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Abstract: Plasma electrolytic oxidation (PEO) is a promising surface treatment for generating a thick,
adherent coating on valve metals using an environmentally friendly alkaline electrolyte. In this
study, the PEO method was used to modify the surface of AZ31 Mg alloy. The composite coatings
were formed in a phosphate-based electrolyte containing hydroxyapatite nanoparticles (NPs) and
different concentrations (1, 2, 3, and 4 g/L) of TiO2 NPs. The results showed that the incorporation
of TiO2 NPs in the composite coatings increased the porosity, coating thickness, surface roughness,
and surface wettability of the coatings. The corrosion-resistance results of coatings in simulated
body fluid (SBF) were tested for up to 72 h and all coatings showed superior corrosion resistance
compared to the bare substrate. Among samples containing TiO2, the sample containing 1 g/L TiO2

had the highest inner layer resistance (0.51 kΩ·cm2) and outer resistance (285 kΩ·cm2) and the lowest
average friction coefficient (395.5), so it had the best wear and corrosion resistance performance. The
antibacterial tests showed that the higher the concentration of TiO2 NPs, the lower the adhesion of
bacteria, resulting in enhanced antibacterial properties against S. aureus. The addition of 4 g/L of
TiO2 NPs to the electrolyte provided an antibacterial rate of 97.65% for the coating.

Keywords: AZ31 Mg alloy; antibacterial; composite coating; hydroxyapatite; plasma electrolytic
oxidation; TiO2 nanoparticles

1. Introduction

Mg and its alloys are practical and useful in a wide range of technical applications and
systems due to their low density and high strength [1–5]. In addition, Mg has indicated
great biocompatibility that has made it as an attractive metal used in medical implants [6].
Nevertheless, Mg and its alloys have a low corrosion resistance which is a critical disadvan-
tage and limits many application domains when compared to other structural materials,
such as steels, Al, and Ti alloys [7–11].

Suitable mechanical properties of magnesium-based alloys are necessary for medical
implants. The elasticity modulus of Mg alloys ranges from 40 to 45 GPa, which is fairly near
that of a natural bone [12]. The latter characteristic is beneficial in preventing implants from
loosening during the healing procedure. Nevertheless, surface treatments or coatings are re-
quired to ensure the function and surface treatments of Mg alloys against various corrosive
environments [13–15]. Noble metals’ electro/electroless deposition considerably dimin-
ishes the subjection of Mg alloy to outer media, but galvanic corrosion on the surface occurs.
Protective coating is an excellent approach for improving the corrosion resistance of Mg
and its alloys [16,17]. There are numerous methods for achieving protective coatings, such
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as electroplating, sol-gel methods [18,19], chemical vapor deposition [20], electrophoretic
precipitation [21], physical vapor deposition [22], hydrothermal oxidation [23], and plasma
electrolytic oxidation (PEO) [24–27]. PEO is an electrochemical and plasma chemical treat-
ment. This surface treatment combines electrochemical oxidation with a high voltage spark
within an alkaline solution, producing a physically protective oxide layer on the metal sur-
face that improves corrosion and wear resistance, as well as component longevity [28–32].
PEO coatings establish a two-layered morphology—an amorphous outer layer that has a
coarse and porous morphology and an inner layer with numerous fine pores [33–35].

The PEO process is a multifactor-controlled treatment regulated by various charac-
teristics, both intrinsic and extrinsic. The substrate composition and solution are con-
sidered as intrinsic factors that play an important role in the formation of the structure
and composition of PEO coatings, while the extrinsic parameters generally consist of
process temperature, time of oxidation, and electrical factors, in addition to electrolyte
additives [36–38].

Modifying the composition of the electrolyte is one way to optimize the microstructure
and composition to improve coating qualities. Particles in the solution have an effect on
the PEO operation. This occurs because they can change the solution’s conductivity, pH,
and viscosity, which can impact the morphology and characteristics of the coating. Various
oxide and non-oxide particles (Al2O3, TiO2, ZrO2, CeO2, HA, ZnO, Ta2O5) have been
used to modify oxide coatings and/or to form composite coatings on Mg alloys [39–49].
Calcium phosphates are very similar in chemical composition to the mineral part of bone
and show very good biocompatibility. The most widely used Ca-P in implant fabrication
and manufacturing is hydroxyapatite (HAp) [50–52]. The capacity of HAp to link with
natural bone is unique, and this chemical bond accelerates the interaction of connective
tissue and host bone. It is also non-toxic to the body and has great biocompatibility with
hard tissues [28,53,54]. However, HAp coating has weak antibacterial activity, which affects
its long-term durability and the rate of premature implant failure [55,56]. Many pure or
oxide nanoparticles (NPs) can be added to the base electrolytes to improve the biological
and corrosion aspects of PEO coatings. TiO2 NPs are widely used due to their unique
features, such as high photocatalytic activity, superior corrosion and wear resistance, high
chemical stability, and antibacterial capabilities. The addition of TiO2 NPs to the base
electrolyte has been reported to produce multifunctional TiO2 PEO coatings on Ti sub-
strates, which resulted in improved corrosion resistance, wear resistance, and antibacterial
properties [57–60].

Yu et al. [61] studied the effect of adding TiO2 NPs on the characteristics of PEO
coatings on an Mg–Zn–Ca–Mn alloy. In their study, various concentrations of TiO2 NPs
were used. The results showed that increasing the concentration of TiO2 NPs decreases
the size and number of pores formed on the surface, resulting in the formation of a dense
coating layer. White et al. [62] investigated the effect of adding TiO2 NPs in phosphate
electrolyte on the corrosion properties of coatings formed by the PEO method on AZ31
alloy. The results revealed that the current density of the formed coating containing NPs is
much lower than that of magnesium alloy and the presence of NPs improved the corrosion
properties of the coating. In addition, the coatings containing hydroxyapatite on the surface
of metal materials showed very good biocompatibility.

In general, one of the conditions for bone grafting with implants is the formation of a
layer of hydroxyapatite on the surface. This substance has a unique ability to bond with
natural bone and this chemical bond accelerates the interaction between the host bone and
connective tissue. These materials are very useful because they create a bond with bone
cells, providing stability and stabilization of the implant around the bone, conversion of the
non-bioactive surface into a bioactive surface, and increased corrosion resistance. Despite a
few studies on the effects of TiO2 addition on different properties of coatings on Mg alloys,
the literature lacks a comprehensive study on wear, corrosion, and biocompatibility of
HAp/MgO composite coating on Mg alloys with the addition of TiO2 NPs.
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In this research, composite coatings were created on AZ31 alloy by the PEO method
in phosphate electrolyte containing HAp NPs and different concentrations of TiO2. In
addition to the surface characterization of different coatings, the corrosion behavior of the
coatings and their biocompatibility in the simulated body fluid (SBF), the abrasion behavior
of the coatings, and the antibacterial behavior in the presence of S. aureus bacteria were
investigated.

2. Materials and Methods

AZ31 alloy sheets were used as substrate with the chemical composition presented
in Table 1. To conduct the coating process, the samples were cut by a wire-cut machine
into a rectangular shape with a thickness of 3 mm and dimensions of 20 mm × 15 mm.
Prior to coating, all samples were grounded with 400, 600, 800, 1000, and 2000 papers,
respectively, then washed with distilled water and dried with cold air. AZ31 substrates
were immersed in the electrolyte as an anode. To perform PEO processing, samples were
immersed in electrolytes containing distilled water, trisodium phosphate Na3PO4.12H2O),
potassium hydroxide (KOH) (provided by the Merck Co., Darmstadt, Germany), and
various concentrations of TiO2 nanoparticles (with the average size of 20 nm, provided by
US Research Co.). Table 2 shows the chemical composition of the electrolyte utilized for the
coating process. The HAp NPs used in this study were synthesized by the wet chemical
precipitation method [63]. The synthesis steps of HAp NPs were fully described in the
previous research. The coating process was conducted for 7 min under constant current
conditions of 300 mA/dm2 with a frequency of 1000 Hz and a duty cycle of 50%.

Table 1. Chemical composition of AZ31B alloy.

Element Ca Zn Si Ni Fe Mn Al Mg

Wt.% 0.006 0.96 0.01 0.01 0.006 0.39 2.65 Surplus

Table 2. Chemical composition of the electrolyte used for the ceramic composite coatings.

Code
Electrolytic (g/L)

pH
Conductivity

(ms/cm)KOH Na3PO4 HA TiO2

T0 3 5 5 0 12.10 11.3
T1 3 5 5 1 12.11 11.1
T2 3 5 5 2 12.13 10.9
T3 3 5 5 3 12.15 10.9
T4 3 5 5 4 12.16 10.7

The surface morphology and local elemental analyses of the PEO coatings were studied
using an FE-SEM equipped with an energy-dispersive X-ray spectroscopy detector. The
pore size distribution of the layers was determined using Image J software to analyze the
FE-SEM micrographs. To identify the phases in the coatings, the X-ray diffraction (XRD)
patterns were obtained by the grazing incident XRD (GIXRD) method. XRD patterns were
analyzed by Xpert HighScore software. The surface roughness (Ra) of specimens was
measured using a roughness tester. A detailed description of the surface-roughness test
can be found in [64,65]. Surface roughness measurements were carried out three times
in the length direction and three times in the width direction on each specimen across
the surface. The dynamic wettability of surfaces was determined using a contact angle
goniometer. A 2 µL droplet of SBF was placed on the coated sample surface to determine
the contact angle. Contact angle values were measured using a digital camera attached to
an optical microscope. The average values and standard deviation were calculated based
on a minimum of three repetitions of the tests. Electrochemical impedance spectroscopy
(EIS) tests were carried out in an SBF solution. The corrosion tests were carried out using
an Autolab apparatus with a three-electrode system consisting of a Pt counter-electrode,



Coatings 2022, 12, 1967 4 of 28

an Ag/AgCl reference electrode, and a coated sample as the working electrode. EIS tests
were performed in the frequency range of 100 kHz to 10 mHz with a wavelength range
of ±10 mV. The analysis of the results of the corrosion tests was carried out using the
NOVA 1.11 software. A detailed description of antibacterial activity can be found in [64].
To evaluate the wear resistance of different coated specimens, the samples were subjected
to the pin-on-disc test by WTC02 device, and wear evaluation was carried out following
the guidelines of the ASTM G99 standard. The pin-on-disc test was carried out using a
15 N load, a sliding speed of 100 r/min, and 500 m distance. The pin was made from
steel 52,100.

3. Results and Discussions
3.1. Voltage–Time Plot

The plot of voltage changes to the time of the PEO-coating process is presented in
Figure 1. As is evident in the figure, the voltage–time plot of all the samples has three stages.
In the first stage of the PEO-coating process, due to the formation of a very thin insulating
layer on the surface of the magnesium alloy, the voltage increases linearly and rapidly with
time. By increasing the time and voltage, a large number of gas bubbles are produced,
which is very similar to the simple anodizing process. In the second stage, the voltage
increases with time at a lower rate than in the first stage, and weak dielectric breakdowns
occur in some areas of the oxide layer. As the time increases and the voltage passes from
the breakdown voltage, short-term white sparks appear on the surface of the substrate and
the growth rate of the coating decreases in this stage. When the third stage starts and the
voltage crosses the critical voltage, the color of the sparks turns yellow and orange, their
number decreases, and their intensity increases. In this stage, the growth rate of the coating
increases and the film grows [66–70]. Table 3 shows the results of the voltage–time plot. As
is clear from Figure 1 and Table 3, the breakdown voltage, critical voltage, and final voltage
of all samples increase with increasing concentration of NPs, so that the graph of sample
T4 in Figure 1 is higher than that of all other samples.
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Table 3. The results of the voltage–time diagram.

Sample Breakdown Voltage (V) Critical Voltage (V) Final Voltage (V)

T0 325 461 457
T1 397 498 486
T2 406 495 499
T3 507 547 516
T4 512 569 551

Electrical conductivity is an important and influencing parameter on the proper-
ties of PEO coatings and the behavior of the voltage–time plot of the samples. The
Ikonopisov equation shows the relationship between breakdown voltage and electrical
conductivity [71], as follows:

Vb = aB + bB log
1
K

(1)

In this equation, Vb, aB, bB, and K are the breakdown voltage, substrate constant,
electrolyte constant, and electrical conductivity, respectively. As can be deduced from the
equation, breakdown voltage and electrical conductivity have an opposite relationship. As
is clear in Table 2, increasing the concentration of NPs decreased the electrical conductivity
of the solution. The increase in voltage, which is the result of the decrease in conductivity,
causes more intense sparks.

3.2. Surface and Cross-Sectional Morphology of Coatings

The FE-SEM images of the microstructure of the coated samples in the electrolyte
containing different concentrations of NPs are presented in Figure 2. As can be seen, the
surface of the coatings has porosity and microcracks, which are two of the main character-
istics of the coatings created by the PEO method. The pores are randomly distributed in
different sizes and shapes throughout the surface of the coatings. These pores are formed
due to the escape of gas bubbles and the ejection of molten metal or molten oxide from
the discharge channels, and their rapid solidification is due to being in contact with cold
electrolyte [72–76], which also results in the release of high thermal stress and the formation
of microcracks on the surface [34,77–80]. As the images show, the pores of all the coatings
have the shape of a crater, similar to the crater of a volcano. This type of shape of the pores
is due to the fact that they are melted by the flow of materials inside the discharge channels.
As the gas bubbles leave these channels, they push out the melted materials, and these
materials solidify quickly due to contact with the cold electrolyte, and this type of porosity
is created.

The graphs of the average porosity and the average size of pores are shown in Figure 3.
With the increase in the concentration of NPs from 0 to 4 g/L, the porosity and the size of
the pores increased. This phenomenon can be related to the response of the voltage–time
plot of the samples. With the increase in the concentration of NPs, the voltage forming the
coating increased, which caused an increase in the energy in the discharge channels and
the size of the pores. The increase in the intensity of sparking in the discharge channels
may be due to the increase in the thickness of the coating or to the denser coating due to
the incorporation of NPs into the coating; thus, it requires more energy to flow. Under
these conditions, the current is concentrated at the weaker points of the layer to find its
way through the coating. This increases the size of the pores. As can be seen, T4 has the
highest number of pores among all samples, due to the higher critical and final voltages.

Figure 4 shows the cross-section images of coatings formed at various concentrations
of TiO2 NPs. The average coating thicknesses for T0 and T1 samples were 30.5 and 30.6 µm,
respectively, which meant that adding 1 g/L of NPs had no significant influence on the coat-
ing thickness. However, with further increases in the concentration of NPs, the thickness of
the coatings increased, and the average thicknesses increased to 35.5, 36.9, and 41.4 µm,
respectively. The reason for the increase in thickness in the samples can also be attributed to
the voltage–time diagram. By increasing the concentration of NPs, the voltage forming the
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coating increased. An increase in the voltage forming the coating means creating more heat
and energy in the discharge channels. As a result of more heat, more suitable conditions
for reactions were created and more products resulted. These products can easily leave the
drainage channels and deposits on the surface.
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3.3. Phase and Elemental Composition of Coatings

Figure 5 shows the XRD patterns by the grazing method of different samples. The
presence of Mg and MgO phases shows that due to the increase in the temperature of
the molten substrate, some of it is oxidized and some of it remains uncombined in the
coating [81–83]. The presence of the peak related to the Mg3(PO4)2 phase shows that the
anions from the phosphate base electrolyte reacted with the cations resulting from the
dissolution of Mg substrate and caused the formation of this phase. The HAp phase is
also observed among the peaks, which indicates that these particles were successfully
embedded into the coatings to form HAp/MgO composite coatings [84]. Another phase
that is observed among the peaks is the Mg2TiO4 phase, which indicates that part of the
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TiO2 NPs has passively entered the coating due to the melting of the NPs; then, their
reaction with MgO resulted in the formation of the Mg2TiO4 phase. There were no peaks
corresponding to the TiO2 NPs in any of the samples. This is not the reason for the absence
of neutral NPs inside the coatings because, in addition to the fact that the amount of
TiO2 NPs in the coating electrolyte is very small, this phase probably exists in very small
amounts of crystalline phases. The peaks of this phase overlapped with other phases and
strengthened them.
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Figure 5. GXRD pattern of PEO-coated specimens.

The distribution map of the main constituent elements of the composite PEO coat-
ings created in the electrolyte containing different concentrations of TiO2 NPs is shown
in Figure 6. The main elements of the coating include O, Mg, P, Ca, and Ti. The elements
identified in the coatings are uniformly distributed throughout the layer without any ac-
cumulation or segregation. For the NPs dispersed in the electrolyte to participate in the
formation of the PEO coating, it is necessary to distribute them at the coating/electrolyte
interface by an external force. One of the effective parameters that can direct the nanopar-
ticle toward the anode is the electrophoretic force. The results of the zeta potential test
of TiO2 NPs showed that the zeta potential of these particles in the pH range of 11 to 13
is between −21.8 and −22.6 mV. This causes the surface of the NPs to have a negative
charge. Therefore, NPs can migrate toward the anode (substrate) in a strong electric field.
In addition to the electrophoretic force, mechanical mixing causes particles to move toward
the anode. The distribution map of the elements shows that most accumulation of the Ti
element is observed around the pores and on the surface. It can be concluded that a high
fraction of NPs is trapped in the molten oxide that was ejected from the discharge channels
and was deposited on the surface, and a smaller fraction of TiO2 NPs was incorporated in
the coating through surface defects, such as pores and cracks.
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The EDS map and the amounts of the main constituent elements of the PEO coatings
are presented in Figure 7. The source of Mg in the coatings is the magnesium substrate,
the source of O is the compounds in the electrolyte, the source of P is sodium phosphate
and HAp, the source of Ca is Hap, and the source of Ti is TiO2 NPs. Among the constituent
elements of all coatings, the highest percentage belongs to the Mg element, which is due to
the melting of the substrate during the PEO process. With the increase in the concentration
of TiO2 NPs, the amount of Mg decreased, due to the creation of a thicker coating. High
absorption of TiO2 particles occurs due to high discharge energy. The particles are placed
inside the pores by the electrophoretic force. This force increases with the increase in the
concentration of NPs and causes more NPs to enter the coating.
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3.4. Roughness and Wetting of the Coatings

Surface roughness is one of the important properties in determining the performance
of objects with their surrounding environment and affects other surface properties, such as
corrosion properties, wear, and wettability of solid materials, especially biological materials.
Ra, Rz, and Rsm parameters were used to examine the surface roughness of an uncoated
AZ31 sample and coated samples in the electrolyte containing different concentrations of
TiO2 NPs. Ra, Rz, and Rsm parameters, respectively, show the average deviation from the
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evaluated line, the maximum distance between the peak and the valley, and the average
width of the surface furrows. Figure 8 shows the roughness values of Ra, Rz, and Rsm of the
PEO-coated samples. As can be seen in the figure, with the increase in the concentration of
NPs, all three values of the surface roughness of the coated samples increased. Increasing
the concentration of NPs in the electrolyte causes an increase in the final and critical voltage
in the voltage–time diagram, which causes sparks with greater intensity and energy on
the surface. Creating a spark with more intensity and energy causes deeper porosity
on the surface, which increases the surface roughness of the samples by increasing the
concentration of NPs.
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Wettability is one of the important properties of solid surfaces, which has a significant
effect in many applications for biological users. The wettability of a surface can affect its
other properties, such as corrosion and wear. The roughness, chemical composition, and
microstructure of the surfaces are important factors affecting the wetting properties of the
surfaces. The most common method of measuring surface wettability is to examine and
photograph a small volume of liquid on the surface, and measure the contact angle of the
droplet with the surface. According to the type of microstructure, surface wettability can be
divided into three models: Young, Wenzel, and Cassie–Baxter. Young’s model is for smooth
and homogeneous surfaces. Wenzel’s model is for the condition in which a drop in contact
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with the surface can penetrate into all the holes and grooves of the surface. Cassie–Baxter’s
model is for the condition in which the liquid cannot penetrate into the surface cavities and
is only placed on the surface irregularities. Figure 9a shows the wettability of PEO-coated
specimens at different concentrations of TiO2 NPs at the first contact time of the droplet with
the surface. As can be seen, the wetting angle decreases with the increasing concentration
of TiO2 NPs. The presence of TiO2 is a highly hydrophilic material, due to its open nature
and its ease in forming hydrogen bonds with water molecules. Thus, the presence of more
TiO2 nanoparticles on the surface of the coatings helps to increase the coating wettability
by increasing the of TiO2 nanoparticles concentration in the electrolyte. Figure 9b shows
the change of the wetting angle of the coatings with a time of 60 s. As is clear in Figure 9b,
with increasing time, the wetting angle of all samples decreased, which can be attributed
to the roughness of the coatings. Considering that both surface roughness and wettability
increased with the increase in the concentration of TiO2 NPs, it can be concluded that the
wettability of the coated samples follows Wenzel’s model. Wenzel’s relationship shows that
if the contact angle of the surface is more than 90 degrees, the wetting angle increases with
the roughness of the surface, and if the contact angle of the surface is less than 90 degrees,
the wetting angle decreases with the roughness of the surface [85].
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3.5. Corrosion Behavior

Figure 10 shows the EIS plots for the uncoated and PEO-coated samples for different
immersion times (1, 24, 48, and 72 h) in the SBF solution. As shown in Figure 10a–e, the
shape of the Nyquist curves of all coated samples is the same, but the curve for the AZ31
alloy sample is different from that of the coated samples. The difference in the Nyquist
curve of the uncoated sample is due to its very low corrosion resistance and is caused by
the induction behavior of this sample. When the uncoated AZ31 alloy sample is exposed to
the atmosphere, an oxide film is immediately formed on this sample, and when this alloy is
immersed in the SBF, due to the low resistance of the oxide layer against the corrosion of
the corrosive solution, it passes through the oxide layer and reaches the AZ31 substrate,
causing inductive behavior [86–88].
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By observing the Nyquist curve of samples coated at various concentrations of
TiO2 NPs, it is clear that after 1 h of immersion in SBF solution, all the curves include
two capacitive semi-rings. At low frequencies, the loop created is related to the inner
dense layer; at high frequencies, the created loop is related to the outer porous layer. In
Figure 10a–e, it is clear that the best corrosion performance after 1 h is related to the sample
containing 1 g/L of TiO2 NPs, and the diameter of the semicircles in the Nyquist plots
decreases with the increase in the concentration of NPs. This indicates a reduction in the
corrosion resistance of the coatings [89–91]. The Bode curve of the uncoated and coated
samples is shown in Figure 10f–j. As is clear in this figure, in the range of low frequencies,
the value of the impedance (Z), which represents the corrosion resistance of the samples,
decreases with the increase in the concentration of TiO2 NPs from 1 to 4 g/L. The results of
the EIS test after 72 h show that corrosion resistance increased in all samples with increasing
immersion time.

The proposed equivalent circuits for modeling the electrochemical response of the
uncoated sample and the coated samples in the electrolyte containing different concentra-
tions of NPs are presented in Figure 11. It should be noted that for a better fit of the data
with the equivalent circuit, instead of using the capacitor element (C), the constant phase
element (CPE), which is a non-ideal capacitor, was used. The relationship of the CPE is as
follows [92]:

ZCPE =
1

Y0(jW)n (2)
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Here, Y0 is the CPE constant, ω is the angular frequency, and n is the empirical power,
which is in the range of 0 to 1. Figure 11a shows the equivalent circuit of the sample of
AZ31 alloy without coating. In this circuit, Rs is the solution resistance, RO and CPEO are,
respectively, related to the resistance and CPE of the external porous layer, and RL and L are,
respectively, related to the resistance of the inductor and the inductor at low frequencies.
Figure 11b shows the equivalent circuit of coated samples [93,94]. In the equivalent circuit
related to coated samples, Rs is the resistance of the solution between the coating surface
and the reference electrode, Ri and CPEi are, respectively, related to the resistance and CPE
of the inner compressed layer, and RO and CPEO are, respectively, related to the resistance
and CPE of the external porous layer. Due to the use of the same corrosion solution, the
resistance value of the solution is almost the same for all coatings. The parameters related
to the circuit of the proposed equivalents of Figure 11 are presented in Table 4. The outer
porous layer has less resistance than the inner dense layer, which is due to the presence
of sparks during the PEO process. This shows that the inner layer of the coatings plays
a more important role against the penetration of destructive ions, due to having fewer
defects and a denser structure. As is clear in Table 4, the highest resistance values are
related to sample T1 and with an increasing concentration of TiO2 NPs from 1 to 4 g/L, the
resistance of the outer and inner films of the coatings decreased. The corrosion resistance
of a surface and the properties of the oxide layer, such as phase composition, thickness,
wettability, and structural defects, are inextricably linked. The different surface structures
(pore diameters), thicknesses, and contact angles of the ceramic layers obtained in this study
changed significantly with increasing TiO2 concentration, while the phase compositions
remained unchanged for all oxide layers. It is widely believed that larger micropores
increase the actual surface area exposed to the corrosive solution and decrease corrosion
resistance. Additionally, previous researchers stated that increasing the coating thickness
has a positive effect on corrosion resistance. However, in light of the above analysis, this
trend in corrosion results may result from an increase in the percentage of porosity and
pore size, which increases exposure to destructive ions. Increasing the concentration of NPs
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from 1 to 4 g/L causes an increase in the percentage of porosity, an increase in wettability,
and an increase in the roughness of the coatings, causing an increase in the contact of the
corrosive solution with the coatings and, as a result, a decrease in corrosion-resistance
properties. The reason for the increase in corrosion resistance with time is that the defects
and porosity of the coatings are filled by products caused by corrosion. Another reason for
increasing the corrosion resistance of the coatings is the presence of HAp and its growth
and the formation of calcium phosphate deposits in the samples. According to the obtained
results, we found that the best corrosion performance after 72 h is related to T1 samples.

Table 4. Electrochemical data of the uncoated and PEO-coated specimens in SBF solution for various
durations, calculated from the circuit models.

Time (h) Samples Router (kΩ·cm2) Rinner (kΩ·cm2)

1

AZ31 0.48
T0 33.1 0.45
T1 35.7 0.51
T2 27.6 0.42
T3 25.3 0.39
T4 22.6 0.35

24

T0 93.2 4.5
T1 72.1 2.3
T2 30.1 0.75
T3 54.5 1.13
T4 22.9 1.13

48

T0 243 7.4
T1 161 5.8
T2 79.4 1.44
T3 92.4 2.54
T4 23.2 1.49

72

T0 291 9.6
T1 285 8.6
T2 90.2 1.52
T3 148 2.92
T4 49.1 1.67

Wang et al. [73] found that increasing the concentration of TiO2 NPs in the coatings in-
creases the amorphous phases in them, and the increase in the amorphous phases decreases
the corrosion performance of the coatings. The preferential dissolution of corrosion occurs
in surface irregularities, such as the amorphous phases. The increase in the amorphous
phases (caused by the increase in the concentration of NPs) in the external porous layer
causes an increase in corrosion attacks on this layer, which leads to an increase in the
penetration of ions into the inner dense layer and damage to it.

Figure 12 shows the FE-SEM images at two different magnifications and the results
of EDS for sample T1 after 72 h of immersion in the SBF solution. As seen in Figure 12,
after 72 h, the surface pores are filled and HAp has grown. A comparison of the amount of
calcium and phosphorus elements of sample T1 before the corrosion test and after 72 h of
immersion shows that the amount of calcium and phosphorus increased, which indicates
the growth of HAp and the formation of calcium and phosphate deposits. This led to the
improvement of the corrosion behavior of the samples by increasing the immersion time.
Figure 13 shows the distribution map of the main constituent elements of sample T1 after
72 h of immersion. As is clear in the figure, there are calcium and phosphorus elements in
the areas where precipitations are observed and around the surface pores.
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3.6. Wear Behavior

Abrasion behavior depends on various factors, such as surface roughness and hard-
ness, the chemical properties of the surface, the crystal structure of the material, the
metallurgical properties of the surface, and the compatibility of two materials with each
other. Surface roughness is one of the important and effective factors in the interaction
between surfaces and, as a result, wear behavior. The roughness factor affects the contact
stress, adhesion, and friction of two surfaces. When the roughness of the surfaces is very
low, the particles between the two surfaces in contact establish a bond with each other and,
as a result, increase the friction, due to the high adhesion force. When the roughness of
the surfaces is high, the two surfaces are mechanically stuck together and the asperities
are placed inside each other, thus increasing friction. Therefore, it can be concluded that
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to increase wear resistance, the roughness should be optimal. Another factor influencing
wear-resistance properties is surface hardness. The higher the hardness, the lower the rate
of wear and friction [95,96]. The wear resistance of PEO coatings is a characteristic that can
be controlled by the degree of roughness and hardness of the coatings [97].
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The changes in the friction coefficient according to the wear distance of the coated
samples are shown in Figure 14. The observed fluctuation of the friction coefficient in all
samples is due to the uneven distribution of porosity and surface cracks on the coated
samples. The average coefficient of friction and weight loss of the specimens during the
wear test is shown in Table 5. By comparing PEO coatings on magnesium alloy in electrolyte
without TiO2 NPs and containing TiO2 NPs, Forno et al. [58] found that adding TiO2 NPs
to the coatings increases the hardness of the coatings. This increase in hardness can be
due to the strengthening role of the second phase by increasing the concentration of NPs.
The results show that in the sample without TiO2 NPs (T0), the high average value of the
friction coefficient can be due to the low hardness of this sample and the low roughness of
the coatings. Because low roughness increases the adhesive force between the sample and
the pin, the friction coefficient increases.

By adding TiO2 NPs, the average coefficient of friction and the lost weight of the
samples decreased initially, which was due to the increase in the hardness of the coatings
because of the increase in the concentration of TiO2 NPs and the increase in roughness,
which caused less adhesion. However, increasing the concentration of NPs up to 4 g/L
increased the average friction coefficient and decreased the weight of the samples. By
examining the roughness of the coatings presented in Figure 8, and the amount and size
of the pores presented in Figure 2, it can be concluded that the increase in the roughness
and the size of the pores, due to the increase in the concentration of NPs up to 4 g/L in the
coatings, increases the mechanical locking of the samples and the abrasive tool. This leads
to severe abrasive wear, an increase in the average friction coefficient, and a decrease in the
weight of the samples. As a result, it can be concluded that the addition of NPs initially
reduces the wear rate, but when the concentration of NPs exceeds a certain value, it no
longer has a positive effect on the wear resistance properties, and because it increases the
roughness, it can have a destructive effect on wear resistance.
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Figure 14. Changes in the friction coefficient according to the wear distance of PEO-coated specimens.

Table 5. Data extracted from wear test.

Samples Average Coefficient of Friction ×103 Mass Loss (g) Wear Track Width (mm)

T0 434.1 0.0220 3.467
T1 395.5 0.0175 3.161
T2 396.6 0.0162 3.196
T3 398.7 0.0149 3.199
T4 454.4 0.0212 3.448

Figure 15 shows the image of the wear path and the morphology of the worn surface of
the coated specimens. The value of the width of the wear track of the samples is presented in
Table 5. In Figure 15a-2, it is clear that in sample T0, there are some parts where separation
occurred. In Figure 15b-2,c-2,d-2, which is related to samples with concentrations of
1, 2, and 3 g/L of TiO2 NPs, respectively, there is no trace of separated or severe plowing,
and only very shallow plowing parallel to the sliding path is seen. Considering that these
samples had a lower average coefficient of friction and weight loss than those of other
specimens, it can be concluded that these samples performed better in the wear test and
that the wear mechanism of these samples was abrasion. As shown in Figure 15e-2, which
is related to the sample with a concentration of 4 g/L of TiO2 NPs, there are deep grooves
with asperities parallel to the sliding direction, which indicates severe abrasive wear in this
sample. As seen earlier, this sample has more surface roughness and porosity than those
of other samples, causing mechanical locking of the sample and the abrasive tool in each
other, resulting in deep grooves.
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Figure 16 shows the chips produced in the wear test of the coated samples. Considering
the plate debris as shown in Figure 16a and the low roughness of sample T0, it can be
concluded that the wear is adhesive wear. When the surface roughness of the sample is
low, the actual surface in contact between the two samples increases, and this increase
leads to the welding together of the sample and the abrasive tool, and the wear occurs
through the fracture of the welded surfaces, which causes separation and, as a result,
adhesion wear. The debris of the samples with concentrations of 1, 2, and 3 g/L of TiO2
NPs are more uniform and smaller, and the effect of severely separated and plate-like or
strip-like debris is less visible. In the sample with a concentration of 4 g/L of TiO2 NPs,
in addition to fine and small debris, strip-shaped and large debris are seen. The presence
of band-shaped debris in the samples with a concentration of 0 and 4 g/L of TiO2 NPs
indicates that the coating in these samples has been destroyed earlier and has reached
the magnesium substrate, because the strip-shaped chips are related to the wear of the
magnesium substrate, which is much softer than the ceramic coating. In fact, small and
powder-shaped chips are the result of wear of the ceramic coating, and strip-shaped chips
are the result of wear of the soft magnesium substrate. This is consistent with the average
friction coefficient and weight loss of the samples that can be seen in Table 5, because the
average coefficient of friction and weight loss of the samples containing 0 and 4 g/L of
TiO2 NPs is higher than that of the other specimens. In addition, due to the fact that the
wear debris of samples containing 1, 2, and 3 g/L NPs are smaller and more uniform than
other samples, they can have a protective effect and cause the separation of two surfaces in
contact with each other, which causes the phenomenon of three-body wear and reduces the
friction between the two surfaces and, as a result, reduces the local stress.
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Figure 16. Chips produced in the wear test of coated samples: 0 (a), 1 (b), 2 (c), 3 (d), and
4 (e) g/L TiO2.

Figure 17 shows the image of the steel pins used in the wear test of the coatings. As
is clear in the figure, the surface of the worn pin on sample T0 is more damaged than on
all other samples, which indicates that strong adhesive wear occurred in this sample. The
surface of the worn pin on the T0 sample was less damaged than on the other samples,
which is consistent with the low average friction coefficient of this sample, as shown in
Table 5; this indicates that this sample had slight wear compared to that of other samples.
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3.7. Antibacterial Behavior

S. aureus bacteria was used to investigate the antibacterial behavior of coated and
uncoated samples. The antibacterial behavior results, including bacterial colonies grown
on agar plates and the antibacterial rate calculated against S. aureus bacteria after 6 h of
incubation at 37 ◦C, are depicted in Figure 18a. It is clear that the number of bacterial
colonies on the PEO-coated surfaces was significantly lower, indicating better antibacterial
properties, compared to those of the magnesium substrate. The results of the investigation
of antibacterial properties show that the coating containing calcium phosphate (T0) does
not have an antibacterial effect, because proteins, amino acids, and other organic substances
are easily absorbed on the surface of calcium phosphate, which can cause the absorption
and proliferation of bacteria on the surface of the coating and cause infections related
to the implant. By adding TiO2 NPs to the coatings, the amount of bacterial colonies
decreases significantly, so that the antibacterial effect increases as the concentration of
NPs in the coating increases. The antibacterial effect of TiO2 is related to the formation of
reactive oxygen species OH−, O2 and their attack on the bacterial membrane [98,99]. The
antibacterial rate was calculated for the coatings in Figure 18b. The results showed that
by increasing the concentration of NPs, the antibacterial ability of the coatings increased
significantly. It is known that most microorganisms and bacteria are negatively charged.
Therefore, negatively charged surfaces further reduce bacterial attachment. As a result,
negatively charged TiO2 NPs on the surface hindered bacterial attachment and provided a
significant antibacterial influence for TiO2 NP-doped coatings. Another cause of the better
antibacterial performance of coatings by increasing the concentration of NPs in them is
the increase in the amount of roughness and wettability of the coatings. Yan et al. [100],
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comparing the antibacterial behavior of PEO coatings with uncoated Mg alloy, stated that
when the bacterial suspension is placed on the uncoated sample, it always remains as
water droplets. For this reason, all bacteria are not in direct contact with the surface of the
alloy, and for this reason, S. aureus bacteria is slowly and gradually destroyed by OH−,
resulting from Mg alloy corrosion. However, when the bacterial suspension is placed on
the PEO coating, due to the presence of pores and greater surface roughness, it spreads
on the surface. As a result, most bacteria can be directly in contact with the surface and
OH- can react with bacteria and destroy them without going through any path and without
spreading. As seen in the previous sections, with the increase in the concentration of TiO2,
surface porosity increases and causes more surface roughness and, as a result, sample T4
shows the most antibacterial behavior.
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4. Conclusions

In this research, the effect of addition of TiO2 NPs on the corrosion, wear, and antibac-
terial behavior of HAp/MgO composite coatings created on AZ31 Mg alloy by the PEO
method was investigated. By examining and analyzing the results obtained in this study,
the following results were obtained:

1. The most dense structure was achieved in the sample coated with 1 g/L of TiO2
having 4.39% porosity. In addition, the examination of the cross-sectional images
showed that adding NPs up to 4 g/L increased the thickness of the coating, and the
coating obtained by 4 g/L of NPs had higher thickness (41.49 µm) than other coatings.

2. Examining the surface properties of the coatings showed that increasing the concentra-
tion of NPs from 1 to 4 g/L increased the wettability and roughness of
the coatings.

3. EIS tests of coated and uncoated samples showed that small amounts of TiO2 NPs
(1 g/L) showed higher corrosion resistance in SBF solution, due to their denser
structure. The results showed that with increasing immersion time (24, 48, and 72 h),
the corrosion resistance of the coatings increased. The T1 sample had the highest
resistance among the samples of the inner layer (8.6 kΩ·cm2) and the outer layer
(285 kΩ·cm2) after 72 h in the SBF solution.

4. The results of the wear test of the samples showed that by adding TiO2 NPs, the
average coefficient of friction and the mass loss of the samples decreased initially,
which was due to the increase in the hardness of the coatings because of the increase in
the concentration of TiO2 NPs and the increased roughness that caused less adhesion.
However, increasing the concentration of NPs up to 4 g/L increased the average
friction coefficient and decreased the weight of the samples.

5. The addition of NPs in the coating led to improvement in the antibacterial behavior
of the coatings. Sample T4 had the highest antibacterial activity (97.65%) against
S. aureus bacteria in a 6 h test period.

However, further research is needed to ensure that human interventions carry no
risk, or at least minimal risk. The main disadvantages of the PEO method are high energy
consumption, the presence of microcracks, and limited range of chemical compositions.
These considerations will need to be explored further in the future and will certainly
occupy biomedical development in the years to come. In conclusion, the authors believe
that despite the tremendous progress made in the development of PEO coatings over the
past few years, there is still considerable room for development, and in order to achieve
and achieve the full potential of PEO coatings, a few considerations should be discussed
further. For instance:

1. Although the in vitro antibacterial evaluation of PEO coatings has been fully in-
vestigated, in vivo studies are urgently needed. Model systems need to be further
expanded to evaluate their performance more holistically.

2. The antibacterial mechanisms involved in PEO-modified Mg coatings containing
antibacterial agents affect the osteogenic response. Therefore, it is critical to consider
threshold levels and dose-dependent cytotoxicity for added antibacterial agents to
achieve an appropriate balance between antibacterial activity and bone growth.
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