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Abstract: Ti–6Al–4V alloy has been widely used in the orthopedic and dental fields owing to its high
mechanical strength and biocompatibility. However, this alloy has a poor bone-bonding capacity, and
its implantation often causes loosening. Osteoporosis increases with the aging of the population, and
bisphosphonate drugs such as alendronate and minodronate (MA) are used for the medical treatment.
Reliable and multifunctional implants showing both bone bonding and drug releasing functions
are desired. In this study, we developed a novel organic-inorganic composite layer consisting of
MA-containing gelatin and calcium-deficient calcium titanate (cd–CT) with high bone-bonding and
scratch resistance on Ti–6Al–4V alloy. The alloy with the composite layer formed apatite within
7 days in a simulated body fluid and exhibited high scratch resistance of an approximately 50 mN,
attributable to interlocking with cd ± CT. Although the gelatin layer almost completely dissolved in
phosphate-buffered saline within 6 h, its dissolution rate was significantly suppressed by a subsequent
thermal crosslinking treatment. The released MA was estimated at more than 0.10 µmol/L after
7 days. It is expected that the Ti alloy with the MA-containing gelatin and cd–CT composite layer
will be useful for the treatment of osteoporosis bone.

Keywords: bisphosphonate; calcium titanate; titanium alloy; apatite formation; gelatin

1. Introduction

Ti–6Al–4V alloy is widely used for load bearing implants, since it is biocompatible
comparatively to pure Ti metal, while it shows superior mechanical strength and corrosion
resistance [1]. However, this alloy is poor in its bone bonding ability, and often results
in the loosening of the implants [2,3]. This event becomes more serious in osteoporosis
bone. Conferring both bone-bonding capabilities on the implant and stimulating surround-
ing new bone formation is a great challenge in the development of novel implants for
osteoporosis bone.

In order to confer bone-bonding on Ti and its alloys, various types of inorganic coat-
ings including a plasma spray apatite coating [4,5], titanate or titania coating by solution
and heat [6,7], hydrothermal [8] and anodic oxidation [9] as well as surface roughening
by blasting and acid etching [10] have been developed. Direct bone bonding of the metals
was observed when coated with apatite or when apatite-formation capability, owing to
the titanate or titania coatings, was conferred onto the metal surfaces [11–13]. The titanate
coating showed greater adhesion than the plasma-sprayed apatite coating when the chemi-
cally graded intermediate layer with a nano-porous structure was produced by means of
a solution and heat treatment [13]. Activation of preosteoblast cells was reported on the
roughened surfaces with a micro-meter and nano-meter scale and their hierarchical struc-
ture [14–16]. Among the inorganic surface coatings, the calcium-deficient calcium titanate
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(cd–CT) formed by the Ca-heat treatment developed by the present authors has unique
surface characteristics of nano-scaled 3D network morphology, high scratch resistance,
chemical durability, and abundant Ti–OH groups [17–19]. Thus, the treated metals tightly
bind to both cortical and cancerous bone attributed to their high apatite formation capa-
bility [7,17–19]. We have also shown that the Ti–6Al–4V pedicle screw treated with cd–CT
had a remarkably increased extraction torque compared with the untreated screw [7].

On the other hand, coatings of organic materials including biologically functional
molecules composed of peptide, polysaccharide and growth factors and drugs were ad-
hered to metal surfaces to enhance the regeneration of bone at the implant interface [20–22].
However, this type of surface modification does not permanently provide a favorable
influence on osteointegration [20,21]. The metrics supporting these biomolecules and drugs
are biodegradable, and the bare surface of the metal substrate is exposed after implantation
for a certain period of time. Additionally, it is still challenging to achieve high adhesion
between the metal substrate and polymer coatings due to large differences in surface energy
between the metal and polymer. Gelatin, a biopolymer obtained from the hydrolysis of
collagen, is commonly used in tissue engineering for the regeneration of skin [23], carti-
lage [24] and bone [25,26]. In addition to its availability and biocompatibility, gelatin offers
the possibility of modulating its chemical and mechanical properties using its crosslinking
capability.

Bisphosphonates (BPs), representative osteoclast inhibitors, are also shown to have a
significant capacity for osteogenic induction [27–29]. BPs have been applied to bone tissue
engineering technologies to develop functionalized bone tissue scaffolds with controlled
release [30]. Previous studies have also shown that BP-coated titanium [31] or calcium
phosphate ceramics [32] increased new bone formation around the implant and mechanical
fixation. Minodronate monohydrate (MA) is one of the BPs with high potency in inhibiting
bone resorption and is developed and approved for clinical use in Japan [33].

In the present study, we propose a novel coating composed of drug-releasing gelatin
reinforced with the bioactive cd–CT that exhibits controlled drug release, apatite formation
and high scratch resistance. The BP (minodronate) is used as a drug, and its release behavior
from the coating was estimated from the degradation rate of the gelatin layer.

2. Materials and Methods
2.1. Sample Preparation

Ti–6Al–4V alloy (Ti = balance, Al = 6.18, V = 4.27 mass%, supplied by Kobelco Research
Institute, Inc., Hyogo, Japan) plates with the dimensions of 10 mm × 10 mm × 1 mm were
ground with a #400 diamond pad, and cleaned with acetone, 2-propanol and ultrapure
water in an ultrasonic bath for 30 min each, then dried at 40 ◦C in an incubator overnight.

The alloy plates were subjected to NaOH–CaCl2–heat–water treatment according
to our previous report to form a cd–CT surface layer with high bone-bonding capabil-
ity [7,17–19]. In this treatment, the samples were initially soaked in 5 mol/L NaOH (Kanto
Chemical Co., Inc., Tokyo, Japan) aqueous solution at 95 ◦C for 24 h, and subsequently
in 100 mmol/L CaCl2 (Kanto Chemical Co., Inc., Tokyo, Japan) at 40 ◦C for 24 h with
shaking in an oil bath. They were subsequently heated to 600 ◦C at a rate of 5 ◦C/min
and maintained at 600 ◦C for 1 h, followed by natural cooling in a Fe–Cr electrical furnace.
They were soaked in hot water at 80 ◦C for 24 h. This sequence of treatment is denoted as
“Ca–heat” treatment in this study. All the reagents used in this study were of reagent grade.

After the Ca–heat treatment, the samples were dipped in 10 mL of 5–20% gelatin
solution (medical grade with 316 g bloom, beMatrix LS–H, Nitta Gelatin, Osaka, Japan)
pre-warmed at 60 ◦C in which 50 µmol/L minodronate monohydrate (minodronate; Tokyo
Chemical Industry Co., Ltd., Tokyo, Japan) was dissolved in 20 mmol/L NaOH without or
with the additive of 100 mmol/L CaCl2 (Kanto Chemical Co., Inc., Tokyo, Japan) and/or
100 mmol/L (NH4)2HPO4 (Kanto Chemical Co., Inc., Tokyo, Japan). The samples were
pulled up at a constant speed of 1 cm/min by an electric motor, and then dried in an
incubator at 40 ◦C overnight (This dip coating is denoted as “DC treatment”).
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Some of the samples with the gelatin coating were subjected to thermal cross-link
(TCL) treatment [34] at 140 ◦C using vacuum oven (VOS-301SD, Tokyo Rikakikai Co., Ltd,
Tokyo, Japan) for the desired periods from 3 to 72 h.

The treatments for each sample are summarized in Table 1.

Table 1. Notations of Ti–6Al–4V alloy samples used in this study.

Sample
Treatment

Ca-Heat Dip Coating Thermal Crosslink

Untreated Not treated Not treated Not treated
CT Treated Not treated Not treated

CT(X)G Treated X% gelatin (X = 5–20) Not treated

CT(X)G + MA Treated X% gelatin +
50 µmol/L minodronate Not treated

CT(X)G + MA +
Ca and/or P Treated

X% gelatin +
50 µmol/L minodronate + 100 mmol/L CaCl2

and/or 100 mmol/L (NH4)2HPO4

Not treated

CT(X)G + MA +
Ca and/or P

+ (Y)TCL
Treated

X% gelatin +
50 µmol/L minodronate + 100 mmol/L CaCl2

and/or 100 mmol/L (NH4)2HPO4

Y hours at 140 ◦C in vacuum
(Y = 6–144)

2.2. Viscosity of Gelatin Solution

The viscosity of the gelatin solution (5–20%) with or without additives as a function of
gelatin concentration was measured by Brookfield viscometer (LVDVNextCP; Brookfield
Engineering Laboratories, Inc., Middleboro, MA, USA) according to JIS8803 (Japanese
Industrial Standards Z8803:2011, Methods for viscosity measurement of liquid). The spindle
speeds (and corresponding shear rates) were optimized for each sample between 11.52 and
576 1/s (shear rates were 3 to 150 rpm), and four different spindle speeds were examined
for each sample instead of increasing the number of replicates. The measurements were
performed using 2 mL samples at 60 ◦C, and the viscosity (mPa·s) of the sample obtained
for each run after a 30 s holding time was used for analysis.

2.3. Surface Characteristics
2.3.1. Scanning Electron Microscopy and Energy Dispersive X-ray Analysis

The surface and cross-sectional area of the prepared samples were coated with a Pt/Pd
thin film and observed under a field-emission scanning electron microscope (FE-SEM,
S-4300, Hitachi Co., Tokyo, Japan) equipped with energy dispersive X-ray analysis (EDX,
EMAX-7000, Horiba Ltd., Kyoto, Japan) at an accelerated voltage of 15 kV and an electric
current of 9–11 µA. In EDX analysis, C, O, Ti, Al, V, Ca, P, Na and Cl of the sample surfaces
were examined using an accelerated voltage of 9 kV with a electric current of 10 µA. Five
locations were measured, and their averaged values (a.v.) and standard deviations (s.d.)
were used (described as a.v. ± s.d.).

2.3.2. Thin-Film X-ray Diffraction

Surface crystalline structures of the samples were analyzed using TF-XRD (Model
RNT-2500, Rigaku Co., Akishima, Tokyo, Japan), employing a CuKα X–ray source operating
at 50 kV and 200 mA. The glancing angle of the incident beam was set to an angle of 1◦

against the sample surface.

2.3.3. Scratch Resistance Measurements

The scratch resistance of the surface layer formed on the Ca–heat-treated samples with
or without gelatin layer was measured using a thin film scratch tester (Model CSR-2000,
Rhesca Co., Hino, Tokyo, Japan). A stylus with a diameter of 5 µm with a spring constant of
200 g/mm was employed and pressed onto the samples with a loading rate of 100 mN/min,
an amplitude of 100 µm and a scratch speed of 10 µm/s, based on the data in the JIS R-3255
standard (Japanese Industrial Standard R-3255, Test methods for adhesion of thin films on
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glass substrate). Five areas were measured for each sample, and their averaged values and
standard deviations were used.

2.3.4. Dissolution of Gelatin

The samples with the gelatin layer with CaCl2 and MA additives subjected to TCL
treatment were immersed in 2 mL of phosphate buffered saline (PBS) and gently shaken
at a speed of 50 strokes/min at 36.5 ◦C. The Ca2+ ion concentrations released in PBS as a
result of gelatin dissolution (the solvent/sample ratio was 2 mL/2.4 cm2) were measured
by inductively coupled plasma emission spectroscopy (ICP, SPS3100, Seiko Instruments
Inc., Chiba, Japan) after the determined periods of soaking up to 7 days. The PBS solution
was refreshed at each determined period, and the measurement was repeated 3 times for
independently prepared samples. Their averaged values and standard deviations were
calculated. The released MA concentration was estimated from the Ca2+ ion concentrations
under the assumption of homogeneous Ca2+ ion distribution in a gelatin layer.

2.4. Apatite Formation

The samples with the gelatin layer with or without additives of CaCl2 and/or (NH4)2HPO4
were immersed in 24 mL of a pre-warmed simulated body fluid (SBF, 36.5 ◦C) with ion
concentrations nearly equal to those of human blood plasma for 7 days at 36.5 ◦C [35]. After
removal from the SBF, apatite formation on the sample surface was observed by FE-SEM
and TF-XRD.

2.5. Statistical Analysis

Statistical tests were performed with a library of statistical software tools (R language;
version 3.6.1, The R Foundation, Vienna, Austria). The normality of the scratch resistance
measurement results was tested by the Shapiro–Wilk test. As a result, normality was not
rejected for all data. The comparison between the control group and the other groups
was tested by the multi-group test (Dunnett’s test). The significance level for all statistical
analyses was p < 0.05.

3. Results
3.1. Viscosity of Gelatin

The viscosity of the 5% gelatin solution was 3.5 mPa·s, and this increased to 15.1 and
184.2 mPa·s with increasing gelatin concentration to 10 and 20%, respectively, as shown in
Figure 1. The addition of 100 mmol/L CaCl2 and 50 µmol/L MA into 10% gelatin slightly
increased the viscosity to 16.6 mPa·s.
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3.2. The Surface Characteristics

Figure 2 shows the surface and cross-sectional SEM images of Ti–6Al–4V samples
subjected to Ca–heat, and subsequent DC treatment without and with the additives. After
the Ca–heat treatment, a nano-structured three-dimensional network surface layer with
1.7 µm thickness was produced on the alloy substrate. This layer was composed of cd–CT,
rutile and anatase as reported in our previous study [17].
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Figure 2. Surface and cross-sectional SEM images of Ca-heat treated Ti–6Al–4V alloy subjected to dip
coating with various additives and subsequent thermal cross-link treatment.

When the treated sample was dipped in 5% gelatin solution, only slight modification
with the gelatin was observed. In contrast, the surface morphology became smooth due
to the complete surface coverage by the gelatin when the metal sample was dipped in
10% gelatin (see CT10G). Cross-sectional observation of CT10G revealed that the gelatin
permeated through the nano-structured network to form an inorganic–organic composite
layer approximately 2 µm in thickness. The thickness of the gelatin layer increased to
about 25 µm by increasing the gelatin concentration to 20%, accompanied by a deposition
of a single and thick gelatin layer on the inorganic–organic composite. The additives of
100 mmol/L CaCl2 and 50 µmol/L MA did not apparently affect the thickness of the 10%
gelatin coating. The surface and cross-sectional morphologies were maintained even after
the TCL treatment.

Table 2 shows the chemical composition of the sample surfaces. The amounts of 2.9%
Ca and 23.9% Ti were detected on the sample CT, and these values decreased with the
DC treatment using 5–20% gelatin solution: the higher the gelatin concentrations, the
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lower the Ca and Ti amounts. In contrast, the amount of carbon increased with increasing
gelatin concentration. These results are consistent with the SEM results, in which a thicker
gelation layer was observed on the DC sample using higher concentration of gelatin. Some
amounts of Ca and/or P attributed to the additives were detected on the DC samples when
the CaCl2 and/or (NH4)2HPO4 were added in the gelatin solution (see the samples of
“CT10G + MA + Ca”, “CT10G + MA + P” and “CT10G + MA + Ca and P”). The surface
chemical composition of CT10G + MA + Ca was maintained even after TCL treatment for
72 h.

Table 2. EDX results on the Ti–6Al–4V alloy surfaces treated with Ca–heat followed by gelatin coating
and thermal crosslinking.

Sample
Element/at.%

C O Ti Al V Ca P Na Cl

Untreated 5.4 ± 1.2 0.0 ± 0.0 80.9 ± 0.9 9.4 ± 0.1 4.3 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
CT 7.4 ± 0.5 64.4 ± 0.4 23.9 ± 2.9 0.6 ± 0.1 0.8 ± 0.1 2.9 ± 0.2 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

CT5G 27.9 ± 1.7 53.5 ± 0.9 15.7 ± 0.6 0.4 ± 0.0 0.4 ± 0.1 2.0 ± 0.1 0.0 ± 0.0 0.2 ± 0.0 0.0 ± 0.0
CT10G 61.3 ± 2.9 35.4 ± 1.6 2.3 ± 1.1 0.0 ± 0.0 0.1 ± 0.0 0.5 ± 0.2 0.0 ± 0.0 0.3 ± 0.0 0.2 ± 0.0
CT20G 63.9 ± 1.0 35.6 ± 1.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.1 0.1 ± 0.0

CT10G + MA + Ca 64.6 ± 0.3 32.1 ± 0.4 0.1 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.8 ± 0.1 0.0 ± 0.0 0.3 ± 0.0 2.0 ± 0.1
CT10G + MA + P 66.7 ± 0.2 32.3 ± 0.3 0.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.0 0.1 ± 0.0 0.2 ± 0.0

CT10G + MA + Ca and P 63.1 ± 3.8 32.6 ± 1.7 0.4 ± 0.8 0.0 ± 0.0 0.0 ± 0.0 0.4 ± 0.6 0.4 ± 0.5 0.4 ± 0.1 2.5 ± 0.6
CT10G + MA + Ca + 72TCL 65.4 ± 0.1 30.8 ± 0.2 0.2 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 1.0 ± 0.0 0.0 ± 0.0 0.3 ± 0.0 2.4 ± 0.1

The TF-XRD profiles in Figure 3 show that the peaks of cd–CT and rutile were detected
on the sample CT, and these remained after DC treatment using 5% gelatin solution.
In contrast, their intensities decreased with increasing gelatin concentration due to the
development of the gelatin layer. Although the sole addition of CaCl2 or (NH4)2HPO4
into the MA-containing gelatin solution did not apparently change the profiles of CT10G,
the addition of both CaCl2 and (NH4)2HPO4 generated large peaks attributed to brushite,
indicating precipitation of brushite particles in the gelatin solution. The profile of the
sample CT10G + MA + Ca was not apparently changed even after the TCL treatment for
72 h.
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Critical scratch loads of the samples measured by scratch tester are summarized in
Table 3. The critical scratch load was 42.6 mN for the CT sample, and this value increased
to 47.2 and 54.0 mN for the CT5G and CT10G samples, respectively. Statistically significant
differences were observed between CT and CT10G (p < 0.001). Similar values were observed
on the 10% DC-treated samples with the additives and subsequent TCL treatment, in which
statistically significant differences (p < 0.001) were detected on all the samples except
CT10G + MA + Ca (p = 0.092). For the comparison, the critical scratch load on the 10% DC-
treated alloy without cd–CT layer was measured, which was as low as 4.1 mN (p < 0.001).

Table 3. Critical scratch loads of the Ti–6Al–4V treated with Ca–heat followed by gelatin coating and
thermal crosslinking.

Sample. Critical Scratch Load/mN Statistically Significant
Difference

CT 42.6 ± 3.3 -
CT5G 47.2 ± 6.6 (p = 0.3428)

CT10G 54.0 ± 4.6 † (p < 0.001)
CT10G + MA + Ca 49.0 ± 2.5 (p = 0.092)
CT10G + MA + P 59.4 ± 4.4 † (p < 0.001)

CT10G + MA + Ca + P 54.6 ± 4.0 † (p < 0.001)
CT10G + MA + Ca + 72TCL 55.0 ± 3.7 † (p < 0.001)

10G * 4.1 ± 0.3 † (p < 0.001)
* 10% gelatin was dip-coated without Ca-heat treatment. † Statistical significant difference toward CT (p < 0.05).

3.3. Apatite Formation

Figure 4 shows the SEM images of the treated samples after being soaked in SBF for
7 days. Apatite particles fully deposited on the CT and CT5G samples, while they partially
deposited on the CT10G and CT20G samples. When the CaCl2 or (NH4)2HPO4 was solely
added into the 10% gelatin solution, apatite formation increased to be fully deposited
on the sample surfaces (CT10G + MA + Ca, CT10G + MA + P). In contrast, scarce and
inhomogeneous apatite formation was observed when both CaCl2 and (NH4)2HPO4 were
added into the gelatin solution (CT10G + MA + Ca and P).
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CT10G + MA + Ca + P showed the smallest peak intensity.



Coatings 2022, 12, 139 8 of 13

Coatings 2022, 12, x FOR PEER REVIEW 9 of 14 
 

 

the sample surfaces (CT10G + MA + Ca, CT10G + MA + P). In contrast, scarce and inho-
mogeneous apatite formation was observed when both CaCl2 and (NH4)2HPO4 were 
added into the gelatin solution (CT10G + MA + Ca and P). 

 
Figure 4. SEM images of surfaces of Ca–heat-treated Ti–6Al–4V alloy soaked in SBF for 7 days fol-
lowing dip coat treatment with various additives. 

Figure 5 shows XRD profiles of these samples. The peaks at around 26 and 32 degrees 
in 2θ that are attributed to hydroxyapatite were observed on all the samples, while CT10G 
+ MA + Ca + P showed the smallest peak intensity. 

 
Figure 5. XRD profiles of surfaces of Ca–heat-treated Ti–6Al–4V alloy soaked in SBF for 7 days fol-
lowing dip coat treatment with various additives. 

When the 10%-DC samples with the additives of Ca or P were subjected to TCL treat-
ment, the former maintained its apatite formation even after 72 h of TCL treatment (Figure 
6). On the contrary, the latter lost its apatite formation within 3 h of TCL treatment. 

Figure 5. XRD profiles of surfaces of Ca–heat-treated Ti–6Al–4V alloy soaked in SBF for 7 days
following dip coat treatment with various additives.

When the 10%-DC samples with the additives of Ca or P were subjected to TCL
treatment, the former maintained its apatite formation even after 72 h of TCL treatment
(Figure 6). On the contrary, the latter lost its apatite formation within 3 h of TCL treatment.
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3.4. Gelatin Dissolution

Gelatin dissolution of the sample CT10G + MA + Ca with or without TCL treatment
for the periods of 3–72 h was examined by measuring the Ca amount in PBS after the
determined soaking period. The released MA concentration was calculated from the disso-
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lution rate under the assumption that Ca is homogeneously distributed in gelatin. It can be
seen in Figure 7 that Ca ions were rapidly released within 6 h and reached a stable value
after 6 h for CT10G + MA + Ca, suggesting that the gelatin almost completely dissolved
within 6 h. The initial gelatin dissolution rate decreased with increasing the periods of
TCL treatment up to 72 h, indicating that the TCL treatment effectively suppressed gelatin
dissolution. The total amount of MA released into PBS after 7 days was calculated to be
0.13 and 0.10 µmol/L for CT10G + MA + Ca and CT10G + MA + Ca + 72TCL, respectively.
When the sample surfaces after being soaked in PBS for 7 days were observed under SEM,
it was found that some amount of gelatin remained on the sample treated with TCL for 72 h,
while almost complete dissolution of gelatin was observed on other samples (Figure 8). The
cd–CT layer with nano-scaled network morphology remained even after the dissolution of
gelatin for all of the samples.
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4. Discussion

A three-dimensional network structure composed of the bioactive cd–CT was initially
produced on Ti–6Al–4V alloy by the Ca–heat treatment. It was shown that the cd–CT layer
is hydrophilic and has superior scratch resistance, chemical durability, abundant Ti–OH
groups, and reliable apatite-formation capability for inducing bone-bonding [7,17–19]. The
remarkable bone-bonding capacity of the cd–CT was reported in our previous reports, in
which Ti and Ti–Zr–Nb–Ta system alloys such as Ti-15Zr–4Nb–4Ta exhibited significantly
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higher critical detaching failure load and bone contact area than untreated Ti even in
an early period of 4 weeks after implantation [19]. When the cd–CT was formed on the
Ti–6Al–4V pedicle screw by the Ca–heat treatment, it exhibited higher extraction torque
compared with the untreated screw [7]. It was also demonstrated that many bone fragments
remained on the treated metals in both cases [18], indicating that fracture occurred not
at the bone–implant interface but in the bone itself. Nevertheless, osteoinductivity and
osteogenesis, in addition to osteoconductivity, are also desired in order to achieve further
reliable bone regeneration, which are usually induced by functional organic materials
such as cytokines, proteins and drugs [36]. In this study, the bioactive cd–CT layer was
dipped into the medical-grade gelatin solution including MA to form an inorganic–organic
composite releasing a bisphosphonate drug for the treatment of osteoporosis bone.

Generally, it is challenging to achieve high adhesion between the metal substrate
and polymer coatings due to large differences in surface energy between the metal and
polymer [37]. In the present study, the gelatin easily penetrated into the 3D network
structure due to the hydrophilic nature of the cd–CT. Its coating thickness increased with
the increase in gelatin concentration as a result of the increased viscosity of the gelatin
solution (Figure 1). When the 10% gelatin was used, the thickness of the gelatin coating
became comparative to that of the cd–CT layer (Figure 2), which seems to be suitable
for practical use. Therefore, we determined the 10% gelatin, and thus the corresponding
viscosity of 15.1 mPa·s, as an optimized condition. It was also confirmed that the thickness
of the coated gelatin as well as the viscosity of the gelatin solution was almost not affected
by the additives such as MA, CaCl2 and (NH4)2HPO4 (Figures 1 and 2). Thus, the produced
inorganic–organic composite layer exhibits a high scratch resistance of about 50 mN owing
to an interlocking effect between the 3D network frames of cd–CT and gelatin matrix.

When the gelatin-coated alloy with the cd–CT layer was soaked in SBF, its apatite
formation decreased with an increasing gelatin concentration (Figure 4). Since the apatite
formation on the Ti and its alloys with cd–CT was attributed to the release of Ca2+ ions
from the cd–CT and abundant Ti–OH groups [17,38,39], the decrease in apatite formation
on the gelatin-coated alloys was probably due to the suppression of Ca2+ ion release and
the hiding of Ti–OH groups by the coated gelatin. When the CaCl2 or (NH4)2HPO4 as well
as MA were solely added to the gelatin, the coated alloys formed apatite fully on their
surfaces. The increased apatite formation might be due to the Ca2+ or HPO4

2− ions that
were released from the dissolved gelatin in SBF. Interestingly, scarce and inhomogeneous
precipitation of apatite was observed on the DC-treated alloy with the additives of both
CaCl2 and (NH4)2HPO4. This may be caused by rapid calcium phosphate precipitation
in the gelation solution before the soaking in SBF. Indeed, brushite peaks were detected
on the sample surface by XRD (Figure 3). It is seen in Figure 6 that the additives of
CaCl2 were also effective in inducing apatite formation even for the TCL-treated alloys
while (NH4)2HPO4 was not. This might be because the rate of gelatin dissolution was
suppressed by the TCL treatment, suggesting that calcium ions are more effective for apatite
formation than phosphate ions by effectively increasing the ionic activity product of apatite,
Ca10(PO)4(OH)2, than phosphate ions.

When the gelatin-coated alloy without TCL treatment was soaked in PBS, its gelatin
layer rapidly dissolved within 6 h. It has been reported that thermal and chemical crosslink-
ing can enhance the physical durability of gelatin [34,40]. In the present study, the thermal
crosslinking method developed by Tsujimoto et al. was adopted to achieve slow dissolution
of gelatin. It can be seen in Figure 7 that the dissolution rate was significantly suppressed by
TCL treatment for 72 h. The estimated amount of MA released into PBS during the 7 days
from the treated alloy was 0.10 µmol/L, which is effective for suppressing the activity of
osteoclast cells [41]. Although the gelatin dissolved in a relatively short period of time
in the aqueous solution, the cd–CT layer is chemically stable, as shown in Figure 8. It is
expected that the treated layer with the composite of MA-containing gelatin and the cd–CT
layer slowly releases MA to improve the bone mass of surrounding tissue and bonds to
bone because of its apatite formation. Thus, the obtained bone-bonding is expected to



Coatings 2022, 12, 139 11 of 13

be stable even after the dissolution of the gelatin layer, since the cd–CT layer is stable
even under a simulated body environment. Further in vivo studies using animal model of
osteoporosis are needed to prove the usefulness of the developed material for therapeutic
treatment for osteoporosis bone.

5. Conclusions

The novel composite layer of minodronate-containing gelatin and calcium-deficient
calcium titanate was produced on Ti–6Al–4V alloy. The treated alloy exhibited high scratch
resistance, apatite formation capacity and slow release of minodronate, effective for medical
treatment in osteoporosis bone, and thus should be useful for orthopedic implants.
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