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Abstract: Paraffin is one of the most common and promising phase change materials to store and
release thermal energy. The inadequacy of paraffin lies in its low thermal conductivity, which affects
its further application on thermal energy storage. In this work, hollow fibers derived from pitch
were spun. The graphitization (treated at 2773 K under argon atmosphere) induced the carbon
atom arrangement and lattice order development, which endowed the hollow graphite fibers (HGFs)
with good graphite structure. The HGFs applied as thermal additives into paraffin significantly
improved its thermal conductivity. The high thermal conductivity of the HGFs/paraffin composite
was achieved up to 2.50 W/(m·K) along the fiber axis, which displayed an over 680% enhancement
as compared with that of the pure paraffin. The HGFs displayed significant improvement of the heat
transfer rate and heat flow of paraffin, which indicated the promising potential application of the
HGFs/paraffin PCM in thermal energy storage systems.

Keywords: hollow graphite fibers; paraffin; phase change materials; thermal conductivity

1. Introduction

With the long-term development and utilization of non-renewable resources, the
natural environment and human health have been threatened. Therefore, the sustainable
development of the society and efficient utilization of clean energy are of concern all
over the world [1–7]. Among the renewable energy resources, the thermal energy storage
using the phase change material (PCM) has been regarded as an ideal stored energy
pattern at the moment [8–14]. PCM can not only be applied at buildings with low energy
consumption, but it also serves for fuel cells, lithium ion battery, solar thermoelectric power
generation, etc. [15–22]. It can save energy and further improve the efficiency of energy
utilization. The corresponding application is attributed to the nature of the PCM. PCM
can absorb/release the enormous latent heat with small temperature fluctuation during
the melting and solidifying process, which has been used in solar energy utilization, the
energy conservation system, and thermal management devices [23–25]. Paraffin wax is a
typical kind of PCM, due to its large latent heat, chemic inertness, lack of segregation, and
low cost. However, paraffin wax usually exhibits inherent low thermal conductivity, which
severely limits its widespread utilization in thermal energy application [26–30].

Different strategies and methods have been used to enhance the thermal properties
of the paraffin PCM composite. The thermal conductivity of paraffin can be modified by
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adding heat conductive additives. Carbon materials are part of important reinforcements
in thermal energy storage [31–33]. Carbon nanotubes have good thermal conductivity.
They have a diameter of nanoscale and length of micron scale [34–36]. Paraffin and carbon
nanotubes were physically mixed to prepare composition. The composite PCMs displayed
good cycle stability when the mass fraction of carbon nanotube was 5%. The thermal
conductivity was 0.62 W/(m·K), which was 1.21 times higher than that of pure paraffin [37].
The thermal conductivity of the composite was improved obviously by carbon nanotubes.
It is an ideal state in which carbon nanotubes can come into contact in the composites.
This can transfer heat quickly throughout the composite PCM. The thermal conductivity
of the organic montmorillonite (OMMT)/paraffin/grafted carbon nanotubes composites
was 34% higher than that of the OMMT/paraffin composites and 65% higher than that of
paraffin [38].

The graphene has the highest thermal conductivity among all of the known materi-
als [39,40]. The defects and oxygen functional groups of the graphene reduce its thermal
conductivity. So, it is necessary to anneal the graphene at the high temperature, which can
remove the defects and oxygen functional groups [41]. It is beneficial for carbon materi-
als to obtain high thermal conductivity under high-temperature treatment. The thermal
performance of paraffin wax PCM can be reinforced obviously by graphene. The thermal
conductivity of graphene/paraffin nanocomposite has been improved 66.15% compared
with that of pure paraffin with the graphene mass fraction of 2.0 wt% [42].

The expanded graphite can also enhance the thermal property of the paraffin PCM
composite. Zhong et al. prepared porous expanded graphite to enhance the thermal
property of paraffin wax for latent-heat thermal energy storage [43]. There were many
interconnected pores in the expanded graphite, which allowed them to be filled with melted
paraffin. The paraffin had more contact areas with ligaments of expanded graphite, which
was beneficial to transfer heat throughout the paraffin during the heat transfer process. The
experimental results indicated that the natural convection significantly reduced the time
necessary for melting.

During the preparation of PCM composites, the nanofillers usually appear aggregation,
which results in their uneven distribution throughout the PCM composites and decreasing
the heat transfer improvement rate. Therefore, it seems necessary that the fillers should
disperse uniformly and form a complete thermal path in the PCM.

Taking the above analysis in mind, the conductive materials should have high thermal
conductivity, good corrosion resistance, good dispersibility, and compatibility with PCM.
In this work, the hollow graphite fibers (HGFs) are prepared and applied as a thermal
conductive material for paraffin. The graphitization was imposed on hollow carbon fibers,
optimizing the carbon atom arrangement and lattice order development. The good graphite
structure made the HGFs ideal as thermally conductive fillers for paraffin PCM. The
successive fiber wall of the HGFs with micron size can form a heat conduction path to
transfer heat in paraffin. The HGFs have inner space to accommodate the melted paraffin,
which can supply more contact areas with paraffin. Using the vacuum adsorption method,
the paraffin PCM composites were fabricated with well-dispersed HGFs and exhibited
drastically improved thermal heat flow and heat transfer rate. The thermal conductivity of
the HGFs/PCM composite displayed over 680% enhancement as compared with that of
the pure PCM (0.32 W/(m·K)), and the corresponding latent conductivity of heat was in
the order of 160 J/g. An increase in thermal conductivity of more than 6 times indicates
the promising potential application of the HGFs/paraffin PCM on advanced thermal
energy storage.

2. Experimental
2.1. Samples Preparation

The hollow graphite fibers (HGFs) were made by melt spinning. The softening point
of pitch was 553 K. The pitch was firstly spun into fibers. As-spun fibers were thermo-
oxidatively stabilized at 543 K for 0.5 h in oxidation oven under air atmosphere. The
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stabilized fibers were carbonized at 1273 K for 0.5 h under nitrogen atmosphere in a tube
furnace (Hefei KeJing Material Technology Co., LTD, Hefei, China). The hollow carbon
fibers were finally graphitized at 2773 K under argon atmosphere.

The paraffin used in the experiment had a low thermal conductivity of 0.32 W/(m·K),
a melting temperature of 333 K, and a latent heat of 219 J/g. The HGFs were mixed with the
paraffin, and then heated to 353 K in the vacuum oven for 3 h. Then the composites were
allowed to cool until the paraffin wax was solidified under normal atmosphere. Finally, the
composites were pressed in a steel module (25 mm × 25 mm × 5 mm).

2.2. Characterization of the Fibers and Composites

The crystallite structure of materials was characterized by an X-ray diffraction system
(XRD; D8 advance, Brucker, Karlsruhe, Germany). Field-emission scanning electron mi-
croscopy (SEM, JSM-7001F, JEOL, Tokyo, Japan) and field-emission transmission electron
microscopy (TEM, JEM-2100F, JEOL, Tokyo, Japan) were used to observe the micro-structure
of the samples.

The differential scanning calorimeter (DSC) technique (NETZSCH STA 409PC, Selb,
Germany) was applied to measure the latent heat and the phase change temperature of
the composite PCMs during the melting and solidifying process with a liquid nitrogen
cooling system. The heating and cooling rates of DSC were kept at 2 K·min−1. A thermal
gravimetric analyzer (NETSCH TGA 204F1, Selb, Germany) was used to characterize the
heat stability of the samples. The thermal conductivity of the composites was calculated
by λ = ραCp, where ρ was density,α was diffusion coefficient and Cp was heat capacity at
constant pressure.

3. Results and Discussion
3.1. Hollow Graphite Fibers

According to physical adsorption theory, we prepared the original composite using
the hollow pitch fibers, which did not endure a heat treatment process. In order to confirm
whether the hollow pitch fibers could form a composite with paraffin or not, the optical
microscopy was applied to observe the morphology features. As shown in Figure 1a, the
hollow pitch fibers were seen clearly. The three-dimensional stereogram of the original
composite was depicted in Figure 1b. The hollow pitch fibers were covered by paraffin,
and the hole of the fiber was also partially filled with paraffin. Basing on the above work
and the result, the further experimental work was carried out.
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Figure 1. Optical microscopy image of the original composite: Hollow pitch fibers/Paraffin
composite (a), the three-dimensional stereogram of Hollow pitch fibers/Paraffin composite (b).

The HGFs displayed a hollow transverse morphology without any cracking, as shown
in Figure 2. The hollow cross structure of the fibers was kept during the whole process
from the pitch fibers to the HGFs without any treatment or modification. The average
cross-section diameter of the fibers is ca. 40 µm with a hollow degree of 23%. The long
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successive hollow structure functions as microscale hollow tube, which permits the liquid
or solid materials to infiltrate.
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Figure 2. SEM image of the HGFs.

The SEM image of single hollow graphite fiber is depicted in Figure 3a. The hollow
space with an oval shape was seen clearly. To disclose a more explicit description of the
structure of the HGFs, observation with TEM was carried out, as shown in Figure 3a.
It is seen that the orientation of the graphitic basal plane is well ordered in Figure 3b.
The electron diffraction pattern taken from the entire area showed clearly a diffraction
spot. The graphite layered structure is conductive to heat transfer. Judging from the TEM
analysis, the HGFs have good graphite structure, which also indicate the corresponding
good electric/thermal conductive property.

The XRD analysis was carried out to investigate the crystal structure of the HGFs, as
shown in Figure 3c. The d002 of the HGFs was 0.3382 nm, which strongly indicates that
HGFs had a good crystalline order. The above structural property endows the HGFs with a
good graphite layer to transfer heat. This was also beneficial to promote the heat transfer
improvement rate of the prepared composites.

3.2. Hollow Graphite Fibers/Paraffin Composite PCM

The prepared HGFs/paraffin composite PCM was also observed by SEM. The cross
section of the composite was showed in Figure 4a. The HGFs were distributed orderly in
the paraffin. In addition, the hollow space was continuous along the fiber axis direction,
which was filled with paraffin. This is also beneficial to enhance the interface contact
between paraffin and the HGFs. TG analyses on the HGFs/paraffin composite as well as
pure paraffin are demonstrated in Figure 4b. In the whole process, no main weight loss
for paraffin and the HGFs/paraffin composite was observed when the temperature was
lower than about 473 K. Then, the HGFs/paraffin composite and paraffin were gradually
decomposed with the increase in the temperature.
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Figure 4. SEM image of the HGFs/Paraffin composite (a) and the TGA curves of HGFs/Paraffin wax
composite and pure paraffin (b).

As one of the graphite materials, the HGFs had certain antioxidant property, which
could improve the antioxidant property of the composites. As illustrated in Figure 4b, the
loss weight percentage rate of the HGFs/paraffin was lower than that of the pure paraffin
with the increase in the temperature. As one kind of graphite material, the HGFs also have
good acid and alkali resistance, corrosion resistance, and oxidation resistance. When the
paraffin is melted (<100 ◦C), the stability of the HGFs in the PCM will keep well. There will
be no chemical reaction taking place between paraffin and the HGFs.

The thermal conductivity and the latent heat of the composites were tested by DSC
and are shown in Figure 5a. The mass loading of the paraffin absorbing along the long
successive HGFs was dependent on the vacuum adsorption process. The mass loading
of HGFs was increased from 13.36 wt% to 27 wt% in the composites. The fiber wall func-
tioned as a “path” for heat transferring, which allowed the heat to transfer throughout
the composite quickly. The thermal conductivity of the HGFs/paraffin composite was
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1.51 W/(m·K) along the axial direction of the fiber, and the corresponding thermal con-
ductivity was 0.41 W/(m·K) along the radial direction of the fiber, which contains the
HGFs with a mass ratio of 13.36 wt%. With the increase in mass ratio of the HGFs, the
thermal conductivity showed an increasing tendency. The corresponding thermal con-
ductivity of the HGFs/paraffin composite along the axial and radial direction of the fiber
were 2.50 W/(m·K) and 0.88 W/(m·K), respectively, which was 7.81 times and 2.75 times
as much as that of the pure paraffin. The thermal physical data of the composites can
be seen in Table S1 of the Supplementary Materials. The results showed that the HGFs
effectively gave rise to an improvement in the thermal conductivity of the system. This was
ascribed to the good graphite structure and good thermal conductivity of the HGFs. In the
HGFs/paraffin composite PCM, the HGFs were long fibers without short cutting, which
could supply a good successive heat transfer path. Meanwhile, in the one-dimensional
direction, the composites could absorb the heat quickly and not influence other directions
seriously. The anisotropic thermal conductivity of the composites could give materials the
need to serve in a particular environment.
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mass ratio of the HGFs.

The melted paraffin can be absorbed along the long successive fibers in a vacuum
environment. According to the mass ratio of the HGFs in the composite, the latent heats of
the composites were 187, 172, and 161 J/K, as shown in Figure 5b. The HGFs occupied the
space of the paraffin in the composite, so that the latent heat capacity of the system was
lower than that of the pure paraffin. The carbon fibers can be woven into cloth, which can
have the potential to prepare the flexible composite PCM.

The melting/solidifying DSC curves of the manufactured HGFs/paraffin composite
PCM and pure paraffin are presented in Figure 6. The positive heat flow represents the heat
absorbed by the composite PCM during the melting process, whereas the negative heat
flow was the heat released during the freezing process. In the melting process, the highest
heat flow value of paraffin was 3.01 W/g at 74.23 ◦C. During the solidifying process, the
lowest heat flow value of paraffin was 2.54 W/g at 60.45 ◦C.

As seen from the DSC curves of the HGFs/paraffin composite PCM, the thermal
characteristics of the HGFs/paraffin composite PCM were different from those of the pure
paraffin. The heat flow values of the HGFs/paraffin composite PCM were modified by
the HGFs. When the HGFs mass fraction in the composite was 18.9 wt%, the temperature
of the highest heat flow value of the HGFs/paraffin composite PCM shifted to 71.27 ◦C,
which was lower than that of the paraffin. The corresponding heat flow value of the
HGFs/paraffin the composite PCM was raised to 3.738 W/g in the melting cycle, which
was 24% higher than that of the paraffin. The existence of the HGFs in paraffin improved
the heat flow rate compared with that of the pure paraffin.
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