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Abstract: Passivation of titanium alloy dental meshes cleans their surface and forms a thin layer of
protective oxide (TiO2) on the surface of the material to improve resistance to corrosion and prevent
release of ions to the physiological environment. The most common chemical agent for the passiva-
tion process of titanium meshes is hydrochloric acid (HCl). In this work, we introduce the use of
Piranha solution (H2SO4 and H2O2) as a passivating and bactericidal agent for metallic dental meshes.
Meshes of grade 5 titanium alloy (Ti6Al4V) were tested after different treatments: as-received control
(Ctr), passivated by HCl, and passivated by Piranha solution. Physical-chemical characterization of
all treated surfaces was carried out by scanning electron microscopy (SEM), confocal microscopy and
sessile drop goniometry to assess meshes’ topography, elemental composition, roughness, wettability
and surface free energy, that is, relevant properties with potential effects for the biological response
of the material. Moreover, open circuit potential and potentiodynamic tests were carried out to
evaluate the corrosion behavior of the differently-treated meshes under physiological conditions.
Ion release tests were conducted using Inductively Coupled Plasma mass spectrometry (ICP-MS).
The antibacterial activity by prevention of bacterial adhesion tests on the meshes was performed for
two different bacterial strains, Pseudomonas aeruginosa (Gram-) and Streptococcus sanguinis (Gram+).
Additionally, a bacterial viability study was performed with the LIVE/DEAD test. We complemented
the antibacterial study by counting cells attached to the surface of the meshes visualized by SEM.
Our results showed that the passivation of titanium meshes with Piranha solution improved their
hydrophilicity and conferred a notably higher bactericidal activity in comparison with the meshes
passivated with HCl. This unique response can be attributed to differences in the obtained nanotex-
tures of the TiO2 layer. However, Piranha solution treatment decreased electrochemical stability
and increased ion release as a result of the porous coating formed on the treated surfaces, which
can compromise their corrosion resistance. Framed by the limitations of this work, we conclude
that using Piranha solution is a viable alternative method for passivating titanium dental meshes
with beneficial antibacterial properties that merits further validation for its translation as a treatment
applied to clinically-used meshes.

Keywords: titanium; dental meshes; passivation; piranha; corrosion resistance; ion release; bacterial
adhesion
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1. Introduction

The amount of bone is paramount to predictably achieve success and long-term
survival of implant-supported rehabilitations. Actually, implant dentistry has evolved to
a prosthetically driven implant placement concept, meaning that biology, biomechanics,
function and esthetics of the implant supported rehabilitation should be considered for the
adequate implant position in bone. Although proper amount of bone is needed to go along
with the esthetical and functional prosthetic design, variable discrepancies in the available
bone are seldom found. This may occur because of prolonged tooth loss, trauma, injury or
bone disease and resection, conducting to a horizontal, vertical or combined bone defect
(Siebert). Hence, several techniques and materials for bone augmentation have been used
concomitant with implant placement or as a staged approach [1–4].

Following the biological principles of selective cell exclusion for regenerative wound
healing and guided tissue regeneration, these were later proven to be applicable to guided
bone regeneration also. Techniques involve placing a mechanical barrier to protect the
blood clot and to isolate the bony defect from the surrounding connective and epithelial
tissue invasion. This space is needed to allow the osteoblasts to access the space intended
for bone regeneration [5,6].

Titanium rigid scaffolds were successfully used for bone augmentation, even outside
of the bone envelope. Presently, one mainstream direction for 3D printing is biomedical
applications, specifically in creating scaffolds for medical implants such as individualized
titanium meshes for bone regeneration [7–9]. In recent years, the development of personal-
ized rapid prototyping medical devices based on the digital imaging and communications
in medicine (DICOM) files provided by computerized tomography/cone beam comput-
erized tomography (CT/CBCT) scans has deeply intensified [10]. Based on the patient’s
bone defect and resorting to computer aided design (CAD) software, it is possible to design
medical devices with the intent of recreating the lost tridimensional bone anatomy.

Regardless of the production technique for any implantable devices, it is mandatory
to control the characteristics such as permeability, surface topography and roughness, and
optimize their biological performance [11–16]. High degrees of roughness represent a major
risk for ionic leakage from the material [17] and the bacterial adhesion can be increased,
with the consequence of implant failures [10]. Smooth surfaces are able to slow down
the biological processes at the interface, keeping the titanium oxidized layer properties
unaffected for longer time periods [9]. The associated correct micro- and nano-roughness
level can stimulate osteoblast differentiation, proliferation and production of both matrix
and local growth factors [10]. Furthermore, changes in roughness correlate with selective
protein adsorption, collagen synthesis and the maturation of chondrocytes, which all
significantly influence the implant’s osseointegration [10].

It is well known that the implant–living tissues interactions depend on the surface
properties, such as roughness, wettability, surface energy and chemical composition, among
others. Biomaterials research should optimize, at different scales, the surface characteristics
in order to improve different functions: bioactivity, osseointegration or bactericide behavior.
In addition, titanium meshes are susceptible to corrosion due to the presence of metals
of different chemical nature in the mouth, as well as the release of titanium ions into the
environment which must be taken into account [11–13]. It has been long recognized that the
corrosion products formed as a result of metal–environment interactions have a significant
bearing on the biocompatibility and long-term stability of the prostheses/implant. The
material used must not cause any biological adverse reaction and must retain its form
and properties [11,12] during function. Human stomatognathus is subjected to varying
changes in pH and temperature owing to differences in local, systemic, environmental,
economic and social conditions for each individual. Corrosion can result from the presence
of a number of corrosive species such as hydrogen ion (H+), sulfide compounds (S2−),
dissolved oxygen, free radicals (O2−, O−), and chloride ion (Cl−) resulting in the metal
surface breakdown and a consequent adverse tissue reaction [13]. In addition, the effect of
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bacteria can lead to the appearance of bacterial plaque which will affect bone regeneration
and cause inflammation in the patient [14–16].

Passivation is, in general, an oxidation reaction obtained by chemical or electrochem-
ical process which promotes the formation and increasing of the thickness of protective
layers [10–13]. The effect of passivation and oxidative agents and the role of titanium
oxide as the physico-chemical characteristics of the surface are poorly studied and under-
stood [17–20].

In vitro studies have implied that the negatively charged and hydrophilic TiO2 layer
is, in fact, the key factor for the overall biocompatibility as it regulates the protein ad-
sorption [9]. For the particular case of the dentistry, countless studies have already been
conducted in order to guarantee the implantation safety. Usually, no inflammatory response
signs are found in the oral tissue adjacent to titanium implants; however, it is important to
note that for some patients, hypersensitivity can be induced [9].

In this work, the aim was to study an alternative passivation method using the so-
called Piranha solution. The Piranha solution is a mixture of sulfuric acid and hydrogen
peroxide. We studied the effects of Piranha solution treatment on surface physical-chemical
properties, chemical degradation (corrosion and release of ions) and antimicrobial activity
against Gram-positive and Gram-negative bacteria.

2. Materials and Methods
2.1. Samples

One hundred twenty Grade 5 titanium alloy (Ti6Al4V) meshes (BoneEasy, Arada,
Portugal) were used. Figure 1 shows the mesh and its application as a membrane with
calcium phosphate.

We worked with 3 groups of samples:
Control: as-received material.
HCl passivation: The meshes were immersed in a solution of hydrochloric acid (HCl)

20% (v) for 40 s at room temperature (HCl group). This is the gold-standard passivation
treatment for dental implants and prosthesis.

Piranha passivation: The meshes were immersed in a solution of Piranha, which is a
mixture of sulfuric acid 96% (v) and a 50:50 ratio of hydrochloric acid (HCl) 20% (v) and
hydrogen peroxide 30% (v) for 2 h.

Piranha solutions are a mixture of concentrated sulfuric acid with hydrogen peroxide,
usually in a ratio of 3:1 to 7:1. They are used to remove trace amounts of organic residues,
such as photoresist, from substrates. The mixing procedure is an exothermic reaction
that can reach temperatures of 100 ◦C or higher. The reaction of hydrogen peroxide on
concentrated sulfuric acid produces highly activated and oxidizing peroxymonosulfuric
acid (H2SO5), also called Caro’s acid [1]. However, there are many different mixture ratios
that are commonly used, and all are called Piranha. The addition of NH4OH in order to
accelerate the decomposition of H2O2 or the addition of HCl, as in this research, favors
cleanness and increases the oxide stabilization. Piranha solution must be prepared with
great care. It is highly corrosive and an extremely powerful oxidizer. Surfaces must be
reasonably clean and completely free of organic solvents from previous washing steps
before coming into contact with the solution. Piranha solution cleans by decomposing
organic contaminants, and a large amount of contaminant will cause violent bubbling and
a release of gas that can cause an explosion [21].

After treatment, all samples were cleaned a sequence of 3 ultrasonic baths (3 min each):
two consecutive with distilled water, followed by one with ethanol.
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Figure 1. Grade 5 titanium mesh used in this study.

2.2. Surface Characterization

Roughness for all groups was determined using an Olympus LEXT OLS3100 confocal
microscope (Olympus, Tokyo, Japan). Three samples per group were tested and 3 mea-
surements per sample were taken at ×1000 magnification. The parameters Ra and Rz were
determined. Ra corresponds to the arithmetic mean of the absolute values of the deviations
of the profiles of a given length of the sample. Rz corresponds to the sum of the maximum
peak height and the maximum valley depth within the sampling length [21].

The water sessile drop technique was used for the measurement of the contact angle,
θ, formed between the water drop and the surface. The greater the contact angle, the
lower the wettability and vice versa. For angles less than 10◦, the surface is considered
superhydrophilic, for angles between 10◦ and 90◦ surfaces are hydrophilic and for angles
greater than 90◦, surfaces are considered hydrophobic. A droplet generation system
equipped with a 500 µL Hamilton syringe with micrometric displacement control was
used to control the volume (3 µL) and to deposit the droplet. The analysis was performed
using a gonyometer with drop profile image capture (Contact Angle System OCA15plus,
DataPhysics, Filderstadt, Germany) and analyzed with SCA20 software (DataPhysics,
Filderstadt, Germany) [22,23].

To calculate the surface free energy, the contact angle was measured with two different
liquids, water and diiodomethane. The contact angle measurements of diiodomethane were
obtained following the same procedure used to measure water contact angles [22]. The
surface free energy and its polar (γp) and dispersive (γd) components were then calculated
using the Owens and Wendt equation [17]:

γL · (1 + cos θ) = 2 · ((γd
L · γd

S)
1/2

+ (γ
p
L · γ

p
S)

1/2
) (1)

Surface morphology of the samples was analyzed with a focused ion beam Zeiss
Neon40 FE-SEM (Carl Zeiss NTS GmbH, Oberkochen, Germany). Images of uncoated
samples were taken at a working distance of 7 mm and an accelerating voltage of 5 kV. An
EDS detector (INCA PentaFETx3 system, Oxford Instruments, Abingdon, UK) was used to
detect silver presence on the surface of the samples. This microscope has a resolving power
of 3 nm and allows the observation of the nanotextures produced by the reaction of the
Piranha solution with the Ti6Al4V alloy.

2.3. Corrosion Behavior

A total of 60 samples, (n = 20) for each group of samples, were used for the corrosion
tests. The test area for each sample was 19.6 mm2. The electrolyte for all tests was Hank’s
solution (Table 1), which is a saline fluid that closely captures the ion composition of the
human serum environment.
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Table 1. Composition of Hank’s solution.

Chemical Product Composition (mM)

K2HPO4 0.44
KCl 5.4

CaCl2 1.3
Na2HPO4 0.25

NaCl 137
NaHCO3 4.2
MgSO4 1.0

C6H12O6 5.5

The electrochemical cell used was a polypropylene (PP) container with a capacity
of 185 mL and a methacrylate lid with 6 holes for the introduction of the sample, the
reference electrode and the counter electrode (Figure 2). For both the open circuit potential
measurement tests and the potentiodynamic tests, the reference electrode used was a
calomel electrode (saturated KCl), with a potential of 0.241 V compared to the standard
hydrogen electrode. All tests were performed at room temperature and in a Faraday cage
to avoid the interaction of external electric fields.

For the open circuit potential measurement tests, only the sample and the reference
electrode were placed in the electrochemical cell. Tests were carried out for 5 h for all the
samples, taking measurements every 10 s. The potential was considered to be stabilized
when the variation of the potential is less than 2 mV over a period of 30 min as indicated
in the ASTM G31 standard [23]. This test assesses which materials are more noble (higher
potential) and thus, less susceptible to corrode. The data and the E-t curves were obtained
using the PowerSuite software (Schneieder Electric, Ruil-Malmaison, France) with the
PowerCorr-Open circuit (Schneieder Electric, Ruil-Malmaison, France).
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Figure 2. Experimental set up used for assessing corrosion resistance.

Cyclic potentiodynamic polarization curves were obtained for the 3 study groups
following the ASTM G5 standard. In this test, a variable electrical potential is imposed
by the potentiostat between the sample and the reference electrode, causing a current
to flow between the sample and the counter electrode. The counter electrode used was
platinum [17,24,25]. Before starting the test, the system was allowed to stabilize by means
of an open circuit test for 1 h. After stabilization, the potentiodynamic test was launched,
performing a cyclic sweep from −0.8 mV to 1.7 mV at a speed of 2 mV/s. These parame-
ters were entered into the PowerSuite program using the PowerCorr-Cyclic Polarization
function to obtain the curves. The parameters studied were:

1. icorr (µA/cm2)—corrosion current density;
2. Ecorr (mV)—corrosion potential: value at which the current density changes from

cathodic to anodic;
3. Erep (mV)—repassivation potential: potential at which the passive layer regenerates;
4. Ep (mV)—pitting potential: value at which pitting corrosion may occur;
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5. ip (µA/cm2)—passivation current density;
6. ip (µA/cm2)—repassivation current density.

The Ecorr and icorr parameters are obtained by extrapolating the Taffel slopes. The
Taffel slopes are also used to obtain the Taffel coefficients: anodic (βa) and cathodic (βc).
These coefficients represent the slopes of the anodic and cathodic branch, respectively. In
accordance with the ASTM G102-89 standard [23–26], these values are then used to calculate
the polarization resistance (Rp) using the Stern–Geary expression and the corrosion rate
(CR in mm/year) [24–28].

Rp =
βa · βc

2.303 · (βa + βc) · icorr
(2)

The polarization resistance indicates the resistance of the sample to corrosion when
subjected to small variations in potential. A total of 30 potentiodynamic tests were carried
out, obtaining at least 10 curves per group.

CR = K1 ·
icorr

ρ
· EW (3)

2.4. Ion Release

Five samples from each group were used for the metal ion recovery test. After weigh-
ing the samples (m = 0.206 g) and following the ISO 10993-12 standard [26], a weight
adjustment was made at the rate of 1 mL of Hank’s solution for each 0.2 g of sample, as
indicated in the standard. The 5 samples of each group were placed in the same Eppendorf
with 5 mL of Hank’s solution and stored at 37 ◦C. Hank’s solution should be extracted
and stored in the refrigerator after 1, 3, 7, 14 and 21 days. After each extraction, 5 mL of
fresh Hank’s solution has been replenished into the Eppendorf containing the samples. All
Eppendorf tubes should be cleaned with 2% Nitric Acid and dried before use.

After 21 days, the concentration of released titanium ions was measured, at the test
times indicated above, by inductively coupled plasma mass spectrometry (ICP-MS) with
the Agilent Technologies 7800 ICP-MS.

2.5. Bacteria Analysis

Two types of bacteria, P. aeruginosa (Colección española de cultivos tipo, CECT 110,
Valencia, Spain) and S. sanguinis (Culture Collection University of Gothenburg, CCUG
15915, Gothenburg, Sweden), a Gram-negative and a Gram-positive strain, respectively,
were used for the bacterial adhesion test. Three samples per group and bacterial strain
were tested.

The culture media and material (PBS) were previously sterilized by autoclaving at
121 ◦C for 30 min. Prior to the adhesion test, the samples were also sterilized. For this pur-
pose, three 5 min ethanol washes were carried out in sterile culture plates. After removing
the ethanol, the samples were exposed to ultraviolet light for another 30 min [29,30].

The agar plates were cultured at 37 ◦C for 24 h. From this culture, the liquid inoculum
was prepared by suspending the bacteria in 5 mL of BHI (Brain Heart Infusion) and
incubated for 24 h at 37 ◦C. The medium was then diluted to an optical density of 0.1
at a wavelength of 600 nm (OD600 = 0.1). For bacterial adhesion, enough solution with
a concentration equivalent to OD600 = 0.1 to cover the surfaces (500 µL/sample) was
introduced into the well of the culture plate of each sample and incubated at 37 ◦C for 1 h.

After this time, the samples were rinsed with PBS for 5 min twice and the bacteria
were fixed with a 2.5% glutaraldehyde solution in PBS (30 min in the refrigerator). The
glutaraldehyde solution was then removed and the samples were rinsed with PBS 3 times
for 5 min. For viability analysis by confocal microscopy, the LIVE/DEAD BacLight bacterial
viability kit (Thermo Fisher, Madrid, Spain) was used [13,14]. A solution was prepared
with 1.5 µL of propidium in 1 mL of PBS. Using a micropipette, a drop of this solution
(approximately 50 µL/sample) was deposited on the study surface and after incubation
at room temperature in the dark for 15 min, the samples were rinsed 3 times with PBS for
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5 min. The surfaces were then observed under a confocal microscope. Three images per
sample were taken at 630× magnification (×63 objective). Wavelengths of 488 and 561 nm
were used to detect bacteria with non-compromised membranes (LIVE) and compromised
membranes (DEAD), respectively.

Prior to the observation of the samples by scanning electron microscopy (SEM), the
samples were dehydrated. For the dehydration process and the critical point drying, 10 min
washes were carried out with ethanol solutions of gradual concentrations of 30%, 50%, 70%,
80%, 90%, 95% and 100%. They were then left to dry for 24 h at room temperature. Then,
samples were coated with platinum for 5 s before observation under the microscope. Ten
images of each sample were taken at 20,000× magnifications for bacterial quantification on
each surface.

2.6. Statistical Analysis

All results were expressed as mean and standard deviation except for the bacterial
adhesion test results which were expressed as median and standard error. The comparative
T.TEST (with the Excel software) was carried out between the different groups at 95%,
which means that for values of p < 0.05, there are significant differences.

3. Results

Figure 3 shows SEM images of the surfaces of the titanium alloy after passivation
treatments. No significant variations between the control and HCl treatment were detected
and both types of surfaces clearly showed machining marks. Machining marks in HCl-
passivated surfaces were lighter than in as-machined surfaces, probably due to the effect of
the higher concentration of the acid. However, on the surface of the samples subjected to the
Piranha passivation treatment, the acid attack almost completely removed the machining
marks and, notably, produced a homogenously-distributed and commonly-obtained surface
nanotexture in the form of nanocavities (Figure 4) [15].
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Figure 4. Nanotexture of titanium alloy after Piranha passivation treatment observed by high-
resolution scanning electron microscopy.

The different passivation treatments on the titanium alloy meshes, either with HCl or
Piranha solution, did not alter the average roughness (Ra), as no statistically significant
differences were observed with respect to the control group (Table 2). However, the Piranha
treatment showed statistically significant lower Rz values with respect to the other groups.
These results suggest that the Piranha solution treatment attacked the titanium, reducing
machining failures and creating an oxide layer that reduces the differences between valleys
and peaks. The large difference between the Ra and Rz values shows that we have two
types of texture (Figure 5), one associated with the turning marks responsible for the high
Rz values and the other the nanotexture associated with the passivation treatment.

Table 2. Roughness values, Ra and Rz, for titanium alloy surfaces with different passivation treat-
ments. Different letters in the same column denote statistically significant differences (p < 0.05)
between groups.

Mesh Ra
(µm)

Rz
(µm)

Control 0.12 ± 0.03 (a) 4.95 ± 0.76 (A)

HCl 0.14 ± 0.08 (a) 4.87 ± 0.90 (A)

Piranha 0.12 ± 0.05 (a) 1.90 ± 0.73 (B)
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Figure 5. Roughness parameters quantified with different passivation conditions: (a) Ra and (b) Rz.



Coatings 2022, 12, 154 9 of 17

Wettability, i.e., hydrophilic/hydrophobic character of the tested surfaces, was deter-
mined measuring the water contact angle with the sessile drop technique (Table 3). Firstly,
as-received control surfaces were hydrophobic with a contact angle higher than 90◦. Sec-
ondly, all passivated surfaces had significantly higher hydrophilicity than untreated control
surfaces. Thirdly, the surfaces passivated with Piranha solution produced a significantly
higher hydrophilic material than the surfaces treated with HCl. Water contact angle, as
well as polar and dispersive components of SFE, are plotted in Figure 6.

Corresponding with the results for the wettability of the different surfaces, the po-
lar component of the surface free energy in the titanium alloy passivated with Piranha
solution was the highest among all tested surfaces. The differences in the dispersive
and polar components of the surface free energy for all tested surfaces were statistically
significant [31–35].

It is widely accepted that increasing the polar component of a material’s surface energy
promotes initial adhesion and cell proliferation [17].

Table 3. Contact angles and components of the surface free energy for the differently passivated meshes.

Mesh Θ Water
(◦)

Θ Diidomethane
(◦)

γd

(mJ/m2)
γp

(mJ/m2)
SFE

(mJ/m2)

Control 102.76 ± 7.00 48.40 ± 2.32 35.15 ± 1.28 0.12 ± 0.10 35.28 ± 1.35

HCl 86.37 ± 4.12 53.54 ± 0.92 32.39 ± 0.52 3.31 ± 1.28 35.70 ± 1.60

Piranha 49.05 ± 7.67 34.12 ± 3.94 42.37 ± 1.79 16.52 ± 4.22 58.90 ± 4.11
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Figure 6. θ values (a) and SFE values (b) of cpTi treated with different passivation conditions.

Table 4 shows that the highest open circuit corrosion potential values (EOCP) were
obtained for titanium alloy surfaces treated with HCl. Therefore, HCl passivation produces
the surfaces with the least tendency for corrosion, and therefore the best corrosion behavior.
Conversely, surfaces treated with the Pirahna solution showed the lowest values in open
circuit, which indicated the highest tendency for corrosion. The potentiodynamic studies
confirmed that the treatment that produced surfaces with the best corrosion resistance was
using HCl, as these passivated surfaces showed the lowest values of corrosion current
density (icorr) and corrosion rate (Vc). In addition, the HCl-treated samples show the
highest resistance to polarization (Rp). The Piranha solution should produce the thickest
protective TiO2 layer; however, surfaces passivated with Piranha did not have an improved
corrosion behavior with respect to the control samples. Moreover, only in samples treated
with Piranha solution pitting corrosion could be observed after the potentiodynamic tests
(Figure 7).
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Table 4. Electrochemical and corrosion parameters assessed for Ti alloy meshes with different
passivation treatments.

Mesh EOCP
(mV)

icorr
(µA/cm2)

Rp
(MΩ/cm2)

Ecorr
(V)

Vc
(µm/Year)

Control −196 ± 01 0.027 ± 0.008 2.428 ± 0.390 −361 ± 14 0.233 ± 0.066

HCl −145 ± 11 0.018 ± 0.005 2.479 ± 0.083 −536 ± 39 0.176 ± 0.048

Piranha −206 ± 27 0.056 ± 0.006 1.102 ± 0.149 −447 ± 26 0.488 ±0.047
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Figure 7. Pitting corrosion marks produced after completing the potentiodynamic test on a Grade 5
titanium alloy surface passivated with Piranha solution.

Table 5 shows the cumulative Ti ion release in parts per billion (ppb) from the passi-
vated meshes in Hank’s solution after increasing days of incubation, as can been observed
in Figure 8. Analogous to the highest electrochemical stability, Ti ion release was the lowest
from surfaces passivated with HCl, with a total cumulative concentration after 21 days of
incubation of 4.1 ± 0.4 ppb, although with no statistically significant difference with respect
to the untreated control group (7.0 ± 0.6 ppb). Differences are statistically significant when
comparing Ti ion release from surfaces passivated with Pirahna solution and with HCl. Ion
release from Piranha-treated titanium alloy meshes (10.3 ppb ± 0.9) more than doubled the
ion release values from HCl-treated surfaces.

Table 5. Ti ion release (ppb) at different incubation times in Hank’s solution.

Mesh 1 Day 3 Days 7 Days 14 Days 21 Days

Control 1.3 ± 0.2 2.7 ± 0.5 2.8 ± 0.3 4.5 ± 0.4 7.0 ± 0.6

HCl 1.0 ± 0.3 2.0 ± 0.2 2.1 ± 0.2 3.7 ± 0.3 4.1 ± 0.4

Piranha 2.2 ± 0.7 3.8 ± 0.2 4.2 ± 0.1 7.4 ± 0.9 10.3 ± 0.9

The higher ion release from surfaces treated with Piranha solutions with respect to
the control and HCl-treated ones could be related to the higher corrosion rate and current
density values, as previously presented. Corrosion phenomena are most likely the main
cause of the degradation of the passive layer and the subsequent release of ions into
the medium.

Quantitative analyses of the bacterial adhesion test performed with the Gram-negative
P. aeruginosa and for the Gram-positive S. sanguinis show that there are no significant
differences in the number of bacteria adhering to the surface of the control and HCl-treated
surfaces, but there were significant differences with meshes treated with Piranha solution
(Table 6). Indeed, for both bacterial strains, the Piranha-treated titanium alloy surfaces
drastically reduced (at least one order of magnitude) bacterial adhesion in comparison to all
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other groups (Figures 9 and 10). The bacteria adhered on the differently-treated surfaces can
be observed in Figure 10 for P. aeruginosa and in Figure 11 for S. sanguinis, which supported
the quantification differences assessed for bacterial adhesion. The LIVE/DEAD imaging
revealed that differences in bacterial number were mainly related to prevention of bacteria
colonization of the Piranha-treated surfaces as almost none of the bacteria remaining on
the surfaces had their membranes compromised (red color).
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Figure 8. Ti ion release at different immersion times in Hank’s solution of different passivation
treatments on cpTi.

Table 6. Quantitative analysis of number of P. aeruginosa and S. sanguinis adhered on Grade 5 titanium
alloy surfaces with different passivation treatments.

Mesh P. aeruginosa
(Number of Bacteria/mm2)

S. sanguinis
(Number of Bacteria/mm2)

Control 7.02 × 105 ± 0.52 × 105 3.52 × 105 ± 0.48 × 105

HCl 5.75 × 105 ± 0.33 × 105 2.25 × 105 ± 0.13 × 105

Piranha 1.23 × 104 ± 0.02 × 104 5.03 × 103 ± 0.10 × 103
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Figure 10. SEM (top row) and fluorescence (bottom row) images of P. aeruginosa stained by
LIVE/DEAD.
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LIVE/DEAD.

4. Discussion

The characteristic nanotexture [15,34–36] resulting from the passivation treatment of
titanium alloy meshes with Pirahna solution (Figure 12) was a relevant surface property
achieved with Piranha treatment in comparison to HCl treatment. Meshes treated with
Piranha solution showed a submicrotexture with superimposed nanoporosity ranging
from 9–20 nm. This surface topography was homogeneous and without cracks, which
suggest a good toughness of the oxide layer formed. The presence of furrows on the treated
surfaces might be related to a preferential etching process in areas with high internal energy,
such as grain boundaries, dislocation pile-ups or other metallurgical or crystallographic
singularities.

Notably, all passivation treatments tested increased hydrophilicity and surface free
energy (Table 3). This suggests that passivating titanium meshes would not only produce
a protective oxide layer but could also increase the meshes’ interactions with the biolog-
ical environment, favoring water, water-mediated and cellular–bacterial interactions. In
most cases, protein adsorption and cell adhesion and proliferation have been correlated
with an increase in surface hydrophilicity and the polar component of the surface free
energy [36,37]. In particular, fibroblasts are sensitive to variations in wettability, and cell
spreading increases when cells grow on more hydrophilic surfaces [14,31]. In the case of
bacterial adhesion, the effects of wettability have not been so widely explored and conclu-
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sions are more diverse, as they depend on many experimental factors, among which it is
worth noting the high diversity in membrane properties of different bacterial strains.

Several studies using XPS analysis allowed to determine the chemical composition of
the Ti6Al4V alloy surface after the Piranha etching [38–42]. This analysis confirmed that the
atomic concentration of TiO2 did not vary dramatically and the presence of suboxides such
as TiO and Ti2O3 were observed. These observations are consistent with the model for the
oxide layers proposed by McCafferty et al. [43], which is composed by three different layers,
namely TiO (inner layer in contact with the metal), Ti2O3 (intermediate layer), and TiO2
(outer layer). The superficial layer thus comprises a mixture of amorphous TiO2, Al2O3,
and small quantities of V2O5. This behavior is chemically plausible and can be explained by
assuming that suboxides such as TiO and Ti2O3 are transformed into TiO2 in the oxidative
medium of Piranha solution [44,45], and by assuming that the etching solution penetrates
the nanopits and reaches the underlying metal [45,46]. When the solution reaches the
suboxides, they are further oxidized into TiO2, thereby increasing the thickness of the
dioxide nanoporous layer in a manner consistent with ellipsometric measurements [47,48].
This porosity increases the rate of penetration of the oxidant, and the loss of material from
the surface occurs at similar rates, increasing the corrosion. In addition, the reduction
in electrochemical resistance of surfaces treated with Piranha solution might have been
favored by the increase in real surface area and thus, reactive surface provided by the
presence of the surface nanotexture generated with this treatment. These facts, in turn,
might result in decreased corrosion resistance and associated increased Ti ion release of the
titanium meshes treated with Piranha solution in comparison to the HCl-treated ones. This
is a potential limitation for the translation of this treatment to a clinically-used mesh and
should be further studied and optimized in future work.
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We focused here on assessing the effects of the passivation treatment on bacterial
adhesion, as infection is an increasing concern in the case of dental meshes. We assessed
that the titanium alloy surfaces with Piranha solution prevented bacterial adhesion in a
notably more effective way than non-treated and HCl-treated surfaces. It is known that
bacterial adhesion is significantly hindered by surface nanotextures, typically obtained
with Piranha solution treatments, as it manages to alter some structural parameters of the
bacteria that determine their invasion potential [32]. Additionally, and most likely in a
related way, some studies have also shown that there is a relationship between surface
hydrophobicity and bacterial adhesion [35]. Hydrophobic metal surfaces favor adhesion
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of hydrophobic bacteria. Both strains tested here, S. sanguinis and P. aeruginosa, are hy-
drophobic bacteria [36]; so, a significant decrease in bacterial adhesion could be expected
on Piranha-treated surfaces that had a significantly higher surface hydrophilicity and polar
character (Table 3).

The nanotexture effect is mainly caused by specific nanostructures of spike-like
nanopillars, which have the capacity to mechanically destroy the murein wall of bac-
teria as it can be observed in titania nanotubes [49–53]. Depending on the general shape
in terms of length, width and distances between these pillars, different effects such as
penetration and rupture of the membrane through stretching or buckling of the bacterial
wall are discussed as the actual antibacterial effect. Titania nanotubes with a diameter
of 100 nm could successfully enhance gingival fibroblast proliferation and attachment
while reducing the adhesion of P. gingivalis [54]. In this regard, there seem to be different
targets in terms of how a nanostructure should be designed, and titanium biomaterials
with such surfaces have not yet been introduced into the field. The antibacterial tests
on Piranha-treated nanostructured substrates also confirmed a substantial reduction in
bacterial growth over large areas in titanium treated with Piranha, such as E. coli [55] and S.
aureus [56,57]. According to Seddiki et al., the surface features consist of ‘tips’ that have a
sharp aspect ratio [56]. These take advantage of the fact that bacterial cells have a more
rigid cell wall than eukaryotic cells. Hence, the proliferation of bacteria and such other
pathogenic microorganisms onto the surface is discouraged. There is also a higher ratio
of TiO2 on the surface that contributes to the antibacterial activity [56]. Piranha-treated
samples showed the highest cell viability after 24 h. This could be attributed to the change
in surface morphology that allows for easy attachment of cells. However, there is no signifi-
cant change in their viability even after 72 h [55]. These bacterial strains are characteristic
of infections in orthopedics; in this contribution, we used aerobic and anaerobic bacteria
typical in oral surgery.

It should be taken into account that this work has the limitation of ultraviolet treat-
ment that can affect the chemical composition of the surface, but we wanted to be the
closest to what actually happens. Ultraviolet light has a significant effect on the antibacte-
rial properties of titanium surfaces. It has been reported that for titanium materials with
nanostructures on the surface, when exposed to ultraviolet light for only 15 min, titanium
materials show super hydrophilicity and the elimination of surface hydrocarbon pollu-
tion. Compared with those without ultraviolet light, titanium materials have lower initial
bacterial adhesion and biofilm formation. The response of smooth titanium to ultraviolet
light may be different from that of a titanium surface forming a nanostructure. Insufficient
control of experimental variables affect the results of bacterial adhesion experiments [58].

5. Conclusions

The use of Piranha solution as an alternative passivation method for Ti6Al4V al-
loy for dental meshes was introduced. The Piranha treatment produced a nanotextured,
hydrophilic, polar surface with anti-adhesion bacterial properties and compromised electro-
chemical properties. Open circuit potential and potentiodynamic tests show an increase in
corrosion rate. In addition, titanium ion release is higher with Piranha treatment than HCl
and control. Within the limitations of this work, we conclude that using Piranha solution
could be a viable alternative method for passivating titanium dental meshes that merits
further validation for its translation as a treatment applied to clinically-used meshes, taking
in account the chemical degradation.
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