outcomes, the approximate relative error εa is calculated between the current and previous
outcomes in Tables 2 and 3 using the following formula:

εa =

∣∣Rc − Rp
∣∣

Rc
× 100% (49)

Table 1. Thermo-physical properties of Kerosene oil and nanoparticles [14,29,45,84].

Thermo-Physical
Property Kerosene Oil Al2O3 TiO2 ZnO

ρ
(

kg/m3
)

783 3970 4230 5600

Cp(J/kgK) 2090 765 650 502.7
K(w/mK) 0.15 40 8.9528 13

β× 10−5(K −1) 21 0.85 0.9 0.431
σ(S/m) 5× 10−11 35× 106 2.6× 106 1× 10−2

Pr 22.85 - - -

Table 2. Validation of Re1/2C f by comparing it with Tham’s et al. [70] findings for different values of
λ (β→ ∞, M = 0, χ = 0, Pr = 1) .

λ −0.5 0 2

x Tham et al. Present εa (%) Tham et al. Present εa (%) Tham et al. Present εa (%)

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.1869 0.1868 0.0500 0.2425 0.2437 0.4900 0.4349 0.4136 0.4800
0.4 0.3503 0.3503 0.0000 0.4619 0.4573 0.9900 0.8452 0.8456 0.0500
0.6 0.4690 0.4689 0.0200 0.6377 0.6347 0.4700 1.2084 1.1996 0.7300
0.8 0.5244 0.5235 0.1700 0.7525 0.7519 0.0700 1.5061 1.4929 0.8700
1.0 0.5012 0.5048 0.7100 0.7944 0.7965 0.2600 1.7252 1.7161 0.5200
1.2 0.3834 0.3825 0.2300 0.7566 0.7615 0.6400 1.8586 1.8539 0.2500
1.4 0.1138 0.1134 0.3500 0.6370 0.6347 0.3600 1.9060 1.9056 0.0200
1.6 0.4333 0.4343 0.2300 1.8735 1.8769 0.1800
1.8 0.0934 0.0888 0.4900 1.7726 1.7791 0.3600
2.0 1.6188 1.6275 0.5300
2.2 1.4297 1.4397 0.6900
2.4 1.2225 1.2331 0.8600
2.6 1.0116 1.0121 0.0500
2.8 0.8052 0.8054 0.0200
3.0 0.6029 0.6031 0.0300
π 0.4564 0.4564 0.0000
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Table 3. Validation of Re−1/2Nu by comparing it with Tham’s et al. [70] findings for different values
of λ (β→ ∞, M = 0, χ = 0, Pr = 1) .

λ −0.5 0 2

x Tham et al. Present εa (%) Tham et al. Present εa (%) Tham et al. Present εa (%)

0 0.5421 0.5421 0.0000 0.5705 0.5705 0.0000 0.6515 0.6515 0.0000
0.2 0.5379 0.5383 0.0700 0.5668 0.5672 0.0700 0.6487 0.6490 0.0400
0.4 0.5257 0.5264 0.1300 0.5563 0.5569 0.1000 0.6407 0.6411 0.0600
0.6 0.5050 0.5049 0.0100 0.5387 0.5395 0.1400 0.6275 0.6273 0.0300
0.8 0.4751 0.4752 0.0200 0.5140 0.5139 0.0100 0.6094 0.6101 0.1100
1.0 0.4342 0.4343 0.0200 0.4818 0.4837 0.3900 0.5867 0.5864 0.0500
1.2 0.3766 0.3770 0.1000 0.4415 0.4417 0.0400 0.5598 0.5596 0.0300
1.4 0.2683 0.2692 0.3300 0.3914 0.3917 0.0700 0.5292 0.5291 0.0100
1.6 0.3260 0.3266 0.1800 0.4955 0.4972 0.3400
1.8 0.2051 0.2068 0.8200 0.4595 0.4594 0.0200
2.0 0.4219 0.4219 0.0000
2.2 0.3837 0.3856 0.4900
2.4 0.3458 0.3458 0.0000
2.6 0.3090 0.3108 0.5800
2.8 0.2737 0.2737 0.0000
3.0 0.2394 0.2411 0.7100
π 0.2144 0.2144 0.0000

Here, Rc and Rp are the current and previous results, respectively.
It was found that the errors are sufficiently small, making our numerical outcomes

compatible with previous results.
At the outset, it is appropriate to mention here the occurrence of separation point

phenomena in the laminar boundary layer, which is one of the most important aspects of
the movement of an incompressible fluid around a solid body. This phenomenon appears
clearly in Tables 2 and 3, as it appears in Figures 2 and 3. It has been addressed by many
researchers [85–88].
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Figure 3. Impression of λ on Re1/2C f .

Figures 2 and 3 depict the impression of the combined convection parameter on the
Nusselt number and skin friction in both flow states (λ < 0 & λ > 0) with volume fraction
fixed at χ = 0.1, Casson parameter at β = 2, and magnetic parameter M = 0.1. It can
be observed from Figure 2 that an ascending trend of the mixed convection parameter
is accompanied by a rising Nusselt number. This occurs due to the enhancement of the
buoyancy forces, which are produced by the increasing combined convection parameter.
According to Figure 3, as the values of the combined convection parameter grow, the skin
friction follows the same tendency as the Nusselt number. This is due to an increase in
buoyancy forces too.

Figures 4 and 5 are related to the influence of ultrafine particle volume fraction
on Nusselt number and skin friction, while keeping the rest of the parameters constant
(λ = 10, β = 2 & M = 0.1). One can see that in Figures 4 and 5, with elevating values
of nanoparticle volume fraction, both Nusselt number and skin friction improve. This is
expected because the growth in nanoparticle volume fraction leads to an enhancement
in thermal conductivity for kerosene oil and, consequently, an augmentation in Nusselt
number and skin friction.
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The variation of Nusselt number and skin friction with the Casson parameter are
shown in Figures 6 and 7, respectively. It can be seen that the Casson parameter has a
positive effect on Nusselt number while it has a negative effect on skin friction. Physically,
increasing the Casson parameter leads to a decrease in yield stress, which in turn reduces
skin friction. At the same time, the higher values of the Casson parameter reduce the
viscosity of the fluid, which contributes to an increase in heat transmission and, thus, an
increase in the Nusselt number.
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Figures 8 and 9 show the behavior of the Nusselt number and skin friction when
they are affected by an increasing magnetic field. Obviously, the Nusselt number and skin
friction are decreasing functions of the magnetic parameter. Actually, this reduction is
caused by the curbing of fluid movement caused by an increase in the intensity of the
magnetic field, which restrains convection and, thus, both are reduced. Furthermore,
the figures above confirm that Al2O3–kerosene oil is superior in terms of Re1/2C f and
Re−1/2Nu, regardless of the value of the parameters λ, χ, β or M.
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Figures 10 and 11 illustrate the effect of the combined convection parameter on temper-
ature and velocity, respectively. It is noticed here that by improving the mixed convection
parameter, the temperature declines while the velocity grows. This growth in velocity or
decline in temperature is due to an increase in the buoyancy force caused by an increase in
the mixed convection parameter.
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According to Figures 12 and 13, a growing nanoparticle volume fraction causes a
heightening in the transmission of heat from outside of the cylinder’s surface to the fluid,
which aids in raising the thickness of the thermal layer as a result of the augmentation in
the temperature of the fluid. Besides, the rise in volume fraction of the nanoparticle for any
of the employed reinforcer nanoparticles enhances the thermal conductivity of the host
fluid, which results in the rate of heat transfer for the host fluid improving, consequently
contributing to its increasing velocity, as is obviously seen in Figure 13.
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Figures 14 and 15 depict the graphical findings of temperature and velocity versus
the Casson parameter. The increase in the Casson parameter will inhibit temperature and
velocity. The augmentation in the Casson parameter causes a decrease in the fluid viscosity,
thereby the temperature decay. On the other hand, the increase in Casson factor values is
followed by a decrease in the yield stress of the Casson fluid, as well as an increase in the
plastic dynamic viscosity. This rise produces resistance in the fluid flow, which acts to limit
the fluid velocity. See Figure 15 for details.

Coatings 2022, 11, x FOR PEER REVIEW 19 of 25 
 

 

 

Figure 12. Impression of   on  . The inset is a partial enlargement of the curves. 

 

Figure 13. Impression of   on / F y . The inset is a partial enlargement of the curves. 

 

Figure 14. Impression of   on  . The inset is a partial enlargement of the curves. Figure 14. Impression of β on θ. The inset is a partial enlargement of the curves.



Coatings 2022, 12, 296 18 of 23

Coatings 2022, 11, x FOR PEER REVIEW 20 of 25 
 

 

 

Figure 15. Impression of   on / F y . The inset is a partial enlargement of the curves. 

Figures 16 and 17 show that with the increasing values of the magnetic parameter, 

the temperature rises but the velocity reduces. Of course, this will happen because cross-

ing a magnetic field through a moving fluid generates a force called the Lorentz force. 

This force generates a kind of friction in the flow, which in turn generates more heat en-

ergy, which eventually increases the temperature. Additionally, increasing the intensity 

of the magnetic field aims to strengthen the force of friction, which curbs the flow of the 

fluid and slows its velocity. It is also noticed that zinc oxide–kerosene oil gains the highest 

velocity and temperature regardless of the values of the parameters affecting it. 

 

Figure 16. Impression of M  on  . The inset is a partial enlargement of the curves. 

Figure 15. Impression of β on ∂F/∂y. The inset is a partial enlargement of the curves.

Figures 16 and 17 show that with the increasing values of the magnetic parameter, the
temperature rises but the velocity reduces. Of course, this will happen because crossing a
magnetic field through a moving fluid generates a force called the Lorentz force. This force
generates a kind of friction in the flow, which in turn generates more heat energy, which
eventually increases the temperature. Additionally, increasing the intensity of the magnetic
field aims to strengthen the force of friction, which curbs the flow of the fluid and slows
its velocity. It is also noticed that zinc oxide–kerosene oil gains the highest velocity and
temperature regardless of the values of the parameters affecting it.
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5. Conclusions

In this work, the impact of combined convection, magnetic parameter, Casson pa-
rameter, and the volume fraction of nanoparticles on physical quantities that are heat
transfer-related were numerically examined to achieve a comprehensive view of the energy
transmission characteristics of kerosene oil-based Casson nanoliquid flowing around a
circular cylinder, taking into account the combined convection and magnetic forces. Graph-
ical results were obtained, discussed, and analyzed. The following meaningful remarks
deserve mention:

1. All the physical quantities studied in this work showed increasing behavior when the
values of ultrafine particle volume fraction grew.

2. Temperature possesses an inverse relationship with β or λ, while it has a direct
relationship with M.

3. Velocity is a decreasing function of M or β, while it is an increasing function of λ.
4. Increasing λ increases Re1/2C f , but increasing M or β decreases it.
5. The growth of each of the values of β or λ boosts the rate of energy transport, whereas

the growth of the values of M decays it.
6. Whatever the values of the parameters examined in this article, Al2O3–kerosene

oil has the highest heat transmission rate and skin friction. Moreover, it has the
lowest temperature.
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Nomenclature

a Radius of Cylinder (m) T Temperature of the fluid (K)

B0 Magnetic field strength (kg /s 2 A) Tw Wall temperature (K)
C f . Skin friction coefficient T∞ Ambient temperature (K)

Gr Grashof number u ξ-component of velocity (m/s)
g Gravity vector v η-component of velocity (m/s)
k Thermal conductivity (W/mK) v f Kinematic viscosity (m 2 /s)
M Magnetic parameter ue Velocity of external flow (m/s)
Nu Nusselt Number Free stream velocity (m/s)
Pr Prandtl number

py Yield stress (N/m 2
)

Re Reynolds number
Subscribt
s Nanoparticles n f Nanoliquid
f base fluid
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