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Abstract: Modern materials science, both in terms of functional and structural materials, is actively
developing towards the creation of structures with a given ordering. A wide range of methods
involves ordering the structure according to a template shape. Template synthesis is one of the mots
wide-spread approaches. Most often, the template synthesis method is implemented under conditions
of limiting the growth of the phase due to the geometry of the template. In the present work, a
template electrochemical method is considered for calcium hydroxyapatite (HAp) coating synthesis,
based on the replication of the planar template texture during deposition. In this case, the template is
an array of silver microparticles immobilized on an electrically conductive substrate, separated by an
insulator layer. The developed approach is similar to the mask metallization widely used in planar
technology. In this work, the possibility of the template pulsed electrodeposition of ceramics rather
than metal is shown using HAp as an example. This approach is interesting for materials science, in
particular, for obtaining micro-ordered hydroxyapatite structures—a crystallochemical analogue of
the inorganic bone tissue component—on the surface of bone implants, which can be implemented to
improve their biomedical characteristics. As a result of our study, we experimentally determined the
conditions for obtaining the composite coating TiO2/Ag/Ca10(PO4)6(OH)2 with controlled phase
structure, topology and localization of components on the surface, which was confirmed by Scanning
Electron Microscopy, Energy Dispersive Spectroscopy, and X-ray Diffraction (SEM, EDS and XRD).
The absence of cytotoxicity for the osteoblast-like cells of the developed coating was revealed by
cytological tests.

Keywords: template electrochemical synthesis; hydroxyapatite; silver; titanium; titanium dioxide; im-
plant

1. Introduction

Various artificial materials, such as ceramics, metals, polymers and their composites,
are used to replace affected bones [1–5]. Metals and their alloys are considered to be the
most suitable for replacing damaged supporting bones as compared to polymers and
ceramics. Nowadays, Ti and its alloys are especially promising as biocompatible materials
due to their strength and physico-chemical resistance, in combination with a relatively low
price and density [6]. However, the slow osseointegration of Ti implants still remains a
significant problem. To increase corrosion resistance, biocompatibility, and mechanical
stability of Ti, its surface is usually modified or coated with a suitable material, while the
surface nature depends on the purpose and area of implantation [7].
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For bone-embedded Ti implants, the surface irregularities have a positive effect on
osseointegration [8]. Tissue growth on a rough and smooth surface were compared in [9].
An uneven surface, as a rule, forms stronger contact with bone tissue, whereas a smooth
surface can be encapsulated by connective tissue. This effect is due to faster osteoblast differ-
entiation by blocking the drift along the surface with higher roughness. However, surfaces
with various reliefs give different responses, which makes it impossible to unambiguously
quantify the engraftability nature [10–22].

During the implantation, there is a risk of infection associated with the implant
materials or bacteria ingress into the wound during surgery. The infection leads to local
inflammation around the implant and, eventually, to its loss. Silver is often used as an
inorganic antibacterial agent because of its broad-spectrum bactericidal properties, good
biocompatibility, satisfactory safety level and inherent stability in biological fluids [23–25].

To increase the speed and improve the quality of implant engraftment, its surface
is often modified with hydroxyapatite (HAp) or amorphous calcium phosphate, since
HAp is one of the main components of the mineral part of the bones [26–34]. One of
the most effective methods of HAp coating on the implant surface is electrochemical
deposition [35–37].

In addition, a number of works describe composite coatings based on
TiO2/Ag/HAp [38–41]. These coatings have good biocompatibility and antibacterial
properties. However, the methods used in published works do not produce a desired
surface with a complex structure. The coating of the same type is obtained over the en-
tire surface area. This makes these synthesis methods limited in terms of controlling the
localization of the structure and composition.

In this work, we take pre-synthesized TiO2/Ag matrix [42] with a complicated micro-
level morphology as the template. We develop the technique of electrochemical HAp
synthesis on the TiO2/Ag template surface in order to create a composite TiO2/Ag/HAp
film with a controlled structure and composition: pulsed electrochemical deposition, in
contrast to DC deposition, achieves the replication of the template structure by depositing
hydroxyapatite. The developed synthesis approach is promising for use in bone implan-
tation due to its ability to control the micron structure of the deposited hydroxyapatite
by varying the texture of the initial template and composition of the composite coating
that combines a two-level relief hierarchy [43–45] formed by xerogel globules and micron
electrochemical deposit and the presence of HAp and silver.

2. Materials and Methods
2.1. Fabrication of the Initial TiO2 Film Matrix

Initially, Ti substrates were coated with textured TiO2 to obtain a template by modi-
fying the sol–gel method developed by us [46]. Nanosilica-polished (Mastermet, Buehler,
Lake Bluff, IL, USA) technical Ti VT1-0 (VSMPO-AVISMA Corporation, Verkhnaya Salda,
Russia) with a size of 10 mm × 38 mm with rounded edges was used as a substrate.
The roughness was <0.01 µm. For the film synthesis, we used an absolute isopropanol
(iPA, Vecton, Saint-Petersburg, Russia), titanium tetraisopropoxide (TTIP, Sigma Aldrich,
Saint Louis, MO, USA), diethanolamine (DEA, Sigma Aldrich, Saint Louis, MO, USA)
and polyethylene glycol Mw = 20,000 D (PEG, Merck, Darmstadt, Germany) in the ratio
iPA/TTIP/DEA/H2O/PEG = 773/227/105/36/29. Before applying the coating, the solu-
tion was preheated to 45 ◦C with stirring to dissolve the PEG. The film was obtained by
the sol–gel method with dip coating using equipment KSV Nima Dip Coater, Singlevessel
(KSV Nima, Espoo, Finland). The extraction rate was 100 mm/min. Then, the deposited
film was subjected to heat treatment (hot plate: 5 min, 400 ◦C), which led to pore formation
and partial cracking. After that, the TiO2 film was treated with boiling deionized water
and dried in air at 200 ◦C to remove excess moisture.
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2.2. Electrochemical Silver Deposition

An aqueous electrolyte of the following composition was used to precipitate silver:
AgNO3 (Vecton, Saint-Petersburg, Russia)—3.15 g; sulfosalicylic acid (Vecton, Russia)—11 g
with a 25% aqueous ammonia addition (Vecton, Russia) until reaching pH = 9. The resulting
solution was diluted to 100 mL with deionized water. A potentiostat-galvanostat Elins
P45X (Chernogolovka, Russia) was used for the template deposition. Silver was deposited
in a polypropylene cell with stirring, where a Ti substrate coated with a perforated TiO2
xerogel film was used as a working electrode, and Ag electrode was used as a counter
electrode. The pulse mode for synthesis included 750 cycles with the sequence: 1 V—5 ms;
0.3 V—3 ms; 2 V—10 ms; and 0 V—65 ms.

2.3. Electrochemical HAp Deposition

Coatings of calcium phosphate structures, including HAp, were obtained on an Ellins
P45X (Chernogolovka, Russia) potentiostat-galvanostat by electrochemical template syn-
thesis using TiO2/Ag composite as the cathode and template, and graphite as the anode.
Based on the HAp ratio Ca/P = 1.67, we used 1.18 g of calcium nitrate (Ca(NO3)2, Vecton,
Saint-Petersburg, Russia) and 0.411 g of potassium dihydrophosphate (KH2PO4, Vecton,
Russia) per 100 mL of deionized water. Depending on the sample, HAp precipitated either
at a constant or at a pulsed current.

During synthesis, the following reactions occur:
On the cathode:

(1) electrochemical water splitting

2H2O + 2e− → H2 + 2OH−

In the near-cathode area:

(2) hydroxide ions react with dihydrophosphate ions

H2PO4
− + OH−� HPO4

2− + H2O

(3) Ca2+ combined with HPO4
2−, CaHPO4·2H2O deposited on the electrode

Ca2+ + HPO4
2− + 2H2O→ CaHPO4·2H2O

(4) at a high OH− concentration, reactions lead to the HAp
(5) formation [47]
(6) HPO4

2− + OH−� PO4
3− + H2O

(7) 10Ca2+ + 6PO4
3− + 2OH− → Ca10(PO4)6(OH)2

On the anode:

(8) electrochemical water splitting

2H2O − 4e−� 4H+ + O2

In addition to the described processes, the precipitation of tricalcium phosphate (TCP)
and octacalcium phosphate (OCP) is possible [48]

4Ca2+ + HPO4
2− + 2PO4

3− + 2 H2O = Ca4H(PO4)3·2.5H2O (OCP)

3Ca2+ + 2PO4
3− = Ca3(PO4)2 (TCP)

After deposition, the coated substrate was washed with distilled water and air dried.
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2.4. Sample Characteristics

The structure and morphology of the coatings were studied using a scanning electron
microscope Merlin (Carl Zeiss Microscopy GmbH, Jena, Germany); for microanalysis and
the construction of element maps, we used the EDS console (Oxford Instruments INCAx-act,
Abingdon, UK) for a scanning microscope Zeiss Merlin. The Rigaku “MiniFlex II” (Tokyo,
Japan) X-ray diffractometer was used for X-ray phase analysis. X-rays with a wavelength
of 1.5406 Å were used for the analysis.

Cytotoxicity studies were performed employing osteoblast precursor cell line MG-63
obtained from the shared research facility “Vertebrate cell culture collection” of the In-
stitute of Cytology of the Russian Academy of Sciences (Saint Petersburg, Russia). Cells
were grown in minimum essential medium (MEM, Gibco, Waltham, MA, USA) supple-
mented with 10% fetal bovine serum (FBS, Termo Fisher Scientific, Carlsbad, CA, USA)
and 50 µg/mL gentamicin (Gibco, Carlsbad, CA, USA) at 37 ◦C and 5% CO2. The cells
viability on the surfaces of samples was assessed using the MTT (3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide) test [49]. Cells were incubated for 1, 6, 12, 24, and
48 h in a CO2 incubator on the surface of samples. Following co-incubation, the cells’
proliferative activity was assessed employing Vybrant™ MTT Cell Proliferation Assay Kit
according to the manufacturer’s protocol (Invitrogen, Waltham, MA, USA). Proliferation
was quantified by measuring optical absorbance at 570 nm on a Bio-Rad 680 microplate
photometer (Bio-Rad LABORATORIES, Hercules, CA, USA). Each experimental series
contained 5 samples. Initially, the arithmetic mean and standard deviation were calculated.
Half the width of the confidence range was the quantile of the Student’s t-distribution
(p = 0.95) multiplied by the standard deviation divided by the square root of the number of
repetitions of measurements (5 times).

3. Results and Discussion
3.1. X-ray Diffraction (XRD) Determination of the Phase Composition of Electrochemically
Deposited Calcium Phosphates

As a result of the XRD study of the samples obtained by electrochemical deposition at
direct current at different potentials, the correlation of the phase composition with the con-
ditions of electrochemical deposition was revealed (Figure 1). The values of 35.08◦ (1,0,0),
38.43◦ (0,0,2), 40.16◦ (1,0,1), 53.00◦ (1,0,2), 62.93◦ (1,1,0), 70.67◦ (1.0,3), 76.20◦ (1,1,2), 77.33◦

(2,0,1), 82.32◦ (0,0,4), 86.74◦ (2,0,2), 92.75◦ (1,0,4) originate from the substrate (this set is
typical for metallic Ti JCPDS No. 44-1294). The peaks corresponding to the electrochemical
deposit vary with the potential growth.

Separately, to identify the phase composition changes of electrochemically deposited
calcium phosphates, an area containing characteristic peaks of Hap—JCPDS No. 9–0432
(25.88◦ (0,0,2), 31.77◦ (1,2,1), 32.20 (1,1,2), 32.91◦ (0,3,0)) and monetite—JCPDS No. 70-360
(26.36◦ (0,0,2), 26.55◦ (2,0,0), 26.69◦ (−2,0,1), 30.24◦ (−1,2,0), 32.35◦ (1,0,2), 32.46◦ (2,0,1),
32.83◦ (−2,0,2), 32,97◦ (−1,2,1)) was constructed (Figure 2). Based on the change in the
peaks’ height, we established the potential dependence of the phase composition. At 3.0,
3.5 V, we observe mainly the monetite phase; at potentials of 4.0, 4.25, 4.5 V, both phases
are present, whereas at 4.75 V and higher, the HAp phase is preferable.
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3.2. Investigation of the Structure and Elemental Composition of the TiO2/Ag/HAp Composite
Coating by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS)

A series of experiments for the HAp synthesis by template electrochemical deposition
under constant and pulsed currents was carried out. The conditions were chosen based
on XRD of HAp samples deposited at different potentials (low deposition potentials were
excluded to avoid the monetite formation (Table 1))

Table 1. Conditions for the HAp synthesis.

Sample No. Deposition Mode

1 Constant Current 6 V (τ = 15 min)

2 1200 cycles 12 V −2 V 0 V
τ = 3 ms τ = 2 ms τ = 85 ms

A micrograph of the initial Ti/TiO2/Ag composite is shown in Figure 3 for compar-
ison. The structure of this template is very complex, so the spontaneous deposition of
hydroxyapatite replicating the pattern of silver star-shaped particles is impossible. This
makes this template convenient for estimating the efficiency of the conditions for template
electrochemical synthesis.
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Figure 3. Micrograph of the initial Ti/TiO2/Ag composite.

The micrograph of sample 1 Figure 4 shows the formation of calcium phosphate
structures; this is also confirmed by the Ca and P elemental maps Figure 5. However, the
micrograph and elemental maps showed the absence of template deposition: the cracked
layer of hydroxyapatite covered the entire surface of the sample. This can be explained by
the HAp formation mechanism: electrochemically generated hydroxide ions intensively
migrate from the silver/electrolyte interface. In this case, all areas of the composite surface
can be coated with HAp.
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By analogy with the electrochemical Ag deposition, it was supposed that the cyclic
mode could improve the coating quality. The assumption was based on the fact, that in
short pulses at high currents around the Ag microelectrodes, there would be a region with
a high pH value, in which HAp deposition would proceed rapidly. In this case, it was
assumed that it would be possible to precipitate HAp according to the template texture.

Pulsed deposition provides a structure without a continuous HAp layer on the sample
surface (Figure 6).

The deposited HAp replicates the template geometry, although it is clear from the
Ca and P elemental maps that HAp is still spread over the coating surface outside the
silver-covered areas (Figure 7). As the recent review of the topic of hydroxyapatite elec-
trodeposition shows [50], this direction is relevant despite decades of active research: the
study of the influence of deposition conditions on the properties of the deposit is actively
developing. However, the results presented show that, in contrast to the existing methods
of deposit formation with a given morphology, phase composition, and chemical com-
position, it becomes possible due to the use of template to deposit hydroxyapatite-based
coatings with a given micron structure.
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XRD proved the crystal structure of our deposited film (Figure 8). In this diffrac-
togram peaks correspond to substrate (Ti), silver (Ag—JCPDS No. 04-0783; silver mi-
croparticles that form template structure) and HAp. Similar results were obtained in
the article [51]: the authors carried out pulsed the electrochemical deposition of cobalt-
doped hydroxyapatite on a titanium substrate from an electrolyte based on calcium
nitrate and ammonium dihydrophosphate. As in our case, XRD showed the presence of
the hydroxyapatite phase.

In next stage of that sample analysis, comparative cytological studies were performed.
The results of the proliferative activity assessment of MG-63 cells cultured on the surface
of pure Ti, Ti coated with a perforated TiO2 xerogel film, Ti coated with a perforated TiO2
xerogel with Ag deposited in the perforation and sample 2 (Ti/TiO2/Ag/Ca10(PO4)6(OH)2)
are shown in Figure 9. On the basis of the obtained data, it can be concluded that, when
cells were grown on the surface of all the studied samples, their viability does not differ
from the control during the entirety of the co-incubation period (48 h).

The ultrastructural organization of MG-63 indicates that the cells have normal func-
tional activity (Figure 10).

The nucleus occupies a significant part of the cell volume and has an elongated
shape. As a rule, the nucleus contains a single nucleolus of the nucleolonema type, up to
0.1 µm in diameter. The nucleoplasm also contains electron-dense perichromatin granules
(Figure 10A). The cytoplasm contains a well-developed protein synthesis system. The
entire volume of the cytoplasm is filled with free ribosomes, short mitochondria (mi),
numerous vacuoles (about 0.2 µm) with electron-transparent content (v) and cisternae of
rough endoplasmic reticulum, which form an extensive network of expanded channels (ca)
(Figure 10B,C). All the tested samples, including the sample with the composite coating
developed in this study, do not exhibit toxicity towards MG-63 cells.
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0.1 μm in diameter. The nucleoplasm also contains electron-dense perichromatin gran-
ules (Figure 10A). The cytoplasm contains a well-developed protein synthesis system. 

Figure 10. Electron microscopy image. Ultrathin section of cultured MG-63. (A) The nucleoplasm
with vacuoles and electron-dense perichromatin granules. (B) The cytoplasm with mitochondria
and channels. (C) The cytoplasm with cisternae of rough edoplasmic reticulum (rER), which form
channels. Scale bars (A,C): 2 µm; (B): 1 µm. nu, nucleus; mi, mitochondria; v, vacuoles; ca, channels.

4. Conclusions

As a result of this work, a method was developed that allows the template electro-
chemical synthesis of hydroxyapatite. The obtained hydroxyapatite is deposited in the
form of micron objects, which replicate the original template topology. It is also shown that
electro-chemical deposit is not cytotoxic for osteoblast-like cells. The developed method
can be of interest for developing coatings for bone implantation, because, in contrast to con-
ventional electrochemical deposition, it becomes possible to create a hydroxyapatite-based
coating with the topology required by the researcher.
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