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Abstract: Perovskite solar cells (PSCs) have experienced rapid development in the past period of
time, and a record efficiency of up to 25.7% has been yielded. At present, the PSCs with the planar
structure are the most prevailing, which not only can significantly simplify the device fabrication
process but also reduce the processing temperature. Particularly, the electron transport layer (ETL)
plays a critical role in boosting the device performance of planar PSCs. ZnO is a promising candidate
as the ETL owing to its high transparency, suitable energy band structure, and high electron mobility.
Moreover, ZnO is easy to be processed at a low cost and low energy. This review mainly summarized
the recent advances in the application and strategic optimization of ZnO ETL for planar PSCs. The
basic properties of ZnO, including energy levels, mobility, processability, trap defects, as well as
chemical stability, are clearly clarified. The most available deposition means for preparing ZnO ETLs
were also described briefly. Finally, we presented the challenges and guidelines for utilizing ZnO as
ETL on efficient planar PSCs.

Keywords: ZnO; electron transport layer; perovskite solar cell; planar structure

1. Introduction

Over the past decades, perovskite solar cells (PSCs), which employ organic-inorganic
metal halide hybrid perovskites as light-harvesting materials, have received extensive
attention due to their low production cost, solution processing, and good photoelectric char-
acteristics [1–5]. Since the perovskite materials as a photosensitizer were first introduced
into dye-sensitized solar cells (DSSCs) and achieved a power conversion efficiency (PCE)
of 3.8% in 2009 [6], the PSCs have achieved significant breakthroughs and rapid evolution.
Recent technologies can lead to a certified PCE of 25.7%, including device structure and
perovskite film quality optimization, interface engineering, and additive engineering [7–10],
making PSCs a leading candidate for next-generation photovoltaic technology.

In 2012, the standard solid-state PSCs were assembled for the first time by introduc-
ing a solid hole transport material of spiro-OMeTAD to replace liquid electrolytes [11,12].
Since then, the mesoporous structure soon became the most popular geometry to construct
PSCs [13,14], as shown in Figure 1a. However, a complicated fabrication process, which
involves the deposition of a compact layer followed by a mesoporous TiO2 layer, is needed
for this structure [15]. Meanwhile, a sintering process at a high temperature (usually over
500 ◦C) is required to remove the organic material in the TiO2 paste and enhance the crys-
tallinity of the resulting TiO2 film [16]. These tedious procedures increase the cost of device
fabrication and are incompatible with the production of flexible PSCs. In order to overcome
the above issues, the planar PSCs were then developed. The long carrier diffusion length
and carrier lifetime of commonly used perovskite materials guarantee the effective trans-
port of carriers in this type of solar cell [17,18]. The typical planar PSCs have two different
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structures, including the regular n-i-p and inverted p-i-n structures (Figure 1b,c). As for pla-
nar PSCs, developing high-quality electron transport layers (ETLs) is crucial to realize high
device performance. The ETLs not only can promote the extraction and transport of photo-
generated electrons but also block holes to prevent unfavorable charge recombination [4,16].
Currently, many inorganic semiconductors, especially inorganic metal oxides (MOs) such
as TiO2, ZnO, and SnO2, are widely adopted as ETLs in PSCs with planar structure, which
is attributed to their low-cost, superb versatility, low-temperature processability, excellent
electronic properties, and superior device performance [19–22]. Among them, ZnO is
one of the most promising choices owing to its high transparency, high electron mobility,
and suitable energy band structure, which can potentially facilitate electron transfer and
reduce undesired recombination loss [23,24]. Moreover, ZnO is easy to crystallize, and
its intrinsic properties of thin layers can be adjusted simply by doping and manipulating
structural composition [25–27]. The compact ZnO used as ETL for planar PSCs cannot
only simplify the device fabrication process [28,29] but is also easier to prepare by diverse
deposition technologies [27,29–33]. On the other hand, a lower annealing temperature
is required for most of the ZnO preparation processes in planar PSCs (usually ≤200 ◦C),
suggesting that it can be produced at a low cost and is suitable for flexible devices [29–34].
However, the high quality of ZnO films should be ensured to achieve more efficient charge
transport in planar PSCs. Since the initial introduction of ZnO as ETL into planar PSCs with
a PCE of 5.5% [29], continuous enthusiasm and efforts have been devoted to promoting the
application of ZnO ETL in PSCs. The performance of planar PSCs based on the compact
ZnO ETL has made great progress in recent years; the highest PCE has been boosted to
over 21% [35,36]. Although there have been some reviews on the advancement of metal
oxide ETLs in PSCs [15,16,37–39], few of them focused on the compact ZnO ETL for planar
PSCs systematically.
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structure (n-i-p), and (c) inverted planar structure (p-i-n).

In this review, we first discussed the optical and electronic properties of ZnO, including
energy level, mobility, and refractive index. The limitations of ZnO ETL, as well as the
effect of optimization strategies, such as doping and surface modification on ZnO, are
also covered in our discussion. In addition, the most available fabrication methods of
compact ZnO layer were briefly summarized. The recent advances in the application and
optimization of ZnO as ETL in planar PSCs are also reviewed. An overall diagram of
this review is depicted in Figure 2. Finally, we close our discussion by pointing out the
challenges and guidelines for further optimization and design of planar PSCs based on
ZnO ETLs.
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2. ZnO Electron Transport Layer
2.1. Basic Properties of ZnO

In PSCs, the performance of the device heavily relies on the properties of ETLs,
especially their optoelectronic property, morphology, and intrinsic defects. As it is adjacent
to the perovskite layer, the chemical stability of ETL also has a significant effect on the
device’s performance.

2.1.1. Optoelectronic Property

ZnO is an inorganic semiconductor with a direct bandgap, and it has a favorable
energy level structure for PSCs. The conduction band minimum (CBM) of ZnO locates
around −4.17 eV, and its bandgap is 3.2 Ev [40,41]. Additionally, it has high transmit-
tance in the range of visible light wavelength as well as a refractive index of about 2.1.
The electron mobility of ZnO is 205–300 cm2·V·s−1, and its electron diffusion coefficient
is 1.7 × 10−4 cm2·s−1, which is much higher than those of TiO2 [24,42]. Additionally,
ZnO is easy to crystallize and owns good structural tailorability on the nanoscale [34].
A broad range of ZnO-based nanostructures, such as nanoparticles, nanorods, nanowires,
nanosheets, nanotubes, and nanobelts, can be fabricated easily at low temperatures [43–48].

2.1.2. Defects

Similar to other semiconductor materials in industrial applications, the intrinsic defects
in ZnO have a significant effect on its optical and electrical properties and can evolve into
the centers of charge recombination with high density. Generally, there are six kinds of point
defects in ZnO, which are oxygen vacancies (VO), Zn vacancies (VZn), oxygen interstitials
(Oi), zinc interstitial (Zni), oxygen antisites (OZn), and zinc antisites (ZnO) [34]. According to
the theoretical calculation and experimental results, VO usually shows the lowest formation
energy and hence has the largest concentration in ZnO, and the formation energy of Zni is
also relatively low, and its concentration is high [49,50]. The surface state of ZnO film is
another important factor affecting the PSC performance, which can provide recombination
pathways by forming a large number of dangling bonds and defects [34]. In addition to
being mentioned above, there may be a large lattice mismatch at the interface between ZnO
and perovskite when perovskite layers are deposited on the surface of ZnO [51].
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2.1.3. Stability

The thermal instability of perovskite on the ZnO surface is one of the crucial problems
which has limited the usefulness of ZnO in PSCs. The instability is mainly because the
surface of ZnO exhibits basic nature, and the acid-base reaction can happen once perovskite
contacts with ZnO [16,51]. Additionally, the hydroxyl groups and chemical residues on
the ZnO surface stemming from fabrication processes can accelerate the decomposition of
perovskite [48,51], which is another important reason for the instability of devices. Further-
more, ZnO exhibits high photocatalysis activity under ultraviolet (UV) light irradiation,
affecting the photostability of PSC devices [34], and the surface hydroxyl groups and
remaining chemicals can also cause an aggravation of the photochemical reactions [52].

2.1.4. Regulation of Basic Properties

The problems, such as defect states of ZnO and poor chemical compatibility between
ZnO and perovskite, will inevitably affect the device performance. Additionally, the elec-
tron mobility and energy level alignment also need to be further improved in the practical
application of PSCs [4]. Thus, optimizing ZnO ETL is necessary for high-performance PSCs.
Doping is a significantly effective manner to regulate the optoelectronic and physicochemi-
cal characteristics of ZnO [16]. This approach not only can passivate defects and reduce
the defect state density at the ZnO surface but contributes to a better-aligned energy band
between ZnO and perovskite layers owing to the shifted CB of ZnO [4,16]. Moreover, the
mobility of ZnO can be enhanced by doping. Therefore, the charge extraction and transport
are facilitated, and charge recombination at the interface is suppressed dramatically. Surface
modification of ZnO is considered an alternative optimization strategy to doping, which
is facile and efficient in tuning the electronic properties and reducing the defect states of
the ZnO surface [4,16]. Furthermore, this method can relieve interfacial interactions and
weaken the proton transfer reaction of ZnO and perovskite; thus, the stability of perovskite
at the interface was remarkably improved.

2.2. Deposition Methods of Compact ZnO ETL

To achieve the highly efficient planar PSCs, the preparation of uniform and compact
ZnO thin films without pinholes is essential. The deposition methods of the ZnO layer are
diverse. In this section, we simply summarized the principal preparation technologies of
ZnO for planar PSCs.

2.2.1. Solution Process

The sol-gel method is one of the most popular methods to deposit the ZnO layer in
solution by thermal decomposition of metal–salt precursors, as shown in Figure 3a. To
prepare ZnO by this method, a soluble Zn salt or its hydrate dissolved in a suitable solvent
is deposited on the substrate by coating [4,34], such as Zn(NO3)2 or Zn(CH3COO)2. After
that, the as-deposited film is converted to ZnO film by thermal treating. Another commonly
employed solution process is the direct synthesis of ZnO nanoparticles (NPs), which
decouples the crystallization of ZnO from the forming process of thin films [51,53–55]. The
resultant dispersion solution of ZnO NPs is used as a stock solution and can be directly
deposited through a variety of coating and printing methods [16]. So far, the solution
process is widely applied in high-performance ZnO-based planar PSCs because of the
simple operation and good crystallinity of films.

2.2.2. Atomic Layer Deposition (ALD)

As one of the major deposition techniques, ALD can control the growth of thin films
finely. Usually, two precursors are used in the ALD process of depositing MO films, one is
the metal source, and the other is the oxygen source (oxidant) [56]. One whole preparation
flow of ZnO is depicted in Figure 3b, which can be divided into the following steps:
(1) exposure of the metal source in the reaction chamber and forms a single molecule film;
(2) the excess metal source and the byproducts are purged; (3) exposure of the oxygen



Coatings 2022, 12, 1981 5 of 19

source; and (4) evacuation of the unreacted oxygen source and byproducts [16,56]. By
means of the ALD method, high-quality ZnO films with precise thickness control can be
produced at low-temperature [4,16]. Nevertheless, this approach is time-consuming and
relatively high-cost [4].

2.2.3. Magnetron Sputtering Deposition

As a vacuum coating technology, magnetron sputtering has also been extensively
employed to produce ZnO compact layers for planar PSCs. During the working process,
a working gas is first injected into a vacuum chamber, and the high energy ion flow can
be formed under the action of an electric field [34]. Then, the ionized particles will impact
a ZnO ceramic target material, and the sputtered material can deposit and form the ZnO
film on a substrate (Figure 3c). The ZnO thin films with high quality can be achieved by
optimizing the parameters, including target purity, work gas pressure, gas flow ratio, and
radio frequency power [57,58].

2.2.4. Electrochemical Deposition (ED) and Electrostatic Spraying

The compact ZnO layers with high uniformity can be synthesized by the ED method,
in which the deposition process is usually performed in a three-electrode cell, and a solution
of Zn salt like Zn(NO3)2 with a certain concentration is used as the deposition bath [59].
This method has the advantages of low-temperature preparation, rapid deposition, and
controllable deposition thickness [4]. Additionally, the preparation of high-quality ZnO can
also be achieved by the electrostatic spraying method. The ordinary course is to spray and
deposit the precursor solution of Zn salt onto a substrate under high voltage [34], as shown
in Figure 3d. Noteworthily, with this approach, the quality of ZnO layers is significantly
dependent on the working voltage, substrate temperature, flow rate of precursor solution
and deposition time, etc. [27].
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3. Planar PSCs with ZnO ETL

The ZnO films prepared from various deposition methods have become the main
candidate of ETL in planar PSCs. The solution process is one of the leading methods
to prepare ZnO ETL, including sol-gel ZnO ETL and ZnO NP ETL. Additionally, other
deposition methods such as ALD, magnetron sputtering, ED, and electrostatic spraying are
also good choices for achieving efficient PSCs. The structure and performance of different
ZnO-based planar PSCs are compared and summarized in Table 1.

3.1. PSCs Based on Sol-Gel ZnO ETL

The solution process is the most reported deposition technology of ZnO ETL in planar
PSCs, among which the sol-gel method has been widely concerned. In 2014, Lee et al.,
demonstrated efficient planar PSCs with a sol-gel processed ZnO as ETL, achieving a device
efficiency of 8.37% [60]. In their study, a thin layer of organic molecules, [6, 6]-phenyl-C61-
butyric acid methyl ester (PCBM) was further introduced on the surface of ZnO to reduce
the nonradiative recombination induced by traps at the interface of ZnO as well as in the
bulk of perovskite layer, thus improving the PCE to 12.2%. Manspeaker et al., obtained
MAPbI3 perovskite on a sol-gel processed ZnO ETL by utilizing a sequential deposition
method [61]. They studied the decomposition mechanism of perovskite and revealed the
effect of solvent in the perovskite films during annealing. A restricted volume solvent
annealing (RVSA) process has been developed to deposit perovskite films on ZnO, resulting
in the generation of reproducible PSCs with an efficiency of 13.7%. Zhao et al., also reported
the ZnO films achieved by the sol-gel method that was applied as ETLs in planar PSCs,
and the device performance of PSCs based on ZnO ETLs made through sol-gel (SG) and
hydrolysis-condensation (HC) manners were compared systematically [53]. They found
that the HC-ZnO film exhibited a relatively flat surface and higher conductivity; thereby,
the PSCs could yield a higher PCE of 12.9%, while a PCE of 10.9% was delivered for the
PSCs based on SG-ZnO ETL. In 2017, Zhou et al., reported an aqueous solution-processed
route to produce the ZnO ETLs for planar PSCs at low temperatures. An ammine-hydroxo
zinc complex solution [62], [Zn(NH3)x](OH)2, was spin-coated on the substrate as the
precursor. By utilizing this method, the thermal annealing temperature of ZnO could be
reduced to 150 ◦C, and the prepared ZnO thin films have high transparency and uniformity.
Consequently, the PSC with a conventional n-i-p structure showed an efficiency of 10.6%
with a high open-circuit voltage of 1.07 V. In addition, by changing the traditional sol-gel
method, a simple, effective, scalable approach of combustion synthesis was developed to
prepare ZnO ETLs at low temperature for planar PSCs [63], which was comprised of the
fuel of acetylacetone and the oxidizer source of Zn(NO3)2, respectively. As a comparison,
two traditional sol-gel processed ZnO films were also prepared in parallel. By this combus-
tion synthesis process, compact and uniform ZnO films with high crystallinity and fewer
impurities were produced, and the ZnO surface can be self-passivated. The resultant PSC
devices yielded impressive PCEs close to 20% as well as high stability.

3.2. PSCs Based on ZnO NP ETL

The direct synthesis of ZnO NPs is the most extensively used solution process. The
ZnO NP films as the ETL of PSCs were originally studied and realized in 2014 by the
Kelly group [30]. They synthesized ZnO NPs by the hydrolysis of Zn(C2H3O2)·2H2O
dissolved in methanol, and the NPs could be well dispersed in the mixed solvents of
butanol and chloroform without extra surfactants or binders. After that, the compact ZnO
NP layers were obtained by spin-coating and used as the ETLs for planar PSCs. The ZnO
film was obviously thinner and required no calcination or sintering step. By optimizing
the ZnO thickness and perovskite crystal growth, the low-temperature processed PSC
devices yielded a promising efficiency of 15.7% and 10.2% on glass and plastic substrates,
respectively. Then, they further investigated the effect of CH3NH3PbI3 film thickness
and morphology on device efficiency of planar ZnO PSCs [64] and demonstrated that the
thermal evaporation of PbI2 films was a highly reproducible method to fabricate planar
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PSCs with very precise control over the perovskite thickness. Based on the ZnO NP ETLs,
Hwang et al., fabricated the fully slot-die-coated PSCs using a 3D printed slot-die coater [65].
Consequently, the optimal PCE of 11.96% was produced for the planar PSCs processed
at a low temperature, and the results demonstrated the possibility of roll-to-roll mass
production of PSCs with ZnO ETL. Zhou et al., developed the ZnO(NP)/CH3NH3PbI3/C
planar PSCs without organic hole-transporting layers (HTLs) and metal electrodes at low
temperatures [66]. The device architecture and procedure were simple, and the flexible
PSCs based on ITO/PEN substrate performed well after 1000 times of bending. In 2016,
Song et al., employed commercial ZnO NPs to prepare ZnO thin films used as ETLs for
low-temperature planar PSCs [67]. To address the interfacial thermally instability problem
between ZnO and perovskite, and further boost the photovoltaic performance of the
device, they developed FAPbI3 as the ZnO-based light absorber and a modified two-step
deposition technique to grow the perovskite layer. By optimizing the preparation process of
FAPbI3, the fabricated PSCs yielded the best-performing PCE of up to 16.1%, and the heat
resistance of the perovskite layer on ZnO was greatly promoted compared to MA-based
perovskite. Subsequently, by utilizing the same ZnO NP ETL, Song et al., confirmed that
the triple cation perovskite prepared by a one-step anti-solvent method could be a stable
active-layer material for efficient PSCs [68]. An optimum PCE of 18.9% was achieved
for the PSC devices with excellent aging resistance and light stability (Figure 4a,b). In
2018, an ultrasonic-assisted method was shown to obtain a ZnO NP solution with high
transparency, and the more compact and pinhole-free ZnO NP films were successfully
prepared [69]. Meanwhile, a room-temperature aging process of the ZnO layer was carried
out to enhance the interfacial stability of ZnO/MAPbI3 (Figure 4c). Upon optimization
of both ZnO and perovskite films, the unencapsulated PSC devices showed high stability
even after 45 days of exposure to the air. In addition to regular structure, the ZnO NPs
also can be applied in inverted p-i-n PSCs. Bai et al., demonstrated the improved cathode
interface using bilayer-structured ETLs of PCBM/ZnO [70], leading to the efficient, stable,
and reproducible planar CH3NH3PbI3−xClx PSCs with an impressive PCE of up to 15.9%,
and the PSC with the large-area of 1 cm2 delivered a PCE of 12.3%. Further, a short-time
air-aging step has proven to be crucial to promote the performance of PSC devices based
on the PCBM/ZnO bilayer [71]. Notably, when implanting ZnO NP ETL in the inverted
architecture, the planar PSCs were successfully fabricated with n-type ZnO and p-type
NiOx as NP ETL and NP HTL, respectively, as shown in Figure 4d–e [72], Compared with
the PSCs made with organic layers, the all-metal-oxide charge transport layers enabled the
PSC devices had significantly enhanced aging resistance under the ambient conditions, and
the maximum PCE of 16.1% was achieved.
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3.3. PSCs Based on Other ZnO ETLs

In addition to the solution process, other deposition methods, such as ALD, magnetron
sputtering, ED, and electrostatic spraying, have also received extensive attention in ZnO
preparation. Lee et al., prepared compact ZnO films as the ETLs of planar PSCs using the
ALD technique at a low temperature of 80 ◦C [73]. Comprehensive studies were performed
to understand the effect of the thickness of the ZnO layer on the PSC performance, and the
highest PCE of the device could be obtained at a ZnO film thickness of 30 nm. Using this
same method, Dong et al., fabricated the planar PSCs by depositing the ZnO films at 70 ◦C,
producing the best device efficiency of 13.1% [74]. It was observed that the compact ZnO
film prepared by ALD could promote the formation of CH3NH3PbI3 at room temperature
when the perovskite precursor contained chloridion, which was attributed to the reaction
between ALD-ZnO and CH3NH3Cl. The ALD deposition is also suitable for PSCs with the
inverted p-i-n structure. In 2015, Chang et al., adopted a low-temperature ALD technology to
grow high-quality ZnO film applied as ETL for inverted planar PSCs [32]. The resulting PSC
device revealed a remarkable PCE reaching 16.5% with high reproducibility, which is superior
to that of the PSC with ZnO NP ETL (10.8%). Furthermore, the applicability of ALD-ZnO
ETL in semitransparent PSCs was also demonstrated by employing Ag nanowires as the top
electrode (Figure 5a), and a record-high PCE of 10.8% was achieved. Meanwhile, the Al2O3
films prepared by the ALD process were incorporated to serve as the encapsulation layer, and
thus the ambient stability of the device was significantly improved.

Magnetron sputtering is a simple and reliable technique. In 2014, Liang et al., reported
the magnetron sputtered ZnO film used as the ETL in planar PSCs [75]. The device
performance was observed to be insensitive to the thickness of ZnO ETL, which was
ascribed to the high electric conductivity of ZnO. As a result, the sputtered ZnO gave a PCE
of 13.4% for PSC on a rigid substrate, and the flexible PSC on PET substrates showed a PCE
of 8.03%. Tseng et al., investigated the effect of the atmosphere in a sputtering chamber
on the formation quality of ZnO [33]. The results demonstrated that the properties, such
as the conductivity and band structure of ZnO films, could be tuned by optimizing the
ratio of working gases in the process of magnetron sputtering (Figure 5b,c). Finally, an
efficiency of up to 15.9% was realized for the regular PSCs when the ZnO ETL was produced
under the working gas of pure Ar (Figure 5d), indicating that magnetron sputtering
was a splendid technique to fabricate a ZnO layer with controllable properties in planar
PSCs. The sputtered ZnO is also a feasible choice in the inverted PSCs. Lai et al., have
demonstrated the performance of inverted structured PSCs with a sputtered ZnO ETL [76].
In their research, in order to prevent sputtering damage on perovskite, a C60 interlayer
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was introduced between perovskite and ZnO for protection. The resulting optimized PSC
exhibited better performance than that based on C60/BCP, as shown in Figure 5e,f.

In 2013, the ED method was employed by Kumar et al., to form a compact ZnO film as
ETL [29], and the low-temperature, solution-processed, and flexible PSCs were successfully
fabricated by growing ZnO nanorods by chemical bath deposition on electrodeposited ZnO.
In addition, Zhang et al., utilized the ED technology for the deposition of the ZnO layer
at low temperatures and successfully applied it as ETL in planar PSCs [59]. The effect of
the chemical nature and structure of ZnO and TiO2 ETLs on the formation of CH3NH3PbI3
stemming from two different techniques was investigated. The optimum PCE of 15% was
yielded for the PSC with an electrodeposited ZnO ETL, a planar architecture, and a one-step
method prepared perovskite. Using the electrospraying method, Mahmood et al., first
deposited ZnO and Al-doped ZnO films and studied their application as ETLs for PSCs
in 2014 [27]. The quality of ETL films was reported to be controlled by various process
parameters, such as the applied voltage, substrate temperature, flow rate, and deposition
time. Finally, the Al-doped ZnO thin film fabricated under the optimal parameter conditions
delivered a higher PCE of 12.0% for the PSC.
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(ZnO−Ar), 20% O2 mixture (ZnO−20%) [33], (c) the diagram of energy band for ZnO ETL and per-
ovskite [33], and (d) the J−V characteristics of PSCs based on different ZnO ETLs [33] (e) Device architec-
ture of inverted PSC with sputtered ZnO as ETL, and (f) the J−V curves of PSCs based on different ETLs
for comparison. Reproduced with permission from Ref. [76]. Copyright 2015, AIP Publishing.
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Table 1. The photovoltaic parameters of planar PSCs based on various ZnO ETLs. The superscript
“a” stands for the average value.

Deposition
Method Device Structure Voc

(V) Jsc (mAcm−2) FF (%) PCE (%) Ref.

Planar Sol-gel ITO/ZnO/MAPbI3/PTB7-Th/MoO3/Ag 0.86 14.31 68 8.37 [58]
Planar Sol-gel ITO/ZnO/MAPbI3/spiro-OMeTAD/Ag 0.92 20.9 71 13.7 [59]
Planar Sol-gel ITO/ZnO/CH3NH3PbI3−xClx/spiro-OMeTAD/Ag 0.93 22.21 52.4 10.9 [51]
Planar Sol-gel ITO/ZnO/MAPbI3/spiro-OMeTAD/Ag 1.07 16.81 59 10.6 [62]

Planar Sol-gel ITO/ZnO/(Cs0.1FA0.9PbI3)/spiro-OMeTAD/
Au 1.08 24.67 74.49 19.84 [63]

Planar Nanoparticle ITO/ZnO/MAPbI3/spiro-OMeTAD/Ag 1.03 20.4 74.9 15.7 [30]
Planar Nanoparticle PET/ITO/ZnO/MAPbI3/spiro-OMeTAD/Ag 1.03 13.4 73.9 10.2 [30]
Planar Nanoparticle ITO/ZnO/MAPbI3/P3HT/Ag 0.98 20.38 59.9 11.96 [65]
Planar Nanoparticle ZnO/MAPbI3/C 0.54 19.98 54 8.73 [66]
Planar Nanoparticle ITO/ZnO/FAPbI3/spiro-OMeTAD/Ag 1.08 20.9 71.3 16.1 [67]

Planar Nanoparticle ITO/ZnO/Cs6(MA0.17FA0.83)94Pb(I0.83Br0.17)3/
spiro-OMeTAD/Ag 1.11 22.6 75.3 18.9 [68]

Planar Nanoparticle FTO/ZnO/MAPbI3/spiro-OMeTAD/Au 1.038 19.31 71.09 14.25 [69]
Planar Nanoparticle ITO/ZnO/MAPbI3/P3HT/Ag 0.949 18.8 66.1 11.8 [64]

Inverted
Planar Nanoparticle ITO/PEDOT:PSS/MAPbI3−xClx/PCBM/

ZnO/Al 0.97 20.5 80.1 15.9 [70]

Inverted
Planar Nanoparticle ITO/PEDOT:PSS/MAPbIxCl3−x/PCBM/

ZnO/Al 0.98 19.6 74.2 14.2 [71]

Inverted
Planar Nanoparticle ITO/NiOx/MAPbI3/ZnO/Al 1.01 21.0 76.0 16.1 [72]

Planar ALD ITO/ZnO/MAPbI3/spiro-OMeTAD/MoO3/Ag 0.97 a 14.15 a 48 a 6.59 a [73]
Planar ALD FTO/ZnO/MAPbI3/spiro-OMeTAD/Ag 0.97 20.40 66.00 13.10 [74]

Inverted
Planar ALD ITO/PEDOT:PSS/MAPbI3/ZnO/Ag 1.03 20.75 77.03 16.5 [32]

Planar Magnetron
sputtering ITO/ZnO/MAPbI3/spiro-OMeTAD/MoO3/Ag 1.04 22.4 57.4 13.4 [75]

Planar Magnetron
sputtering

PET/ITO/ZnO/MAPbI3/spiro-OMeTAD/
MoO3/Ag 0.87 18.4 49.7 8.03 [75]

Planar Magnetron
sputtering ITO/ZnO/MAPbI3/spiro-OMeTAD/Ag 1.00 21.8 72.6 15.9 [33]

Inverted
Planar

Magnetron
sputtering ITO/PEDOT:PSS/MAPbI3/C60/ZnO/Al 0.91 19.41 62.0 10.93 [76]

Planar ED FTO/ZnO/MAPbI3/spiro-OMeTAD/Au 1.02 16.98 51.11 8.90 [29]
Planar ED FTO/ZnO/MAPbI3/spiro-OMeTAD/Ag 1.08 20.04 69.47 14.99 [59]

Planar Electrostatic
spraying FTO/ZnO/MAPbI3/spiro-OMeTAD/Ag 1.01 a 16.0 a 67.0 a 10.8 a [27]

4. The Optimization of ZnO ETLs for Efficient Planar PSCs

To be desirable ETLs and achieve the PSCs with good photovoltaic performance and
high stability, further optimizations of ZnO ETL are very necessary. At present, doping
and surface modification of ZnO are the two most important approaches to control the
optoelectronic and physicochemical properties, reduce the defects and trap states, and
improve the interface interaction of ZnO ETL. Here, the recent progress on optimizing ZnO
ETL based on doping and surface modification is summarized.

4.1. Doping of ZnO ETL

Elemental doping has been widely used to improve the quality of ZnO ETL. In 2016,
Tseng et al., reported the preparation of high-quality, full-coverage Al-doped ZnO (AZO)
films (~20 nm) on transparent conductive substrates by magnetron sputtering, and used it
as an ETL for the regular planar PSCs [77]. Compared with ZnO films, the AZO showed
higher conductivity, better acid resistance, and a more aligned energy band with MAPbI3,
resulting in improved photovoltaic performance. The higher Voc and FF were achieved
in the best AZO-based PSC with an efficiency of 17.6%, and the MAPbI3 films formed
onto the AZO had higher thermostability compared with those formed onto the ZnO.
Song et al., developed a sol-gel method prepared Mg-doped ZnO (ZMO) used as ETL
in planar PSCs [78]. It was found that the photovoltaic performance of the device was
strongly dependent on the Mg doping amount, and the champion PCE of 16.5% was
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reached for the device with 10% Mg doping. The enhanced PCE originated from the
improved optical properties, favorable energy band, efficient electron extraction, and
inhibited nonradiative carrier recombination at the ZMO/perovskite interface. More
importantly, the CH3NH3PbI3 deposited on 10% ZMO thin films demonstrated better
heat resistance, and the fabricated PSC device showed improved stability stored in an
N2 atmosphere and under illumination. Then, the lithium (Li) doping low-temperature
processed ZnO (L-ZnO) ETL was reported by Mahmud et al., (Figure 6a,b) [79]. After Li
doping, the inherent defects in the ZnO films were effectively passivated, and the Fermi
energy position of L-ZnO was downshifted by 30 meV. The shifted energy level helped
to reduce the electron injection barrier from perovskite to ETL. Consequently, the triple
cation (Rb, MA, FA) PSCs incorporating L-ZnO achieved an increased PCE from 14.1%
to 16.1% compared to the pure ZnO, which benefited from the superior charge transfer,
lowered leakage current, and suppressed nonradiative charge recombination. Azmi et al.,
prepared the alkali-metal-doped ZnO ETL by dipping ZnO films into various solutions
of alkali-metal hydroxide (LiOH, NaOH, and KOH) [80]. The metal doping not only
significantly enhanced the electron mobility but also induced a more favorable energy band.
Additionally, the surface defects of ZnO films were effectively passivated. Particularly, the
deprotonation reaction between perovskite and ZnO was weakened, and the durability of
PSCs under ambient air conditions was dramatically raised. A champion device efficiency
of 19.9% was yielded for the planar PSC fabricated with K-doped ZnO (ZnO-K), whereas
the control device only exhibited a PCE of 16.10%. In addition, similar results could be
obtained by Li or Cs doping that was performed by adding either caesium carbonate or
lithium acetate into the sol-gel ZnO [81].

On the other hand, there were also some functional molecules that were adopted as
dopants of ZnO ETL. Qin et al., reported a new recipe to prepare ZnO by replacing the
generally used ethanolamine with polyethylenimine (PEI) in the precursor solution to
provide an alkaline environment [82], which could reduce the number of hydroxyl groups
on the ZnO surface. With this approach, the thermal decomposition reaction of MA-based
perovskite on the ZnO was considerably relieved, as shown in Figure 6c. Additionally, the
ZnO prepared from the precursors containing PEI (P-ZnO) was beneficial in inducing the
uniform and dense deposition of PCBM on its surface, and block the direct contact between
perovskite and P-ZnO layers, hence further improving the thermal stability of perovskite.
At last, the PSC with the new ETL combination displayed the best device efficiency of 15.38%
(Figure 6d). Recently, Wang et al., employed a strong chelating agent of ethylene diamine
tetraacetic acid (EDTA) to develop the EDTA-complexed ZnO (E-ZnO) as the ETL [83].
Compared to pure ZnO, the E-ZnO exhibited more suitable energy levels with perovskite
(Figure 6e,f) and improved electron extraction and transport characteristics. Additionally,
the E-ZnO chelated with organic ligands of EDTA could effectively mitigate the gradual
decomposition of perovskite. Combing the E-ZnO with a new preparation process of
perovskite film requiring neither annealing nor antisolvent, the fabricated PSC achieved
an impressive PCE of 20.39%, and the long-term stability was significantly improved with
retaining 95% of its initial efficiency after 3604 h of exposure in air environment.
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Figure 6. (a) Schematic depicting ZnO lattice structure and interstitial Li doping. In interstitial doping
mechanism, Li+ passivated the interstitial zinc sites or oxygen vacancies. (b) Schematic illustration
of the planar PSC based on the Li−doped ZnO ETL [79] (c) Synthesis steps of E−ZnO and P−ZnO
films, and photographs of CH3NH3PbI3 prepared on the different ETLs after thermal annealing at
150 ◦C for 10 min. (d) J−V curves of the planar PSCs based on P−ZnO/PCBM ETL and the structure
of the PSC device [82] (e) Energy level diagram of the PSC based on ZnO and E−ZnO ETLs, and
(f) the electron mobility of ETLs measured by the SCLC method [83].

4.2. Surface Modification of ZnO ETL

Surface modification is another reliable alternative to the doping strategy, mainly serving
the purpose of regulating the surface and interface properties of ZnO. So far, non-assembled
organic molecules, self-assembled monolayers (SAMs), and inorganic coatings have been
broadly employed to modify ZnO ETL for the achievement of high-performance PSCs.

Many non-assembled organic molecules have demonstrated the potential to treat ZnO
films for better performance. Cheng et al., found that the thermal treatment could lead to
the decomposition of perovskite films deposited on the bare ZnO NP ETL [84]. Therefore, a
buffer layer was introduced at the interface of the perovskite and ZnO layers. Notably, the
small molecule PCBM can slow down but cannot completely avoid the interfacial reaction of
perovskite on ZnO, whereas the polymeric molecular layer of PEI can efficiently avoid direct
interaction between ZnO and perovskite. There was no obvious decomposition in perovskite
even after an hour of heat treatment at 100 ◦C, allowing the formation of larger perovskite
crystals upon thermal annealing. The PCE of planar PSCs was dramatically raised from
2.9% to 10.2% after the surface modification with PEI. Recently, based on the consideration
of eliminating the deprotonation ability of ZnO, Liu et al., introduced methyl ammonium
chloride (MACl) on the surface of ZnO NP ETL to improve the surface properties [85]. After
the MACl modification and annealing treatment, ZnO could extract H+ from MA+ and
release the CH3NH2 gas, thus avoiding the further protonation reaction between ZnO and
perovskite. At the same time, Cl would leave on the surface of ZnO and passivate the
interfacial defect states. Consequently, the improved efficiency and strengthened durability
of planar PSC devices were achieved simultaneously. Additionally, Azmi et al., performed
the sulfur passivation on sol-gel ZnO (ZnO-S) ETL by using a simple chemical modification
of 1,2-ethanedithiol (EDT), as shown in Figure 7a [86]. With this surface modification, the
proton-transfer reaction at the interface of ZnO/perovskite was efficiently prevented, the
perovskite growth with larger grain size and higher crystallinity was facilitated, and the
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surface defects leading to carrier recombination loss were well passivated. Compared to the
pristine ZnO, the PCE significantly increased from 16.51% to 19.65% for the low-temperature
planar PSCs based on the ZnO-S ETL, and the unencapsulated device exhibited remarkably
improved long-term stability after 40 days of air storage (Figure 7b).

SAM modification was considered a facile and efficient strategy to passivate surface de-
fects and adjust the charging behavior. As a pioneer, Zou et al., developed 3-aminopropanioc
acid as the self-assembled molecule (C3-SAM) for the modification of sol-gel ZnO [29].
The deposition of C3-SAM contributed to the improved morphology of CH3NH3PbI3 with
reduced pinholes and high crystallinity, thus reducing the defect state density of perovskite.
Moreover, the interfacial energy level was better aligned because of the formation of a
permanent dipole moment. Therefore, a surged PCE from 11.96% to 15.67% was acquired
for the planar PSCs. Subsequently, the highly polar molecules of T2CA and JTCA were
synthesized by Azmi et al., for the SAM modification on sol-gel ZnO [87]. These SAM
molecules enhanced the hydrophobicity of ZnO, resulting in the effective improvement
of the formation quality of PbI2 and final perovskite layers. Meanwhile, the increased
electric dipole effect of SAMs enhanced the charge extraction property of PSC devices.
A decent PCE of 18.82% was reached for the low-temperature ZnO-based PSC, whereas the
pristine device delivered only 15.41%. Recently, Song et al., adopted two thiophene acetic
acid-based organic molecules, 2-TA and 3-TA, as SAMs on the ZnO surface for interface
modification [88]. The TA-based molecules would interact with ZnO and passivate the trap
states on its surface, while the sulfur atom from the thiophene ring could passivate the Pb2+

defect of perovskite, as shown in Figure 7c,d. additionally, this TA modification promoted
perovskite growth with improved crystallinity and induced a more favorable interfacial
energy level alignment. Therefore, the carrier recombination loss caused by defects was
reduced, and the interface carrier transport dynamics were improved, contributing to a
significantly elevated efficiency from 18.1% to 20.6%. Noteworthily, the perovskite film
based on the modified underlayer showed an alleviated thermal decomposition reaction.

In addition to the functional organic molecules, in recent years, several inorganic
compounds also have been successfully utilized to modify the ZnO ETL, demonstrating the
ability to improve device performance. In 2018, Zheng et al., adopted a thin layer of MgO
and a sub-monolayer of protonated ethanolamine (EA) to modify ZnO (Figure 7e) [35]. The
charge recombination at the interface of ZnO/perovskite was inhibited by introducing the
modification layer of MgO. Additionally, the contact barrier was reduced profited from the
protonated EA and hence promoted charge extraction and transport. This modification also
nicely resolved the instability issue at the interface. Based on the MgO-EA+ modification,
the planar PSCs achieved the optimal PCE of 18.3% with improved long-term stability and
fully eliminated hysteresis, as shown in Figure 7f. Later, Chen et al., constructed a cascade
ZnO-ZnS ETL by sulfurizing the ZnO surface to convert it into ZnS [89]. The sulfide on
the surface of ZnO-ZnS could coordinate with Pb2+ and generate an electron transport
pathway that accelerated electron transfer and reduced charge recombination. Moreover,
the ZnS acted as a passivation interlayer to passivate the basic surface of ZnO and avoid
the possible proton transfer of perovskite. All these results contributed to enhancing the
overall stability of the PSC device and producing a champion PCE of up to 20.7% without
appreciable hysteresis. Recently, Pang et al., introduced the PbS quantum dots (QDs)
onto ZnO and further deposited the tetrabutylammonium iodide (TBAI) to obtain a new
ETL of ZnO/PbS-TBAI for planar PSCs [90]. The non-wetting surface of modified ZnO
improved the crystal quality of perovskite, and the more favorable energy level alignment
arising from the tunable surface dipole moment of TBAI accelerated electron transfer and
transport. Moreover, the decomposition problem of perovskite was completely solved.
Based on the PbS QDs modification and optimized TBAI treatment, the ZnO-based PSC
achieved an increased PCE from 14.65% to 20.53% with negligible hysteresis, as well as
improved stability. In addition, Tavakoli et al., transferred monolayer graphene (MLG)
on the surface of ZnO to restrain the possible deprotonation reaction at the interface [91],
thereby protecting the perovskite film from decomposition at elevated temperatures. The
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introduction of MLG also enhanced the carrier extraction property of ZnO. With the help of
MLG modification, a high PCE of 19.81% and excellent operational stability were achieved
for the planar PSC device.
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Figure 7. (a) Device structure of PSCs based on the sulfur passivation of ZnO ETL, and (b) the stability
test of device exposure to ambient air. Reproduced with permission from Ref. [86]. Copyright 2018,
John Wiley and Sons. (c) Device structure of PSCs based on the ZnO ETL with SAM modification,
and (d) the schematic diagram of the SAM modification of thiophene acetic acid on ZnO. Reproduced
with permission from Ref. [88]. Copyright 2022, Royal Society of Chemistry. (e) Schematic diagram
of surface modification of ZnO based on MgO-EA+, and (f) J–V characteristics of the best PSCs.
Reproduced with permission from Ref. [35]. Copyright 2018, John Wiley and Sons.

5. Conclusions and Prospective

The ZnO has demonstrated to be a promising candidate as ETL for high-performance
planar PSCs, which can significantly simplify the device structure and reduce the processing
temperature, thus promoting low-cost and flexible PSCs. Herein, the basic properties
of ZnO regarding mobility, energy levels, trap defects as well as chemical stability are
clearly introduced to comprehend the relation between ZnO and the resulting PSC device.
Moreover, a variety of widely used deposition technologies for preparing ZnO films are
presented concisely. At last, we have reviewed the recent advances of ZnO applied as
ETLs in efficient planar PSCs. Since ZnO still has some issues, such as mismatched energy
bands and insufficient electron mobility, the recent advances in optimization methods on
ZnO, including doping and surface modification, are comprehensively summarized and
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discussed. Notably, the PCE of planar PSCs based on ZnO has been boosted from 5.0% to
over 21% since ZnO as ETL was first introduced into PSCs.

Although great progress has been achieved in the employment of ZnO in planar PSCs,
compared with the PSCs based on other MO ETLs, especially the SnO2 ETL, the performance
of planar PSCs using ZnO is still lagging behind. This is primarily due to severe surface
recombination, high defect density, and inferior stability of ZnO, hindering its path to
becoming an ideal ETL for PSCs with good photovoltaic performance and high stability.
Therefore, further optimization of ZnO ETLs is required. On the one hand, more works
need to be carried out to finely control the film quality and reduce the defects and surface
states of ZnO, making it more efficient in charge transfer by reducing charge recombination
and energy loss. In addition to the universal strategies of elemental and functional molecule
doping, construction of ternary MOs, and bilayer engineering for optimization of ZnO.
According to our latest research [88], surface modification of SAM is regarded as one of the
most facile and efficient strategies. The organic molecules with anchoring groups can be
adsorbed on the ZnO surface by interacting with ZnO and thus better regulate its surface
properties. As a result, the defect state, work function, and surface wettability of ZnO,
etc., could be tuned effectively. Considering that perovskite has a large number of surface
defects, organic molecules also can introduce additional functional groups like Lewis acid
and base to form chemical interaction with the perovskite layer, which is in favor of reducing
the trap-assisted recombination loss and facilitating the charge transfer. In the future, the
design and synthesis of more novel and efficient SAM molecules with specific functional
groups deserve focus. We firmly believe that the ZnO-based planar PSCs with novel SAM
modification will achieve further performance breakthroughs.

The instability of perovskite onto ZnO is another important problem that needs to be
paid more attention to and is also a major obstacle to their practical application. Due to
the effect of thermal instability, the preparation of ZnO-based perovskite is restricted to
employing a lower annealing temperature and a shorter annealing time, which is normally
inadequate to obtain high-quality perovskite crystals, resulting in decreased PSC perfor-
mance. Additionally, the interfacial instability can cause performance degeneration and
seriously restrict the working stability of the device. Therefore, it is imperative to address
the instability problem of ZnO-based PSCs. The introduction of a passivation layer or a
buffer layer to obstruct the contact between the ZnO surface and perovskite is an effective
method. Based on this strategy, coating ZnO with wide bandgap MOs and decorating
ZnO with inorganic QDs all exhibit the great capacity to eliminate the chemical interaction
between ZnO and perovskite and passivate the interfacial defects. In particular, in situ
constructing hetero-interfaces or hetero-junctions of inorganic semiconductors on ZnO is
more likely to become an important means of performance breakthrough. Combined with
the improved mobility and optimized energy level benefiting from the inorganic hetero-
structures, the device will be promoted toward higher efficiency and stronger stability.
Further, we can make more efforts to find out new and robust perovskite materials that are
compatible with ZnO ETL. Generally, the FA-based and inorganic perovskite materials are
more thermally stable and can be used as stable light absorbers in ZnO-based PSCs. In this
case, focusing on various optimization strategies to further enhance the aging resistance
and optoelectronic properties of these perovskite materials will be another worthwhile
research direction for high-performance ZnO PSCs.

Noteworthily, ZnO ETL is compatible with the fabrication of low-cost and flexible PSCs.
Among the commonly utilized approaches for preparing compact ZnO layer, the direct
deposition of ZnO by NP solution is a facile process with low energy consumption and
high quality. In view of this, the development of colloidal NPs with excellent crystallinity
and optoelectronic properties is promising for ZnO-based planar PSCs, and the further
optimization of ZnO NP ETL, including elemental doping, organic functional molecule
doping, and surface modification may provide an avenue toward high efficiency, large-
scale, and flexible PSCs. Overall, in future research, the ZnO will continue to compete
with their TiO2 and SnO2 analogs for use in PSCs. We believe that the planar PSCs with
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ZnO ETL will obtain greater breakthroughs through optimizing and evolving ZnO and
perovskite materials and become a competitive candidate for practical application.
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