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Abstract: For the first time, Zr702 coatings were deposited onto an Al6061 alloy using a high-pressure
cold spray (HPCS) system. In this work, five different N2 process gas temperatures between 700 and
1100 ◦C were employed to understand the formation of cold sprayed (CS) Zr coatings and their
feasibility for enhanced wear resistance. Results indicated that the N2 processing gas temperature
of about 1100 ◦C enabled a higher degree of particle thermal softening, which created a dense,
robust, oxide- and defect-free Zr coating. Across all CS Zr coatings, there was a refinement of
crystallinity, which was attributed to the severe localized plastic deformation of the powder particles.
The enhanced thermal boost up zone at the inter-particle boundaries and decreased recoverable
elastic strain were accountable for the inter-particle bonding of the coatings at higher process gas
temperatures. The flattening ratio (ε) increased as a function of temperature, implying that there was
a greater degree of plastic deformation at higher N2 gas temperatures. The microhardness readings
and wear volume of the coatings were also improved as a function of process gas temperature. In this
work, the wear of the Al6061 alloy substrate was mainly plowing-based, whereas the Zr CS substrates
demonstrated a gradual change of abrasive to adhesive wear. From our findings, the preparation of
CS Zr coatings was a feasible method of enhancing the wear resistance of Al-based alloys.

Keywords: Zr702; cold spray; wear; surface modification; surface coatings

1. Introduction

Being one of the most widely used metals globally, aluminum (Al) has tremendously
impacted an extensive array of industries spanning from aerospace to the automotive
and medical sectors [1,2]. This is largely attributed to its impressive strength-to-weight
ratio (with a density of ~2.7 g/cm3), high stiffness, and resistance to fatigue that many
other metals do not offer [3]. Despite the widespread industrial use of Al, it often suffers
significant drawbacks due to its relatively poor wear resistance and surface hardness [4].
As a consequence, many surface treatments have been proposed to control the inevitable
wear of Al-based components. Such surface treatments that have been studied include
but are not limited to laser shock peening, friction stir processing, and ultrasonic surface
rolling process [5–8]. However, these techniques suffer drawbacks in the sense that they are
only improving a pre-existing surface, which eventually will need to be replaced. Because
of this, many have sought to use coating treatment methods as they are repeatable and
can greatly extend the operational lifespans (especially in wear prone environments) of
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Al-based components. Such methods include but are not limited to anodizing, physical
vapor deposition, plasma electrolytic oxidation, powder sintering, additive laser surface
treatments and chromium electroplating [9–17]. Through the utilization of these methods,
the wear resistance of Al can be greatly improved, thus annually saving millions across a
widespread of industries [18].

However, taking a microscopic view of these common surface coating treatments,
they all in some form are either too expensive to use, emit too many harmful chemicals,
or are simply not convenient [10,13]. From a metallurgical perspective, these techniques
might also suffer from unwanted thermal diffusion, insufficient particle bonding and
porous structures which can hinder the structural integrity of the coating consequentially
worsening its wear resistance [17,19]. In place of this, many new technologies have been
proposed in order to improve both the ease of deposition and performance of these coatings.
One of these methods is known as the cold spray (CS) process [20]. In essence, this
process relies on the extreme kinetic energies (typically with a particle velocity range
of 300–1200 m/s) of powder particles (5–50 µm) launched at the desired surface. Upon
impact, these powder particles then plastically deform due to the combination of adiabatic
heating and high shear rates, the particles are then flattened in a jet-like formation and
bonded to the substrate [20]. When compared to thermal-based coating techniques, the
adhesion of CS coatings is superior in the sense that the oxide film on the surface of the
substrate is eliminated from the high-speed impact of the particles [21–25]. In general, it
is known that through higher particle velocities, the metallurgical bonding between the
particle-to-substrate and particle-to-particle interfaces is enhanced, which can promote the
formation of a dense coating (through layer-by-layer addition) with considerable adhesive
and cohesive strengths [26–28].

Generally speaking, the bond strength of CS coatings has been reported to be ex-
ceptionally high across a variety of material substrates compared to other thermal-spray
technologies. This is largely due to the compressive stresses that are generated from the
mechanical interlocking and peening-like effects of the impacted particles, whereas tensile
stresses occur from the particle heating of more thermal-based technologies [21,24,29].
Common material systems that have been reported to have sufficient bonding strength for
CS coatings include but are not limited to metals (such as aluminum, titanium or nickel),
their alloys (such as high-entropy alloys or Inconel), and various composites (such as metal
matrix composites) [30–36]. For example, Chen et al. [37] found that by applying CS 316L
and 316L-SiC coatings to AZ80 Mg-alloys (as a soft substrate) resulted with a very high
bonding strengths being recorded at both 48 ± 7 and 53 ± 9 MPa. Similarly, Wei et al. [38]
found that shot-peened assisted CS Ni coatings on AZ31B Mg-alloys yielded an impressive
adhesion strength well above 65.4 MPa. In addition to this, Karthikeyan [39] has also
reported that CS aluminum on Al6061 alloy can demonstrate a maximum bond strength of
~72 MPa, which demonstrates the bonding capabilities of softer metals, such as Al.

One industry that has been increasingly using CS coatings is nuclear power genera-
tion [40]. With Al being widely used in this industry, there is a growing need to preserve
these components and extend their working lifespans [41]. Zirconium (Zr) 702 alloy is
one metal that has earned a reputation of having a unique combination of exhibiting good
wear and corrosion resistance at a large working range of temperatures [42]. One example
of Zr coatings on Al in the nuclear industry can be found with high-performance reactor
fuels. These coatings act as a diffusion barrier between the surrounding uranium, thus
maintaining the tribological integrity of the coated fuel plates [43]. Similarly, other appli-
cations which Zr coatings can be greatly useful for can be found in aerospace and power
generation due to the tribological robustness of Zr [44,45].

Considering the industrial usefulness of Zr coatings, there has been a minimal amount
of research that has been studied on these coatings [46,47], let alone their tribological
performances. In fact, from the available literature that has studied the effects of Zr coatings,
there are no works to date that study the performance of Zr deposited by the CS process.
Due to this, commercially pure (CP) Zr coatings on Al alloy was fabricated through a high-
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pressure cold spray (HPCS) process. Through varying the N2 gas processing temperature,
the tribological behavior of these coatings was investigated. Understanding this, the novelty
of this work lies from two different perspectives. First, it was discovered that Zr is indeed a
suitable material that can be used for the CS process. This is largely due to the dense, robust,
and oxide-free coatings achieved in this work. Second, the detailed microstructure and
tribological mechanisms that are associated with Zr coatings was discovered with respect
to varying CS processing parameters. Although the general mechanisms of CS have been
increasingly known in recent years, these mechanisms tend to differ for varying material
systems in conjunction with the standard processing parameters from CS (e.g., propellant
gas type and processing gas temperature). For example, the work of Moridi et al. [48]
determined that differences in materials crystal structures, physical properties, melting
properties, and chemical reactions all drastically change the final product of CS coatings.
This is quite impactful since the formation of the CS coating will determine its quality
and performance in day-to-day applications. Because of this, each material system should
be thoroughly studied in order to fully understand their behaviors from the deposition
process to tribological testing. In this work, this was achieved with Zr where its structural
quality and tribo-performance was studied as a function of propellant N2 gas temperature.
Through these findings, this work will contribute to the field of CS research and further the
scientific understanding of Zr when subjected to the CS process.

2. Materials and Experimental Methods

In this work, CP Zr 702 powder with a particle size range of 20–45 µm was used for
coating production, whereas the base substrate (abbreviated as S0) was a commercially
available Al6061 alloy plate. Preparation of this plate was done through surface grinding
with SiC abrasive paper (240 grit). The plate surface was then cleaned with alcohol and
acetone before the CS process. Upon completion, an HPCS system (Impact Innovation
5/11 System, GmbH) supplied by ABS Industries (Barberton, OH, USA) was employed
as the coatings to the Al-based alloy. Throughout the CS process, all CS parameters
were held constant (Table 1) with the exception of the N2 propellant gas temperature,
which varied between 700 and 1100 ◦C. The abbreviations of the coatings in this work is
set with respect to processing gas temperature. For specimens S1, S2, S3, S4, and S5, the
operating gas temperatures were set to 700, 800, 900, 1000, and 1100 ◦C, respectively. Optical
microscopy (IX70, Olympus, Tokyo, Japan) was used to characterize the polished-cross
sectional microstructures of the as-sprayed coatings on the Al6061 alloy. In order to do this,
the coated samples were cut, mounted, and polished to a mirror polish using a 0.05-µm
low-viscosity alumina-slurry paste. After polishing, the thickness of each coating was
measured to have a thickness of 600 ± 40 µm. Moreover, ImageJ software (version: 1.53.7)
was employed to determine the porosity level of each coating (as per ASTM E2109–01) [49].
The structural phases of the coatings and powder were analyzed using a Bruker-D2 Phaser
(Bruker, Madison, WI, USA) with Cu-Kα radiation. The excitation voltage and current
were set to 40 kV and 25 mA, respectively. The 2θ angles spanned from 20◦ to 100◦ with a
scan speed of 1◦/min. The step width was set to 0.02◦. The scans of the CP Zr powder and
Al6061 alloy substrate are shown in Figure 1a,b, respectively. For both specimens, only a
single α phase was observed, indicating that there is no presence of other phases [50,51].

Table 1. Processing parameters of CS deposition.

Propellant
Gas

Sprayed
Material

Gas Tem-
perature

(◦C)

Gas
Pressure

(MPa)

Spray
Angle (◦)

Stand-off
Distance

(mm)

Step
Size

(mm)

Powder
Reed Rate

(RPM)

Powder Carrier
Gas Flow Rate

(m3/hr)

Type of
Nozzle

N2 CP-Zr 700–1100 3.0–5.0 90 25.4 0.5–0.1 1.0–2.5 2.5–3.5
SiC Water

Cooled
Nozzle
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Considering the variety of hardness testing methods, microhardness tests using a
Vickers microhardness tester (Beuhler-Wilson, Tukon 1202, Binghamton, OH, USA) were
administered to measure the microhardness of the base substrate and coating surfaces (after
grinding and polishing). The primary reason for this was due to its non-destructive nature
combined with its ability to produce repeatable and reliable readings, while preserving
the coatings functionality after testing. For example, Rockwell hardness testing is one
such method that can determine the hardness of coatings. However, due to its destructive
nature, Rockwell hardness testing can destroy the usefulness of coatings after testing
due to the debonding of various particles upon loading [52]. Similarly, nanoindentation
is also one method that can be used for coatings, however due to the small indenting
area, small defects, such as improper particle bonding or pores, can alter the hardness
readings [53]. This can give a false representation of the coatings hardness, which would
leave key information missing in the scientific analysis. Due to these facts, microhardness
measurements were administered, similar to many other publications in CS and other
thermal spray literatures [54–64]. In order to ensure repeatability, a total of 5 measurements
under a 0.1 kgf were conducted and averaged.

For tribological evaluation, dry reciprocating tests (as per ASTM G133) [65] were
performed using an Rtec multi-function Tribometer (Rtec-Instruments, San Jose, NY, USA)
at room temperature (~25 ◦C). Before sliding tests, each sample was polished to an average
surface roughness (Ra) of 0.1± 0.05 µm. An alumina ball with a 6.35-mm diameter was used
as the counterpart during tribo-pair testing. For all reciprocating sliding tests, the applied
loads varied from 5, 10, and 15 N, while the track length (10 mm) and velocity (2 mm/s)
were held constant. A total distance of 1000 mm was chosen due to the stabilization of
wear depth during testing. Afterward, the wear tracks of the samples were imaged and
analyzed from the Rtec 3D optical profilometer (Rtec-Instruments, San Jose, CA, USA).

3. Results and Discussion
3.1. Microstructure of the Coatings

Evaluating the microstructure of the coatings (Figures 2a–e and 3a–g), it can be seen
that there is a clear local deformation of the impacted Zr powder particles. In a general
sense, the impact of the Zr powder particles with high velocity can lead to severe plastic
deformation, thus promoting a tight mechanical interlocking along the inter-particle bound-
aries [66]. This is quite evident from visually inspecting the bonding features between the
coating to the Al6061 plate as well as the bonding between the deformed particles where
the particles along all coatings exhibit a uniform flattened morphology. In fact, upon closer
inspection, it can be seen that extruded lips from the impacted particles are present along
the Zr-Al interface (as shown in Figure 4). In a sense, this phenomenon can be largely
attributed to having an oxide-free interface, where the CS coating will have strong mechan-
ical interlocking to the alloy substrate thus ensuring a high adhesion strength [33,38]. It
is also worth mentioning that the subsequent particles from the CS process would also
induce a peening-like effect along the interfacial layer, which would further the degree of
deformation of the already deformed CS layer [67]. According to Xie et al. [68], the general
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quality (i.e., the degree of metallurgical bonding) of CS coatings can be greatly improved
from the strengthening effect of impacted/peened particles. If these subsequent particles
are continuously impacted over time, a reduction in porosity and increase in adhesion
strength can be observed. In the case of this work, this peening-like effect would be highly
advantageous as it will allow for the already-sprayed Zr particles to further penetrate into
the Al-based alloy substrate.
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Figure 4. Two different views (a,b) of the formation of extruded lips from along the contacting
interfaces of the CS Zr coating and the Al alloy substrate.

Upon closer inspection of Figure 4, it can also be seen that the degree of deformation
from the Zr coating to the Al interface was measured to be 56 µm. When contrasted
to the findings of other CS works, the observed degree of plastic deformation observed
indicates that the CS coating is indeed of high quality [63,69,70]. For example, in the work
of Sun et al. [63], similar findings of penetration depth were observed from CS Ti6Al4V and
CoCrMo coatings on 6061-T651 Al alloy. In relation to their bonding strengths, it was found
that Ti6Al4V coating demonstrated a bond strength of 50.38 MPa, whereas the CoCrMo
coating measured at 66.17 MPa. With both bond strengths being quite impressive, this
greater bond strength behavior of the CoCrMo coating was largely due to the decrease in
porosity, higher hardness, and deeper penetration depth observed. Similar conclusions can
be made from our findings.

With this being said, despite the coated Al-based alloys being sectioned, grounded,
mounted, and polished for microstructural observations, both the coating as well as the
Al alloy interface still demonstrated a high quality as there appeared to be no pores or
microcracks along the layer-to-substrate and layer-to-layer interfaces (as previously shown
in Figures 2–4). Having still been intact, it can be seen that the coating adherence (both
between the contacting interfaces as well as the interlayers of the coating itself) are of
exceptional quality. Considering that the particle velocities of the Zr particles are elevated
from the general design of the HPCS process, it can be concluded that the combination of
this phenomenon with the aforementioned reasons resulted in this finding.

To further expand on the coating quality and inter-particle boundaries, Yu et al. [71]
has reported that the temperature generation along the interfacial regions of impacted
particles (with gas pressures and temperatures of ~1 MPa and 800 ◦C) have reached values
up to 576 ◦C above the initial gas temperature. Considering that the gas temperatures
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and gas pressure in this work are far greater than what was observed by Yu et al. [71], it
can be insinuated that the particles in this work were sufficiently deformed and bonded,
as previously shown in Figures 2a–e and 3a–g [72]. To further support this, the melting
temperature of Zr can be related to interfacial temperatures commonly known to promote
high-quality particle bonding. For Zr, it is typically known that its standard melting tem-
perature is ~1850 ◦C [73,74]. Understanding that peak interfacial temperatures can increase
up to hundreds of degrees above the already heated particle temperature (influenced from
the gas temperature), it can be assumed that the Zr powders would easily deform due to
the enlarged strain fields of the particles [75]. According to Yin et al. [76], when interfacial
temperatures exceed 0.4Tm (where Tm is the materials melting temperature in K), enhanced
dynamic recrystallization along the interparticle boundaries occurs. Given that these grains
tend to be nano-sized, it has a positive influence to the coating integrity, thus acting as
another mechanism for the coating bonding found in this work. Considering these earlier
discussed points, the degree of plastic deformation of the coatings does seem to visually
increase as a function of process gas temperature. In fact, the deformability of the particles
can be assessed through a parameter commonly known as the flattening ratio (ε). The
flattening ratio can be quantitatively expressed as [77]:

ε =
w
h

(1)

where w represents the width of the deformed particle and h represents the height of the
deformed particle. Through assessing this ratio, many important assessments can be made
in regard to the structural integrity of the coating. As the flattening ratio increases, there is
an implication of a greater value of cohesive strength along the bonded area [78]. In the
case of CS Zr, the flattening ratio can be seen in Figure 5.
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In Figure 4, the flattening ratio increases as a function of temperature, implying that
there is a greater degree of plastic deformation at higher temperatures. It should be kept in
mind that through gradually increasing the temperature, the velocity of the carrier gas is
increased, thus increasing the local surface activation [79]. Typically, surface activation is
dependent on the degree of localized plastic deformation, which creates a metallurgical
bond of the impacted particles. Generally, sufficient bonding is achieved if the velocity of
the particle is in between the window of its critical and erosion velocity. The process gas
temperature produces a gas velocity, which can be expressed by the following equation [80].

v =

(
γRT
Mw

) 1
2

(2)
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where γ is the ratio of the constant pressure and the constant volume-specific heat that is
normally 1.66 for monoatomic gases (e.g., helium) and 1.4 for diatomic gases (e.g., nitrogen
and oxygen), respectively. R is the gas constant (8314 J/kmol·K), T is process gas tempera-
ture, and Mw is the molecular weight of the gas. As mentioned earlier, when the powder
particles with high velocity impact the substrate surface, the kinetic energy of particles
turns into the mechanical deformation and thermal energy as well, which would explain
the increase the degree of flattening from the Zr CS coatings. This would imply that the
coatings are denser (which can also be visually seen) and would be able to resist early
brittle fracturing, especially from tribological loadings [81]. Therefore, it can be insinuated
from these findings that the main influence of temperature is to enhance the particle impact
velocity which directly impacts the flattening ratio of CS Zr [80].

Taking a different perspective on the influence of the flattening ratio to the structural
integrity of CS coatings, many have correlated these values to the coatings’ bonding tensile
strength. One recent work that has studied this is from Bagherifard et al. [82], in which the
tensile strength of 316L SS coatings under various processing were correlated to the degree
of particle flattening from the CS process. Under the processing conditions of a 5 MPa
gas pressure and 1100 ◦C gas temperature, a flattening ratio of 0.36 ± 0.09 was observed.
Although relatively lower than the findings of this work, the authors report that the CS
deposit demonstrated nearly a 25% increase in ultimate tensile strength (UTS) compared to
its bulk counterpart. Similarly, higher flattening ratios induced from altering processing gas
temperatures (which similarly increases the particle impact temperature) for Ti have also
showed noticeable improvement over its bulk counterpart, as reported by Binder et al. [83].
Therefore, it can be presumed that the incredibly high flattening ratio achieved would
undoubtedly outperform bulk Zr, thus demonstrating the exceptional coating integrity
found in this work.

Another important observation is the number of micro-defects present on the coating
cross-sections. Reflecting back to Figures 2 and 3, specimen S5 led to the least number of
microdefects among the deformed particles. When considering micro-defects, they are
typically reported when there exists a number of micro-pores and micro-cracks, typically
along the inter-particle boundaries [27,74] which can be seen with the lower temperature
of N2 process gas. Visually, S5 has the greatest resemblance of a pancake morphology
with the greatest amount of equiaxed particles, which further supports the findings from
Figure 4. Similar to the earlier findings, this can be attributed to the higher process gas
temperature, which led to the production of a fully densified CP Zr coating on Al6061
alloy. It was noticed that the increasing impacting velocity increases the plastic flow of the
impacting powder particles, leading to a considerable decrease in the defects/pores at the
inter-particle boundary [84].

To better understand the relationship of porosity and gas temperature for Zr (hav-
ing H.C.P crystal structure and lower slip systems compared to B.C.C and F.C.C crystal
structures [85]), Figures 6a–e and 7 depict the visual and calculated porosities of the CS Zr
coatings. Without etching, it is evident that the number of micro pores drastically decreases
as a function of process gas temperature with the lowest recorded porosity at 0.16%. Given
the explanation of the increased thermal softening of the powders particles during CS
process, the gradual densification of the coating suggests that there will be an improvement
in particle cohesion, which can imply a greater wear resistance as porosity defects can
result in early crack propagation during sliding [86,87].
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Figure 7. Porosities of the CS Zr coatings (S1–S5) with respect to N2 process gas temperature (varied
between 700−1100 ◦C).

Figure 8 depicts the XRD patterns of the as-sprayed coatings on Al6061 alloy substrate.
Visually, there appears to be no evidence of either a phase transformation or oxidation with
the coatings, which is typically seen from the CS process due to the hammering effects
of the particles [88] and also low temperature deposition nature of the CS process [89].
For all specimens, the crystalline planes and phase structures also seem to be the same,
primarily having a hexagonal close packed (α) crystal system. Interestingly enough, there
is a gradual decrease in peak intensity from S1 to S3, where afterward the peaks again
begin to increase in intensity. This suggests that there is some initial peak broadening that
occurs from the distorted atomic planes; however, from S4 to S5 the peaks begin to reduce
in width suggesting that there is an increase in crystallite size [90]. To obtain a more visual
understanding of the change with peak width, the full width at half maxima (FWHM) was
calculated for each specimen based on the true peak broadening derived from the following
equation [91]:

B =
√

B2
obs − B2

inst (3)

where Bobs and Binst represent the observed peak broadening and the instrumental peak
broadening. Based on this equation, the FWHM measurement for all specimens are rep-
resented in Figure 9. Based on these findings, it can be seen that the FWHM gradually
increases for all samples after CS deposition, signifying that there is a refinement in crystal-
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lite size and an increase in internal compressive stresses due to the hammering impact of
the CS process [92].
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For further understanding of this phenomenon, an analysis of the degree of plastic
deformation to the coating must be measured. In order to measure this, the well-known
Williamson-Hall (WH) equation was employed. In CS research, this equation has been
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employed to measure the strain, crystallite size, and followed by dislocation density of
fabricated cold sprayed coatings [93–96]. This equation is as followed:

βτcosθ = ε(4sinθ) +
Kλ

D
(4)

where D represents the crystallite size (nm), λ is the radiation wavelength (A◦), θ is the
Bragg’s angle (◦), K is the shape factor (defined at 0.9 for hexagonal close-packed (H.C.P.)
crystal structures [97,98]), βτ is the FWHM (radians), and ε represents residual micro-strain.
Based on each peak, the crystallite dimensions are calculated and averaged out which act
as a representation for each sample. By comparing βτ to the strain-induced broadening
factor, βε, the slope can be computed, which allows for a quantifiable value of ε. Taking
this value, the dislocation density, ρ, can be calculated by the following equation [91]:

ρ =
2
√

3ε

Db
(5)

where b is the Burgers vector magnitude for Zr. Based on these calculations, the WH plots
for the CS powder and CS coatings are shown in Figure 10a–f, whereas the calculated
crystallite size, dislocation density, and strain are shown in Figure 11a–c.
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as-sprayed Zr coatings (S1–S5).

According to these findings, there is a gradual decrease in crystallite size to 55.46 nm
(S4) where it then increases to 57.77 nm for sample S5. In contrast to this finding, the maxi-
mum strain and dislocation density found for the tested samples were S3, where it then
decreases again. To elucidate these findings, it is important to keep in mind the behavior of
dislocations during the plastic deformation process. As reported by Liu et al. [99], often
times both the generation and annihilation of dislocations throughout the CS process. Typi-
cally, this occurs when the dislocations generated will result with the previous dislocations
traveling and decreasing the back stress on the activated source (deformed particle). A
proposed model for this occurrence is described as:

dρ

dγ
=

dρ

dγ
|accumulation −

dρ

dγ
|annihilation =

1
Λb
− y∗

b
ρ (6)

where λ is the plastic strain from the CS process, y∗ represents the annihilation distance, Λ
is the mean free path, ρ is the dislocation density, and b is the Burger vector.

As the process gas temperature increases, the kinetic energies of the particles are
amplified, thus resulting in a higher degree of plastic deformation and increased disloca-
tions. However, with the generation of new dislocations, there is also a more likely chance
that dislocations will also be annihilated [100]. Considering that the temperature of the
particles is directly increased, there is a greater chance of thermal diffusivity within the
particle upon impact rather than heat transfer to the surrounding particles [101]. In the
case that there is thermal diffusivity, defects in the form of stable dislocation loops reduce
the propensity of localized recrystallization [102]. Thermal diffusivity in this case is very
closely related to the small stresses released from the particle impact which can be close
to the material melting point. From the rapid cooling of the impacted materials (Zr in
this case) during this process, the excess in interstitial atoms and vacancies promote the
growth of dislocation loops [99]. Above ~900 ◦C (process gas temperature used for S3), the
strain and dislocation density decrease probably from the excess heat (thermal energy) thus
increasing the crystallite size. However, it is important to note that the change in crystallite
size is quite small and can be largely neglected as the densification of the Zr coating was
shown to be greatly enhanced. Kumar et al. [84] showed multiple particle simulation
images at 200 ns contact time for the different impact velocities. It was very conspicuous
that the impact of Nb powder particles at higher velocities increases the jetted-out regions
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in the CS Nb coating. This led to an increase in interface adiabatic temperature rise close
to the melting point. Kumar et al. also noticed (in their simulation) the locations in which
the interface temperature goes beyond the recrystallization temperature of Nb at around
0.4Tm (Tm: melting point of Nb). The enhanced thermal boost up zone at the inter-particle
boundaries and also declined recoverable elastic strain energy were reported to be both
accountable for the better inter-particle bonding in the coatings cold sprayed at higher
process conditions (e.g., higher process gas temperature) [84,92]. Venkatesh et al. [103]
depicted that the bonding process can be synergistically be influenced by the effect of
velocity and temperature of the powder particles upon impact.

3.2. Wear of the Bare and Coated Al6061 Alloys

Traditionally, in order to assess the wear resistance of a material, the hardness must be
measured as it is one of the major influencing factors of surface strength as per Archard’s
equation [104]:

Q = K
PL
H

(7)

where Q is the wear volume, P is the normal applied load, K is the sliding distance, and H
is the material hardness. It can be seen that the hardness is inversely proportional to the
wear rate, implying that a higher hardness results with lessened wear.

The microhardness tests on the Zr coatings (Figure 12) show a gradual increase in
hardness as a function of gas temperature, with the highest hardness being recorded
at 482.6 HV. Compared to the base Al6061 plate, it is evident that all coated specimens
exhibited a higher degree of mechanical hardness. Interestingly, specimen S5 showed the
highest hardness despite the slight decrease in dislocation density. This can be largely
explained due to the densification of the coating [105]. In the presence of voids, the
structural integrity of the coating tends to suffer. Having a stronger inter-particle bonding
at higher gas process temperatures, the amount of work hardening also increases, ensuring
a sturdier surface [106]. Especially in the presence of pores and voids, there is a greater
likelihood of unwanted crack propagations along the weaker regions of the pore due to
increased stress concentration [107].
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Applying the tribological loading to the Zr coatings, it can be seen that there is a
decrease in friction with the Zr coatings in comparison to the bare Al6061 plate (Figure 13)
which can be reflected from the decrease in crystallite size from the CS process [108].
However, these values are shown to vary, despite the change in load. These variations can
be explained from the combination of the surface topography of the Zr coating and the
counter ball material that was used. Given that there is some presence of porosity along
the surface, there is a likelihood of brittle fracture, which likely generated some form of
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third body wear that can cause instabilities with friction coefficient [81]. This in addition to
the changing contact area of the ball can result in carrying concentrated pressures, which
can fluctuate the frictional response from the system [109,110].
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Figure 13. The change in frictional response for the bare and Zr-coated Al6061 plates as loads 5, 10,
and 15 N.

A partial section of the wear track of specimens S0, S1, S3, and S5 are shown in
Figures 14–17 alongside a two-dimensional profile of their respective wear tracks. It can be
seen that the wear width and depth of the Zr-coated samples gradually decreases as the
process gas temperature increases. This is to be expected due to the increase in hardness
and as per Equation (7).
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Further evaluating the wear track profiles, the wear mechanisms for all specimens
largely changes. For the bare Al6061 alloy, plowing wear was found to be the dominant
wear mechanism. This is to be expected as the material transfer from the Al6061 plate can
influence work hardening of the transferred material promoting a greater degree of shearing
from the asperity contacts [111]. Shifting the focus to specimen S1, there is a greater degree
of sharper asperities that is present for all three tested loads. Their intensities gradually
become sharper as the loads increase, insinuating a dominant abrasive wear mechanism.
Considering that S1 had a greater amount of pores, the stress concentration at the point of
tribological contact which can induce fatigue cracks from the influence of circular stress due
to the brittle nature of CS coatings [31,86,112]. This increases the chance of enabling a fatigue
wear mechanism of which brittle fractures occur from the buildup of microslips along the
contacting asperities. This can increase the potential particle delamination, thus resulting
with third-body wear to the system [104,113,114]. As the N2 process gas temperature
increases, the wear mechanism for resultant Zr coatings transitions to a dominant adhesive
mechanism. This can be caused by the interactions of the asperities as the degree of surface
energy can influence the localized adhesion strength. If the adhesions strength is greater
than the breaking strength of the neighboring regions, adhesive wear occurs [104,113]. In
the case of specimen S5, the wear track is non-symmetrical and, in some regions, does
not have the appearance of material loss. To characterize the wear track, it appears to
have parallel furrows, which have also been observed in other CS literature [115]. These
results indicate that the localized stress of the coating (compared to S1) is decreased during
tribological contact in addition to the increased hardness.
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In order to have a better understanding of the influence of the N2 process gas temper-
ature to wear of resultant Zr coatings, the wear volume for the entire track was calculated
and plotted, as shown in Figure 18. Similar to the wear tracks, the wear volume gradually
decreases for each increasing sample (S1 to S5) with S5 having the smallest wear volume.
These findings are consistent with the micro-hardness measurements as well as the dense
and compact structure of S5. The higher process gas temperature enabled a full and efficient
densification of the CS Zr coating which can promote a stronger bonding of Zr powder
particles, thus increasing the wear resistance.
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4. Conclusions

In this work, the feasibility of novel CS Zr coatings on Al6061 substrates for enhanced
tribological performance was studied. A total of 5 samples were fabricated with each
sample having a gradual increase in N2 process gas temperature from 700 to 1100 ◦C. The
primary findings of this work are as follows:

1. The increase in process gas temperature allowed for a greater degree of thermal
softening with the Zr particles, which helped create a dense and robust Zr coating.

2. Although there is no apparent phase transformation, the peak intensities from the
XRD analysis drastically change as process gas temperature increased, indicating a
refinement in crystallinity across all coatings.

3. The microhardness results indicate a gradual increase in hardness for each coating
with respect to processing temperature.

4. The main wear mechanisms identified in this work are abrasive and adhesive. For
all tested coatings, there was a gradual decrease in wear volume with respect to gas
processing temperature.

Therefore, based on these findings we suggest that compact CS Zr coatings are an
effective method of enhancing the wear resistance of commercially used Al6061 alloys.
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