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Abstract: A fatigue test on the failure mode of flange shafts was conducted. The propagation
characteristics of the initial crack at the junction between the shaft and the flange as well as its angle
effect were studied. This study developed an analysis program of fatigue crack propagation, based
on the APDL (ANSYS Parametric Design Language). It obtained the effective angle interval within
which the initial crack is able to propagate. The fitting calculation formula was derived and the results
showed that: (1) The initial crack at the junction between the shaft and the flange would propagate in
the radial and axial directions; the unstable crack propagation would cause an abrupt fracture of the
cross-section, failing connection; and the angle of initial crack was uncertain. (2) The crack followed
the I-II-III mixed mode, which was dominated by mode I. An initial crack with a larger angle showed
more noticeable II-III characteristics; KII and KIII affected the crack’s propagation angle in the radial
and axial directions and they also affected the structure’s surface direction. (3) The deepest point A
of the crack was located at the junction between the shaft and the flange. Its crack propagation can be
divided into three stages: rapid growth (stage 1), steady decline (stage 2, buffer stage), and instability
(stage 3). The initial crack angle not only affected the propagation rate at stage 1 but also influenced
the fatigue life distribution of the structure during propagation. The larger the initial crack angle was,
the smaller the proportion of buffer stage in the total fatigue life would be. Moreover, the propagation
of crack with a larger initial angle reached instability faster after stage 1, which would cause an abrupt
fracture of the cross-section. This was unfavorable for deciding the crack detection time or carrying
out maintenance and reinforcement. (4) The crack propagation at the junction between the shaft and
the flange was determined by the size relation between ∆KI and ∆Kth, instead of the effective stress
intensity factor. The effective stress intensity factor can partly reflect the law of crack propagation,
but cannot serve as the only criterion for crack propagation; it must be combined with the effective
angle interval, which was negatively correlated with the crack’s shape ratio, to determine whether
the crack would propagate.

Keywords: flange shaft; fatigue failure; fracture mechanics; stress intensity factor; crack propagation

1. Introduction

As the support of the transmission parts, a flange shaft can transfer the torque and
bear the load. It is widely used in machines and equipment, such as machine tools, aircraft
engines, fans, and pumps. However, when it is under cyclic stress when working, it will be
subject to fatigue cracks. Studies have shown that most flanges have fatigue cracks after
5–10 years of service [1]. Fatigue cracks are most common at the junction between the
shaft and the flange. This is due to the abrupt change of the cross-section. Once the crack
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occurs, it will propagate in the radial and axial directions, seriously affecting the safety of
machinery. Therefore, it is important to investigate the fatigue failure of flange shafts.

In the engineering field, the most common assessment method of fatigue life is the S-N
curve nominal stress method. This method greatly simplifies the fatigue analysis and is
easy to use. However, some obstacles remain: first, it needs to be checked whether the S-N
curve of various weld details is suitable for new steel; secondly, making S-N curve requires
previous load information to predict the fatigue life of the structure details, but the historic
information is difficult to acquire, let alone determine the fatigue life; third, this method
cannot assess the remaining life with the flange’s test data, such as the distribution and
size of the crack. In recent years, the method that combines fracture mechanics with finite
elements has developed rapidly and become one of the main tools in the research of fatigue
crack [2–7]. Atanasovska et al. carried out finite element analysis of corrosion fatigue
crack and turbine shaft damage based on actual turbine shaft failure cases and proposed
a new method to calculate the stress concentration coefficient [8]. Li et al. studied the
effects of pre-strain on fatigue crack growth rate, strain energy, crack tip plastic zone size,
and fatigue fracture mechanism of commercial titanium alloy (CP-Ti) under a wide range
of load amplitude and load ratio, and analyzed how pre-strain affects fatigue crack growth
and thus the entire fatigue life [9]. Sola et al. combined the critical plane fatigue theory and
URM standard to preliminarily estimate the damage and fatigue life of a crankshaft with
increasing power [10]. Pandey performed the analysis of the fracture on the crankshaft
and predicted the crack propagation life based on the Pairs formula [11]. Lei used crack
beam elements to simulate the failure diagnosis of crankshaft crack [12]. Zhou conducted
a fatigue test of a flange shaft under bending stress and obtained the curve of the crack
propagation rate and the residual strength model [13].

Currently, global studies on the cracks of mixed-mode mainly focus on cylindrical
samples. Yang et al. conducted a series of fatigue tests on C45 steel specimens with local
surface cracks and found that carburizing treatment can effectively delay crack propagation
and improve the fatigue life of specimens. Surface depth can only improve the fatigue
life of materials in a certain range, too much depth may reduce the fatigue strength of
materials [14]. Ye et al. obtained the S-N curve of 7A85-T7452 aluminum alloy in air and
neutral 3.5% NaCl solution through axial fatigue test and found that corrosion had no
obvious influence on fatigue life in high-stress cycling regions, but significant influence
in low-stress regions [15]. Fonte designed and built the test machine of bending coupling
fatigue and performed fatigue tests on the cylindrical samples [16–18]. The test showed
that the crack propagation rate of the cylindrical samples decreased after the superposition
of the steady-state torsion load. This was due to the crack closure. Yang carried out a
crack propagation test on cylindrical samples under multiaxial load and showed that axial
tension greatly affected the crack propagation rate, while axial pressure had no impact on
the crack propagation rate [19]. Zangeneh simulated the failure of an agitator shaft in a
large vessel with ABAQUS and found that the failure was due to the stress concentration at
the root of the shaft [20]. Furthermore, the shape of crack morphology was compared with
numerical and experimental results. Azevedo [21] claimed that rounding radius in the shaft
base was the cause of failure employing finite element simulation of a sugarcane loader rear
shaft. Aliakbari analyzed the failure of a ductile iron crankshaft in a compact pickup truck
diesel engine and contributed its failure to the low cycle fatigue [22]. Khameneh focused
on high-cycle bending fatigue in the crankshaft and revealed the failure mechanism from
a micro perspective [23]. Alvarez et al. compared Tungsten Inert Gas Welded Alloy 718
and Laser Beam Welded Alloy 718 on hot cracking susceptibility by varestraint testing [24].
Coro et al. had proposed a new methodology to evaluate the reliability impact of the
replacement of welded components using the first-order reliability method and fracture
mechanics [25]. Rodriguez et al. studied the effect of roller burnishing on improving the
fatigue performance of austempered iron casting cylindrical parts [26]. A new methodology
to evaluate the reliability impact of the replacement of welded components using the first-
order reliability method and fracture mechanics was proposed.
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Many scholars have fully studied the propagation characteristics of fatigue cracks on
welding components of shafts based on the numerical simulation of fracture mechanics [27].
However, the influence of initial fracture direction and size on the fracture initiation and
propagation in flank shafts is rarely investigated, which can provide valuable insights into
inspection, repair, and scrapping of flank shafts.

Due to the complexity and randomness during the casting, the initial crack on the
flange shaft is unavoidable. There is a strong geometric uncertainty about the initial crack at
the junction between the shaft and the flange, but it is hardly studied. Therefore, it becomes
urgent to analyze the propagation characteristics of the fatigue crack on the flange shaft.
Based on the theory of 3D fracture mechanics, the author studied the propagation charac-
teristics of fatigue crack at the junction between shaft and flange and the focus of the study
was on the impact of the initial crack angle. The study aims to help researchers understand
more about the propagation characteristics of the fatigue crack on the flange shaft and to
provide a reference for related research.

2. Calculation Principle of Crack Propagation

Flange shaft fatigue is typical high cycle fatigue, with the size of the plastic zone on the
crack tip much smaller than the crack length and a linear elastic state. Therefore, the theory
and method of linear elastic fracture mechanics can still solve the problem of the small-scale
yield. This paper studied the 3D propagation of the fatigue crack based on linear elastic
fracture mechanics.

2.1. Criterion of the Crack Propagation Direction

Based on different forms of load, a crack can have three basic modes: the opening
mode (mode I), the sliding mode (mode II), and the tearing mode (mode III). As the
flange shaft is subject to the common interaction of the bending moment, the axial force,
and the shear force, most of its fatigue cracks are of a mixed-mode, deriving from the
combination of two or three cracking modes. The mixed-mode cracks and opening mode
cracks are different at the macroscopic level. One significant difference is that the mixed-
mode cracks do not necessarily propagate along the plane determined by the initial crack.
Instead, the crack propagation will be at a certain angle of the original crack surface.
The spatial form is determined jointly by the propagation step length and the propagation
angle. Based on the maximum circumferential stress criterion [28], this paper assumed
that the crack propagated along with the position of the maximum circumferential stress.
The maximum circumferential stress was at the circular failure nuclear perimeter of the
crack tip. The propagation angle of the crack surface is θ [29]:

θ = 2arctan

1−
√

1 + 8K2
II/K2

I

4KII/KI

 (1)

where: KI and KII were the stress intensity factors of modes I and II cracks, respectively.

2.2. Effective Stress Intensity Factor

In the mechanics of the linear elastic fracture, the stress intensity factor is an important
physical quantity to measure the local stress–strain state of the crack tip. Accurate stress
intensity factor at the crack tip is the premise to analyze the fatigue crack propagation and
fatigue life. The fatigue crack starts at the junction between the shaft and the flange. As the
crack is a mixed-mode (I-II-III), when calculating the fatigue using the stress intensity
factor, the impact of various cracking modes on crack propagation should be considered.
BS7910 uses Formula (2) to calculate the equivalent stress intensity factor amplitude of the
mixed-mode crack [29]. The far-field force that drives crack propagation may be negative.
Therefore, considering the possible crack closure effect, this paper used the effective stress
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intensity factor in Formula (3) instead of ∆KI in the Paris formula for the analysis of fatigue
crack propagation and fatigue life.

∆Keq =
√

∆K2
I + ∆K2

II + α∆K2
III/(1− v) (2)

∆Ke f f =

{
0, Keq,max < 0
∆Keq, Keq,max ≥ 0

(3)

where: ∆Keq and ∆Ke f f were the amplitudes of equivalent stress intensity factor and
effective stress intensity factor, respectively; ∆KI, ∆KII and ∆KIII were the amplitudes of
stress intensity factor of modes I, II, and III cracks; ∆Keq,max was the maximum value of the
equivalent stress intensity factor, v was the Poisson’s ratio and here we adopted 0.3, and α
was the weight coefficient, for which we took 1.0 for safety [30].

2.3. Crack Propagation Analysis Model

Based on the analysis of the fatigue crack propagation of metal structures, Paris et al.
proposed a theoretical model to describe the relation between crack length and fatigue life
in subcritical propagation areas [31]. For the propagation of mixed-mode fatigue crack,
the Paris formula was modified by the amplitude of effective stress intensity factor to
analyze the propagation of mixed-mode crack tip, as shown in Formula (4):

da
dN

= Ceq

(
∆Ke f f

)m
(4)

where: da/dN was the crack propagation rate, a was the crack size, N was the number of
stress cycles, Ceq and m were the fatigue crack propagation parameters. The test showed
that among the test specimens with the same geometry and material, the mixed loading
modes had little effect on m, but the great effect on Ceq, as shown in Formula (5) [32]:

Ceq = C
[
1 + β(Me − 1)2

]
(5)

where: Me = 2
π tan−1

∣∣∣ KI
KII

∣∣∣, C and M were the Paris coefficients of the mode I crack; β was
the tested coefficient, in which we took β = 3 for aluminum alloy and steel, as suggested by
the test [30].

According to Formula (4), the N (fatigue life) can be obtained by the integral Formula (6)
with the given a0 (initial crack depth), a f (final crack depth), and ∆Ke f f .

N =
∫ a f

a0

da

Ceq

(
∆Ke f f

)m (6)

However, the stress distribution of complex structures is a complicated 3D problem.
During the crack propagation, the stress is constantly redistributed, so it is difficult to
express ∆Ke f f . The Paris formula is an ordinary differential equation with an initial value,
so integral Formula (6) can be converted to summation Formula (7). This can be done based
on Euler’s formula. Through iterative calculation, the final fatigue life is obtained:

Nn+1 = Nn +
da

Ceq

(
∆Ke f f

)m (7)

where: Nn+1 and Nn were the fatigue life of the structure at No. n+1 and No. n iterative
steps, respectively.

Similarly, the expression for the iterative calculation of crack propagation was:

an+1 = an + ∆N
[
Ceq

(
∆Ke f f

)m]
(8)
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where: an+1 and an were the crack sizes at No. n+1 and No. n iterative steps, respectively;
∆N was the cyclic stress increment applied from an to an+1.

Formulas (7) and (8) reflected the numerical simulation of crack propagation and
calculation of the structure’s fatigue life.

2.4. Calculation Procedures of the Crack Propagation Process

For example, if a0 (initial crack depth) and c0 (initial crack length) were given,
the propagation of an elliptical or semi-elliptical crack to limit ac or cc can be simulated in
the following steps:

(1) Select an appropriate crack propagation step length as ∆ai. Generally, the smaller ∆ai
is, the higher the calculation accuracy and the longer the calculation time will become.

(2) The figures to be calculated include: crack depth ai, crack length ci, the effective stress

intensity factor ∆K(a)
e f f ,i of the deepest point of crack, crack depth ai−1, crack length

ci−1, effective stress intensity factor ∆K(a)
e f f ,i of the deepest point of crack, and the

effective stress intensity factor ∆K(c)
e f f ,i−1 of long axis endpoint of the crack. Among

them, i represents the number of steps for current propagation calculation, and n
refers to the total number of propagation steps calculation.

(3) With a given tolerance ε, if
(

∆K(a)
e f f ,i − ∆K(a)

e f f ,i−1

)
/∆K(a)

e f f ,i−1 < ε reaches accuracy,
then we proceed to the following steps, otherwise, let ∆ai = ∆ai/2 and return to
step (2).

(4) Suppose that the da/dN remained unchanged when the crack propagated from ai−1
to ai, and

da/dN = Ceq

(
∆K(a)

e f f ,i−1

)m
(9)

Calculate the number of load cycles corresponding to ∆ai:

∆Ni = ∆ai/(da/dN)i (10)

Then the cumulative number of load cycles corresponding to the crack depth ai is:

Ni = ∑ ∆Ni (11)

(5) Calculate the propagation rate and propagation step length of the long axis endpoint
of the crack in No. i propagation:

dc/dN = Ceq

(
∆K(c)

e f f ,i−1

)m
(12)

∆ci = ∆Ni/(dc/dN)i (13)

(6) Repeat step (1)–step (5), until ai = a0 + ∑ ∆ai ≥ ac or ci = c0 + ∑ ∆ci ≥ cc.

The above steps can be implemented according to the programming in the program
block diagram shown in Figure 1.
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3. Verification of Fatigue Test and Numerical Simulation Method for Flange Shaft
3.1. Test Overview

Considering the uncertainty of test results, three test specimens of the same size (T1,
T2, and T3) were made. The specimens were of the same material, 45# steel. The detailed
size of test specimens, restraint loading device, welding form, and test site layout are shown
in Figure 2. To investigate the fatigue cracking performance of the flange shaft, the load of
the actuator passed through the clamp to the shaft. Near the upper edge of the junction,
which was between the shaft and flange, was subjected to tensile and bending stress by
acting the load imposed by the actuator. The test specimen was fixed on the platform
by bolts, the flange shaft was connected with the actuator by a fixture in the course of
experimental testing, then the actuator imposed a cyclic load on the flange shaft for fatigue
test loading. Based on the static load test results, 11 kN was taken as the maximum fatigue
load, the stress ratio was 0.05, and the frequency was 2 Hz.
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Figure 2. Test specimens and test site layout. (a) Test specimen size (unit: mm), (b) Test specimens,
(c) Test site layout.

3.2. Fatigue Failure

Crack locations and propagation are shown in Figure 3. T1, T2, and T3 cracked at the
junction between the shaft and the flange. They propagated in radial and axial directions.
This caused connection failure between the shaft and the flange. It was about 10◦ between
the failure surface of the three specimens and the flange surface, but the angle between the
initial crack surface and the flange surface is uncertain. The initial crack was approximately
semi-elliptical or semi-circular. The chamfered surface between the vertical flange and
the shaft was set to 0◦, as shown in Figure 4. When biasing towards the shaft, the value
was positive and when biasing towards the flange, the value was negative. According to
measurement and calculation, the maximum normal angle between the initial crack area
and the flange surface was about 18◦ and the minimum normal angle was about −8◦.
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Figure 4. The definition for the initial crack angle.

3.3. Verification of Numerical Simulation Method for Fatigue Crack
3.3.1. Verification of Standard Test

The stress intensity factor is a key parameter to calculate crack propagation. Compact
tension and shear (CTS) samples selected in the literature [33] were used as validation
examples to verify the effectiveness of the numerical algorithm in this paper. The specimen
dimension and experimental devices are shown in Figure 5. The specimen has a dimension
of 70 mm× 90 mm and a thickness of 14 mm. A total of 6 holes having a diameter of 9.5 mm
were drilled for tension. The initial fracture length was 35 mm. As shown in Figure 5c,
the 3rd, 4th, 5th holes were used in the test, yielding three different angles between tension
direction and fracture direction of 63◦, 50◦, 36◦, respectively. The tension loadings are
shown in Table 1.
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Table 1. The tension loadings.

Loading Angle (◦) 63 50 36

Load F (kN) 8 9.6 11

For CTS specimens without crack propagation, Richard deducted the approximate
analytic formula of the stress intensity factor when the specimens’ a/w was between 0.45
and 0.7, as can be shown [34]:

KI =
F

WB
√

πa
cos α(

1− a
W
)
√√√√ 0.26 + 2.65

( a
W−a

)
1 + 0.55

( a
W−a

)
+ 0.08

( a
W−a

)2 (14)

KII =
F

WB
√

πa
sin α(

1− a
W
)
√√√√ −0.23 + 1.40

( a
W−a

)
1− 0.67

( a
W−a

)
+ 2.08

( a
W−a

)2 (15)

where F denoted the loading force, W represented the width of CTS, B was the depth of CTS,
a meant crack length, and α was the angle between the loading line and normal direction of
the crack surface.

The analytical solution and finite element numerical simulation results of stress inten-
sity factors under different loading angles were shown in Table 2. As can be seen from the
comparison results, the error between the stress intensity factor calculated by the numerical
calculation method in this paper and Richard’s analytical solution was within ±6%. It can
be concluded that the numerical method presented in this paper can accurately calculate
the stress intensity factor of cracks [35].

Table 2. The comparison between finite element numerical solution and analytical solution of stress
intensity factor.

Loading Angle (◦)
The Calculated Value

(MPa·m0.5)
Richard Analytical

Solution (MPa·m0.5) Error (%)

KI KII KII KII KII KII

36 6.10 4.01 5.85 4.20 4.3 −4.5
50 6.49 2.75 6.64 2.91 −2.3 −5.5
63 6.29 1.61 6.45 1.71 −2.5 −5.9

3.3.2. Verification of Test in This Paper

The numerical analysis was performed on the ANSYS platform. The mesh size and
number significantly affected the simulation results. Based on [36,37], we performed a
series of simulations to determine the optimal mesh size and number. The SOLID187
element was used to simulate the irregular shape of flange shafts. A total of five cases
by varying mesh sizes were simulated as shown in Table 3. Cases 1 and 2 used globally
densified mesh with mesh sizes of 3 mm and 2 mm, respectively. In cases 3, 4, and 5, mesh
sizes at the connection of flange face and axle were set as 1.75 mm, 1.4 mm, and 1 mm,
respectively, and the mesh sizes at other parts were set as 5 mm. The simulation results of
five cases are compared in Table 3. The locally densified mesh with a size of 1 mm (case 5)
yielded acceptable simulation accuracy and speed, which is used in this study.
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Table 3. Finite element grid verification results.

Simulation
Response

Integral Uniform Grid Local Grid Refinement

Case 1 (3 mm) Case 2 (2 mm) Case 3 (1.75 mm) Case 4 (1.4 mm) Case 5 (1 mm)

Configuration
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Elements 100,041 316,514 59,476 106,390 212,872
Simulation time (h) 5.6 27.5 3.7 6.1 15.3
Computed result
(cycle number) 9.76 × 105 4.72 × 106 5.16 × 106 6.51 × 106 6.56 × 106

Figures 6 and 7 show the evolutions of Von Mises stress and maximum principal
stress. It is evident that the Von Mises stress and maximum principal stress at the tips of
fractures increases.
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Figure 6. Evolutions of Von Mises stress during crack propagation (Unit: MPa). (a) Crack depth
a = 1 mm, (b) Crack depth a = 10 mm, (c) Crack depth a = 25 mm, (d) Crack depth a = 38 mm.

The propagation path and shape changes of the cracks were compared and shown in
Figure 8. In the beginning, the fractures grew in the predefined direction. Then, the fracture
growing path became parallel with the flange face after the fracture depth reached 3 mm.
The fracture growing path deviated from the flange face by a small angle after the fracture
depth reached 15 mm and caused the breakage of the flange shaft eventually. As shown in
Figure 8, the numerical results matched experimental results, indicating the effectiveness of
the method developed by this paper for predicting the fracture initiation and propagation
of the flange shaft.
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As can be seen from Figure 8, the numerical simulation method in this paper can
reasonably simulate the crack propagation path and morphology change characteristics.
Figure 9 shows the a-N curve of the flange shaft’s crack propagation calculated by the
numerical simulation method, where a was the projection depth of the deepest point of
the crack front on the cross-section, the fatigue life of the flange shaft was 6.56 × 106.
Table 4 shows the comparison between the simulation values and the test results of the
fatigue life of the flange shaft. The average value of the test results of the three groups was
7.16 × 106, and the numerical solution in this paper was 6.56 × 106. The error between
the numerical solution and the test value was 8.4%, which meets the requirements of
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engineering applications. Therefore, the numerical simulation method proposed in this
paper can be used to analyze the crack propagation characteristics of the flange shaft.
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Table 4. The comparison between the simulation values and the test results of the fatigue life of the
flange shaft.

Experiment Results
Numerical Result Error (%)

T1 T2 T3 Average Value

6.49 × 106 7.36 × 106 7.64 × 106 7.16 × 106 6.56 × 106 8.4

4. The Numerical Simulation of Crack Propagation on the Flange Shaft
4.1. Numerical Model

ANSYS was utilized for modeling based on the actual size of test specimens, with the
element type of Solid187. Figure 10 showed the global finite element model and sub-models
of the flange shaft. The initial crack was inserted into the chamfer surface between the shaft
and the flange, and the element ring grids at the crack front were divided into three-layer
symmetric element rings to ensure accuracy. The location of the inserted initial crack and
the division of element ring grids at the crack front are shown in Figure 10c. The 15-node
wedge element was used in the innermost circle of the element ring; the 20-node hexahedral
element was adopted in the middle layer; the 13-node pyramid element was applied in
the transition region of the crack tip and global finite element model, and the 10-node
tetrahedral element was taken for the global model outside the element ring. There were
approximately 18,519 elements in the initial state. Boundary conditions applied on the
simulation are almost the same as those in the experiment, with bolt holes being fixed.
A concentration force is performed in the cantilever terminal as shown in Figure 10a.
To obtain the bottom limited solution of the plasticity deformation, a trial force is applied
for probing the plasticity deformation commence in the structure. When the loading
value was 11 KN, the maximal stress arose up in the neck of the cantilever welding zone,
being 382.2 Mpa and approaching the plasticity yield strength that is 386 Mpa. The most
unfavorable load amplitude was 0.55–11 kN. It was selected for loading in the elastic stage,
with the stress ratio R = 0.05.
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Figure 10. Analysis technique for the sub-models of flange shaft. (a) Global finite element model
with initial crack, (b) Sub-model, (c) Sub-model inserted with initial crack.

4.2. Geometric Parameters of Initial Crack

According to the test results and the literature [1,28], the depth of semi-elliptical initial
crack was generally not more than 0.5 mm, which can be used as the initial crack depth to
reflect the most unfavorable condition. Figure 11 shows a typical semi-elliptical crack on
the surface of the cylinder, point A, F, and G located the leading edge of the semi-elliptical
crack front, c represented half of the long axis of the ellipse, a represented half of the short
axis, and a represented the crack depth in Figure 11. The geometric parameters of the
initial crack were shown in Table 5, where ω = a0/(2c0) was defined as the shape ratio
of the initial crack, the shape of the elliptical initial crack can be changed by the value of
ω. To investigate the effect of initial crack shape ratio on the crack propagation of flange
shaft, five groups of initial cracks as shown in Table 5 were selected to simulate the crack
propagation of flange shaft specimens, and the initial crack angle effect of fatigue crack
propagation of flange shaft was mainly investigated. The definition of the initial crack
angle can be obtained from Figure 4. The simulation results using five types of geometric
parameters of initial crack are shown in Figure 12.
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Figure 11. Semi-elliptical crack on the surface of the cylinder.

Table 5. Geometric parameters of initial crack.

Numerical Test Number
Geometry Parameters

a0 (mm) c0 (mm) ω

C1 0.5 2.5 0.1
C2 0.5 1.0 0.25
C3 0.5 0.5 0.5
C4 0.5 0.335 0.75
C5 0.5 0.25 1.0
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5. Crack Propagation Characteristics
5.1. Description of Calculation Points at the Crack Front

The calculation points of the crack front were shown in Figure 13, points A, B, C, D, E,
F, and G were taken as the calculation points. If angle AOF was equal to θ, then points B,
C, D, and E divided θ equally into five parts. As the point F on the surface and its nearby
small regions did not satisfy the plane strain hypothesis, the calculation results may have
errors. More accurate results can be extrapolated by the calculated values of the intensity
factor of the inner point, as recommended in the stress intensity factors handbook [38].
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5.2. Impact of Different Angles of the Initial Crack on Fatigue Life
5.2.1. Test Phenomena

When the remaining cross-section of the test specimen cannot withstand the external
loads (when the stress of the remaining cross-section reached or exceeded the static strength
of the material), the crack instability propagation will appear, resulting in an abrupt fracture
of the remaining cross-section. The fracture of the test specimen is shown in Figure 14.
As can be seen from Figure 14, there was an obvious abrupt fracture area in the fracture,
which was rough and significantly different from the fatigue striation. The average width
of the fatigue striation accounted for 25–35% of the total fracture width. As can be seen
from Figure 6 above, when crack depth A is 28.79 mm, the flange shaft enters the crack
instability propagation. The width of the transient fracture zone is 11.21 mm, about 28% of
the total width, which is in good agreement with the size of the transient fracture zone of
the specimen.
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Figure 14. The fracture morphology of the test specimen (unit: mm).

Under different initial angles, the propagation of C3, the semi-circular initial crack, was
calculated. The crack propagation was measured by the normalized crack depth D = a/d,
where a was the projected depth of the deepest point at the crack front on the shaft cross-
section, and d was the shaft diameter. To avoid the interference of surface point calculation
error in the process of crack propagation, points A and E of the crack front were selected
to analyze. The changes in the amplitude of the effective stress intensity factor ∆Ke f f of
C3 with different initial crack angles were shown in Figure 15. C3 had a similar overall
propagation trend of effective stress intensity factor under different initial crack angles.
When D was between 0.5–0.6, the dispersion of the effective stress intensity factor occurred.
This indicated that C3’s instability propagation was based on the shape of fatigue striation.
When D was between 0.6–0.7, the dispersion of the effective stress intensity factor increased
significantly and the propagation simulation ended around D = 0.7. The simulation results
were consistent with the fracture characteristics of test specimens. The normalized crack
depths of C3 with different initial angles were the same when reaching instability, regardless
of the initial angle. This showed that the crack instability and the abrupt fracture of the
remaining cross-section depended on whether it can withstand the external loads. Based
on changes in the amplitude of the effective stress intensity factor, the crack propagation
in the length direction was the main cause for the subsequent reduction in the remaining
cross-section.
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Figure 16. Propagation rate of the deepest point A. 

  

Figure 15. Changes in the amplitude of effective stress intensity factor. (a) Crack front point A,
(b) Crack front point E.

5.2.2. The Impact of the Initial Crack Angle on Fatigue Life

The propagation rate of the deepest point A in Figure 16 can be divided into three
stages: rapid growth (stage 1), steady decline (stage 2, buffer stage), and instability (stage 3).
According to the results, T = 0.35 was regarded as the normalized crack depth when the
crack reached the instability, and the corresponding fatigue life was recorded as the full life
N of stage 1. If Nu denoted the life of stage 1, and Ns was the life of stage 2, then N = Nu
+Ns. Table 6 showed changes in the propagation rate of the deepest point A, as the number
of load cycles increased.
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Table 6. Changes of Nu, Ns, and the propagation rate under different α0.

α0/(◦) (Nu/N) (%) Propagation
Rate (%)

Average
Propagation

Rate (%)
Ns/N (%) Propagation

Rate (%)

Average
Propagation

Rate (%)

−40 60.3 +562.1

+246

39.7 −30.5

−34.56
−20 57.9 +144.8 42.1 −31.7

0 45.7 +144.0 54.3 −38.7
20 60.4 +148.2 39.6 −31.2
40 62.3 +231.0 37.7 −40.7
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Figure 16 and Table 6 showed the propagation rate. The effect α0 only manifested in
the propagation rate of stage 1. Larger |α0| (|α0| is taking the absolute value of α0) would
lead to a smaller initial propagation rate. In stage 1, the energy exchange between the crack
and the outside world was fast, and the surrounding stress was unstable. α0 had little
impact on the propagation rate of stage 2. As for the fatigue life, larger |α0| would increase
Nu/N and decrease Ns/N. This suggested that a larger initial crack angle |α0|would reduce
the proportion of buffer stage in the total fatigue life. After stage 1, the initial crack with a
larger angle would reach the instability propagation faster, which would cause an abrupt
fracture of the cross-section. Therefore, the angle of the initial crack at the junction between
the shaft and flange mainly affected its fatigue life distribution. The initial crack with a
larger angle would adversely influence the flange shaft’s detection cycle, maintenance,
and reinforcement. The angle of the initial crack should be fully considered in the study and
reasonably set before the propagation test or numerical simulation of prefabricated cracks.

5.3. Impact of Initial Crack Angle on Crack Propagation

The initial propagation of crack referred to the change of the initial crack before
and after the first load cycle. According to the definition of ∆Kth, which was the crack
propagation threshold, this state can be calculated and the result can be used to determine
whether the crack can propagate at a given load amplitude. Based on the literature [39],
when R is 0.05, ∆Kth is 212.86 MPa·mm0.5 for 45# steel, the stress intensity factor of the
initial propagation of initial cracks with different α0 was calculated at the most unfavorable
load amplitude. The results are shown in Figure 17:

(1) With α0p as the benchmark, ∆KI of the crack front decreased with the increase of
|α0|; ∆KII and ∆KIII increased first and then decreased as |α0| increased. Both of
them were less than ∆Kth. Thus, the propagation of the initial crack at the junction
between the shaft and flange resulted from ∆KI > ∆Kth. ∆KII and ∆KIII only affected
the propagation angle during the initial propagation. When |α0| exceeded a certain
value, ∆KI, ∆KII and ∆KIII were less than ∆Kth and the propagation of the initial crack
was not observed.

(2) The changing trend of ∆Ke f f and ∆KI was similar. In other words, ∆Ke f f can reason-
ably reflect the overall change of stress intensity factors during the crack propagation.
However, in cracks with large |α0| (including welding cracks and other similar surface
cracks), ∆Ke f f > ∆Kth might still be true. ∆KI, ∆KII and ∆KIII were smaller than ∆Kth.
Therefore, the amplitude of the effective stress intensity factor cannot be used to assess
the crack propagation. In relevant studies, crack propagation should be evaluated by
three stress intensity factors and the crack propagation threshold.

We used |KII/KI| and |KIII/KI| to reflect the size relation among three stress intensity
factors and obtained the changing pattern of stress intensity factor on the front of the
semi-circular crack C3 with different initial angles. The results are also shown in Figure 17:

(1) The crack was categorized to a mixed I-II-III mode, which was dominated by mode I.
At a certain initial angle, it can be considered as the mode I crack. In this example, α0
was about + 4◦, and its angle was expressed as α0p.

(2) The larger α0, the stronger modes II-III characteristics would be. When α0 was larger,
KII accounted for a large proportion at both the surface and the deepest point of C3.
The stress difference between positions of the crack front was large, but the crack
still belonged to mode I; KIII gradually increased from the deepest point towards the
surface. Under the dominant action of KII and KIII, the surface and the deepest point
of C3 deflected, as shown in Figure 18.
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Figure 17. The stress intensity factor amplitude of the initial propagation state of initial cracks.
(a) Crack front point A, (b) Crack front point B, (c) Crack front point C, (d) Crack front point D,
(e) Crack front point E, (f) Crack front point F.
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5.4. Maximum Effective Angle Interval for the Initial Crack Propagation

Previous studies showed that an initial crack would only propagate under an effective
angle interval. This may be affected by the geometric parameters, the stress state of the
crack, and the steel type. The influence of crack shape ratio on the effective angle interval
of crack propagation of flange shaft will be analyzed as follows.

5.4.1. Shape Ratio

To reflect the most unfavorable condition, this paper used 0.5 mm as the maximum
initial crack depth in engineering [1,30]. According to previous studies, ∆KI and ∆Kth
were used to judge the propagation of the initial crack at the junction between the shaft
and flange. The effective angle interval for the propagation of C1–C5 initial cracks and its
relationship with the shape ratio are shown in Figures 19 and 20 and Table 7, respectively:

(1) |∆α0c| = |α0max − α0min| was used to define the effective angle interval for the propa-
gation of initial cracks at the junction between the shaft and flange. α0max and α0min
were the upper and lower limits of the interval’s initial angles. Only the initial cracks
with an angle within the interval can propagate. The initial cracks with an angle out-
side the interval did not propagate in the elastic stage. The interval was determined
by the size relation between the ∆KI of each point at the crack front and the base
metal ∆Kth. The α0p of the initial crack did not change with the shape ratio and |∆α0c|
would decrease as ω grown under the same stress ratio.

(2) The long flat cracks (ω < 0.5) did not propagate in the direction of the surface
length at a certain initial angle. They only propagated locally in the depth direction.
The crack propagation towards the surface was smaller than that in the depth direction.
The narrow and deep cracks (ω > 0.5) experienced the opposite propagation pattern.

Table 7. The effective angle interval for the propagation of initial cracks with different shape ratios.

Numerical Test Number a0 (mm) α0p (◦) ω |∆α0c| (◦)

C1 0.5 +4 0.1 108.9
C2 0.5 +4 0.25 100.1
C3 0.5 +4 0.5 79.3
C4 0.5 +4 0.75 72.9
C5 0.5 +4 1.0 68.8
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Figure 19. The effective angle interval for the propagation of initial cracks. (a) The shape ratio ω = 0.1,
(b) The shape ratio ω = 0.25, (c) The shape ratio ω = 0.5, (d) The shape ratio ω = 0.75, (e) The shape
ratio ω = 1.0.
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where: k1, b1, k2, and b2 were the constants related to the initial crack 
IK  and the crack 

propagation threshold 
thK . Figure 22 shows the fitting results of the effective angle in-
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Figure 20. The relationship between the effective angle interval for the propagation of initial cracks
and the shape ratio.

5.4.2. Mathematical Model of Effective Angle Interval

Changes in the amplitude of stress intensity factor at points A and E with the shape
ratio were given in Figure 21. When ω < 0.5, ∆KI of point A on the initial cracks with
different angles, almost changed linearly with ω; when ω > 0.5, ∆KI of point E on the initial
cracks with different angles changed linearly with ω. It was assumed that slopes kA and kE
were constants, which were less than 0 when the load condition was determined, as can be
shown in Figure 21. Therefore, |∆α0c| and ω = 0.5 showed a piecewise linear and negative
correlation. The general form of fitting formula was obtained by Formula (16):

|∆α0c| =
{

k1ω + b1, 0 < ω < 0.5
k2ω + b2, ω > 0.5

(16)

where: k1, b1, k2, and b2 were the constants related to the initial crack ∆KI and the crack
propagation threshold ∆Kth. Figure 22 shows the fitting results of the effective angle
interval for the propagation of the initial crack of 45# steel flange shaft. Under the most
unfavorable stress condition, k1 = −74.94, b1 = 117.3, k2 = −21, b2 = 89.42.
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Figure 21. Changes in the amplitude of stress intensity factor at points A and E with the shape ratio.
(a) Location of crack front: point A, (b) Location of crack front: point E.
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Figure 22. The fitting results of the effective angle interval for the propagation of the initial crack.

Formula (16) was obtained based on the maximum stress amplitude in the elastic
stage and the maximum initial crack depth, which was generally accepted in engineering.
Under this condition, the results reflected the maximum value of |∆α0c|. |∆α0c| for different
materials and stress levels can be calculated in the same way. The fitting calculation formula
helps researchers comprehensively consider the initial angle and reasonably set it in the
crack propagation calculation. It will deepen researchers’ understanding of the propagation
characteristics of fatigue crack and provide a reasonable reference for the duration of the
crack detection cycle. With this knowledge, engineers can formulate related measures for
maintenance and reinforcement.

6. Conclusions

(1) The initial crack appeared at the junction between the shaft and flange and propagated
in radial and axial directions; the instability propagation of the crack caused an abrupt
fracture of the cross-section, resulting in connection failure; the angle of the initial
crack was uncertain.

(2) The crack was the mixed I-II-III mode dominated by mode I. Cracks with larger
initial angles would have stronger mode II-III characteristics; KII and KIII affected the
propagation angle of the crack in radial and axial directions as well as the direction of
the structure surface.

(3) The propagation of the deepest point A of the crack was at the junction between shaft
and flange. It can be divided into three stages: rapid growth (stage 1), steady decline
(stage 2, buffer stage), and instability (stage 3). First, the initial crack angle only had
a significant effect on the propagation rate of stage 1. Second, the initial crack angle
affected the distribution of the fatigue life upon the structure during the propagation
stage. The crack with a larger initial crack angle had a smaller proportion of buffer
stage in the total fatigue life. After stage 1, a larger crack initial angle accelerated the
structure to reach the instability propagation, which led to an abrupt fracture of the
cross-section. This was more unfavorable for deciding how regular the crack detection
should be carried out or pushing forward maintenance and reinforcement.

(4) It was the size relation between ∆KI and ∆Kth that determined the crack propagation
at the junction between the shaft and the flange. The effective stress intensity factor
can partly reflect the law of crack propagation, but cannot serve as a criterion for crack
propagation. Moreover, crack propagation can be determined by the effective angle
interval, which was negatively correlated with the shape ratio.

(5) The initial crack at the junction between the shaft and the flange only propagated
at a certain initial angle. There was a piecewise linear negative correlation between
the effective angle interval and the shape ratio. The fitting calculation formula can
provide the basis for the crack propagation research and can also be used to judge
the propagation of welding cracks or other similar surface cracks. This paper has
studied the 45# steel flange and shaft. It obtained the maximum value of effective
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angle interval for the propagation of the initial crack. The formulas for other types
of steels and stress levels and the evaluation method based on reliability need to be
further explored.
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