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Abstract: Intercalation-type Nb2O5, based on its inherent structural advantages in energy storage,
shows excellent energy storage characteristics in sodium-ion batteries (SIBs). The rapid pseudocapac-
itive Na-ion insertion/extraction dynamic mechanisms result in its outstanding rate performance.
However, the inherent low electronic conductivity hinders its application and development in SIBs.
Though various modification projects can effectively ameliorate these shortcomings, there are also
some basic research problems that need to be clarified and solved. This review summarizes the latest
research progress of Nb2O5 in SIBs. The structural advantages and pseudocapacitive characteristics
of sodium storage are emphasized. The recent advanced modification strategies are summarized
comprehensively, including carbon modification, structural optimization, defect engineering, in-
creased mass loading, flexible electrodes, synergistic effect electrodes, etc. In addition, this review
summarizes and prospects the key research strategies and future development directions of Nb2O5

in future practical applications.
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1. Introduction
1.1. Battery Technology

Energy and environment are the foundation of human survival and development and
determine the sustainable development of human society [1]. Solar energy, wind energy,
tidal energy, hydrogen energy and other green energies have been widely considered [2–6].
However, these energy sources are affected by regional conditions and have the characteris-
tics of localization, randomness, regionality and intermittency, resulting in huge restrictions
on their use. The key to solve this problem is to develop efficient energy storage and energy
conversion devices to collect these scattered energies [7,8]. Among them, the energy storage
secondary battery is one of the most effective and promising energy storage devices [9–11].

As the typical representative of energy storage capacity, lithium-ion batteries (LIBs)
have been widely used with lots of advantages [12,13]. The growing electronic product and
new energy vehicle market in the future will demand LIBs in an unprecedented manner,
which will inevitably lead to a shortage of lithium resources and rising costs [14]. Addition-
ally, global lithium resources are scarce. The abundance of lithium in the earth’s crust is
only about 0.0017%, and the distribution is uneven. The recycling mechanism of LIBs is not
yet mature, which further restricts their extensive application in the future [15]. Therefore,
it is urgent to develop energy storage secondary batteries with abundant resources and low
prices. Among them, sodium-ion batteries (SIBs) have received special attention [16–18].
Table 1 shows the characteristics, advantages and disadvantages of LIBs and SIBs. Sodium
and lithium belong to the same main group, and their physical and chemical properties
are similar. However, the reserves of sodium on the earth are up to 2.3%, which is much
more than lithium. Moreover, they are widely distributed, rarely limited by regions. In

Coatings 2022, 12, 1873. https://doi.org/10.3390/coatings12121873 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12121873
https://doi.org/10.3390/coatings12121873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0001-5875-3118
https://doi.org/10.3390/coatings12121873
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12121873?type=check_update&version=1


Coatings 2022, 12, 1873 2 of 17

addition, for the electrolyte with the same concentration, the ion conductivity of sodium
ion electrolyte is higher than that of lithium ion, so we can choose a lower concentration
of sodium ion electrolyte, which can also reduce the cost. Since sodium does not form an
alloy with aluminum, aluminum foil can be used as the current collector for the negative
electrode, which can further reduce the cost. It can be seen that SIBs will show a huge cost
advantage in the future with smart grids and large-scale energy storage systems [17,19,20].

Table 1. Characteristics, advantages and disadvantages of LIBs and SIBs.

LIBs SIBs

Battery structure Similar Similar

Ionic radius 0.076 nm (Li) 0.102 nm (Na)

Voltage vs. SHE −3.04 V (Li) −2.71 V (Na)

Crust Abundance 0.0017 mass % (Li) 2.3 mass % (Na)

Advantages

1. High energy density
2. Mature technology
3. Long cycle life
4. Small size and light weight

1. Rich Na reserves
2. Al foil can be used as the

collector for anode
3. Lower concentration of

electrolyte is allowed

Disadvantages
1. Lithium dendrite problem
2. Scarce Li reserves and high

production cost

1. Low energy density
2. Immature technology
3. Poor cycle life

1.2. Anodes of Sodium-Ion Batteries

In terms of structure, SIBs are mainly composed of cathode, anode, separator, elec-
trolyte, current collector, battery shell, etc. Among them, cathode and anode active materials
play a decisive role in battery performance. The function of the separator is to prevent short
circuit and allow sodium ions to pass through. The commonly used separator is glass fiber
membrane. Common electrolytes include sodium perchlorate, sodium hexafluorophos-
phate, sodium tetrafluoroborate, etc. Generally, carbonic ester or ether will be used as
solvent. Since Na and Al do not form an alloy, aluminum foil can be used as the current col-
lector for both the cathode and anode electrodes. The sodium storage mechanism for SIBs
is schematically depicted in Figure 1. Similar to LIBs, anode and cathode active materials
directly affect various energy storage performances, including specific capacity, rate, cycle
and safety performances [21–23]. According to the different sodium storage mechanisms,
the anode electrode of SIBs can be divided into three types: alloy-type, conversion-type
and intercalation-type [21,24–26]. Alloy-type anode materials will undergo an alloying
reaction in the process of sodium storage. They have high theoretical specific capacity and
a low working voltage platform. At present, they are mainly composed of Ge, Sn, P, Sb,
etc. [24,27–29]. However, due to the inherent defects of alloy materials, large sodium ion
radius in the alloy/dealloying reaction process will lead to huge volume changes.

The conversion-type electrode materials will undergo phase transition during the
charge/discharge process. Some anode materials will undergo an alloying reaction after
the first conversion reaction [30,31]. The theoretical specific capacity of the conversion-type
anode is high. However, it also faces various shortcomings, such as low Coulomb efficiency
of the first lap, poor rate dynamics, etc. In addition, the electrode will also undergo
large volume expansion in the conversion reaction process, resulting in the progressive
pulverization of active materials and eventually leading to the decline of capacity and cycle
stability [25,32].

Different from the sodium storage mechanism of alloy-type and conversion-type,
the intercalation-type anode is based on the intercalation mechanism. Most electrode
materials have low theoretical specific capacity, but with negligible volume change during
the charging and discharging process, showing excellent rate and cycling performance. At
present, the typical intercalation-type anode materials for SIBs are mainly composed of
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carbon-based materials [33–35], titanium-based oxides (such as TiO2, Na2Ti3O7) [36,37],
niobium-based oxides (such as Nb2O5, TiNb2O7, Ti2Nb2O9), etc. [26,38–40]. Although the
volume expansion effect of some oxide anodes is small when storing sodium, their intrinsic
electronic conductivity is poor, which also significantly affects the release of their excellent
rate and cycle stability performances.
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1.3. Intercalation-Type Nb2O5 Anode

Different sodium storage anodes have their own advantages and disadvantages in
energy storage. The theoretical specific capacities of alloy-type and conversion-type are
higher, but the rate and cycle stability performances are poor. On the contrary, the theo-
retical specific capacity of the intercalation-type is lower, but the rate and cycle stability
performances are better [21]. With the extensive use of electronic products in the future and
the improvement of user experience, higher requirements are put forward for the demand
in energy and power density of batteries. Especially for the current fast charging market,
on the premise of the existing battery energy density, the improvement of charging and
discharging speed will be conducive to the maximum use of the product and enhance the
user experience. Among the intercalation-type anodes of SIBs, the niobium-based oxide
anodes, especially for Nb2O5-based electrodes, are raising more attention based on their
inherent structural energy storage advantages [38,41,42]. Nb2O5-based anodes have been
widely used in LIBs, accompanied by excellent rate and cycle stability performances [43–45].
At present, more and more researchers pay attention to their application in SIBs and in
doing so reveal the relevant sodium storage mechanisms.

As far as we know, there are few comprehensive reviews on Nb2O5 electrodes for
application in SIBs. Compared with previous similar work [42], they basically focus on re-
viewing the niobium-based oxide family in LIBs and SIBs, making the research on Nb2O5 in
SIBs difficult to centralize. This paper will directly and systematically review intercalation-
type Nb2O5 anodes for application in SIBs with the latest research progresses, which were
mainly published from 2018 to 2022. Figure 2 shows the energy storage characteristics and
modification strategies of Nb2O5 in SIBs. We comprehensively analyzed the structural ad-
vantages of Nb2O5 in sodium storage and the disadvantages of low electronic conductivity.
Moreover, based on the latest published literature, in addition to some important concerns
and prospects such as carbon modification, structural optimization and defect engineering,
this review will also outline Nb2O5 anodes in SIBs from a novel perspective, including
the mass loading effect, flexible electrodes and synergistic effect electrodes, which can
effectively improve its energy storage performances and extend its practical application
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fields. In addition, we also expound on the opportunities and challenges of Nb2O5 in future
practical applications and commercialization.
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2. Energy Storage Structure of Nb2O5 Anode

According to different heat treatment conditions, Nb2O5 has several crystal forms,
such as T-Nb2O5, B-Nb2O5 and H-Nb2O5 [46]. These different crystal structures greatly
affect their respective electrochemical energy storage performances. Among them, T-Nb2O5
with an orthorhombic crystal phase shows significantly better energy storage performance.
T-Nb2O5 has a Pbam space group, and its XRD crystal phase matches JCPDS card No.
30-0873. The Nb ions in the lattice are surrounded by six or seven O ions, forming a
polyhedron of NbO6 and NbO7 with shared twisted edges/corners [47]. As shown in
Figure 3, according to the atomic arrangement of T-Nb2O5, its crystal structure can be seen
as two alternating atomic layers, including a loosely packed 4 g layer and a dense 4 h
layer [48]. Because the 4 g layer has a spacious atom holding space, it can provide preferred
storage and transportation sites for ions [48].

T-Nb2O5 has been widely used as the anode of LIBs, showing excellent rate and cycle
stability performances, accompanied by ultra-fast pseudocapacitive lithium-ion storage
dynamics. The rapid lithium ion insertion/extraction mechanism occurs not only on the
surface, but also in bulk materials [48,49]. Although the ionic radius of Na-ion (0.102 nm)
is larger than that of Li-ion (0.076 nm), a larger ionic radius may lead to larger volume
expansion and slower sodium storage kinetics. However, based on the inherent structural
advantages, the 0.39 nm large crystal plane spacing of the (001) plane in T-Nb2O5 can
accommodate a certain amount of Na-ion, so it can be used as a potential anode material
for SIBs. The sodium insertion/extraction reaction mechanism of Nb2O5 electrode can be
summarized by the following equation: Nb2O5 + xNa+ + xe− ⇔ NaxNb2O5, x is the mole
fraction of the inserted Na-ions [38].
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3. Pseudocapacitive Energy Storage Mechanisms

The intercalation-type Nb2O5 electrodes are based on the intercalation mechanism,
which means that sodium ions are embedded into the lattice or layer spacing of the material
to form a stable sodium intercalation compound without affecting the lattice parameters of
the material. As the sodium ions mostly occupy the lattice and gap positions of the material
during the intercalation process, significant expansion changes in the overall structure of
the material can be avoided. Therefore, the intercalation-type Nb2O5 anode has excellent
structural stability and cycling performance. However, due to the limitation of the gap
position, its theoretical specific capacity is usually relatively low.

For SIBs, the large sodium ion radius will lead to slow ion diffusion dynamics and large
volume expansion in the process of insertion/extraction, which seriously restricts their rate
performance. The intercalation-type Nb2O5 anodes have unique pseudocapacitive energy
storage features due to their inherent structural advantages [48,49]. Because there are more
positions for ion storage between layers, sodium ions can be inserted and extracted more
easily. Pseudocapacitive electrode materials have excellent reaction reversibility, showing
similar electrochemical characteristics to capacitors [50,51]. At present, pseudocapacitive
mechanisms can be divided into three categories from the electrochemical perspective:
underpotential deposition, surface redox pseudocapacitive and intercalation pseudoca-
pacitive [51]. As shown in Figure 4, for the surface redox pseudocapacitive, the storage
of sodium ions only occurs in a limited area near the surface, accompanied by a Faraday
charge transfer process [52]. For intercalation pseudocapacitive, sodium ions in electrode
active materials can conduct rapid ion transport along diffusion channels of all dimensions
without phase transition. From the view of dynamics, measuring the response current of
energy storage electrode materials at different scanning rates is the most appropriate tool to
distinguish battery type (diffusion control) or capacitance (surface control). The studying
of pseudocapacitive features is mainly based on the cyclic voltammetry (CV) curve of the
electrode with variable sweep rate [53,54].

As we know, the CV curves follows the power-law relationship [55]:

i = avb (1)

where a and b are adjustable parameters, i is the current, and v is the sweep rate. Equation
(1) can be equally converted to Equation (2).

log(i) = log(a) + blog(v) (2)
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The b value can reflect the intrinsic charge storage kinetics. It is close to 0.5 and 1, which
indicate the diffusion-controlled redox reaction and surface-controlled pseudocapacitive
storage reaction, respectively [52]. Moreover, i can be divided into two parts at a fixed
potential (V). It can be expressed as Equation (3).

i(V) = k1v + k2v1/2 (3)

where k1v and k2v1/2 represent surface-controlled capacitance and diffusion-controlled
reactions, respectively. Equation (3) can be rearranged to Equation (4).

i(V)/v1/2 = k1v1/2 + k2 (4)

The curves of Equation (4) can be plotted at a fixed potential with various sweep
rates. The calculated slope and y-intercept are k1 and k2, respectively. The current val-
ues of capacitive contribution parts at different potentials are obtained using k1v, then
the contribution ratio of capacitance and diffusion can be obtained [38]. Based on the
inherent structural energy storage advantages of intercalation-type Nb2O5 anodes, they
show the fast Na-ion pseudocapacitive storage features. The above CV research methods
can be used to investigate the Na-ion storage mechanism of Nb2O5-based anodes, which
is a surface-controlled pseudocapacitive or a diffusion-controlled behavior, then further
obtain the corresponding contribution ratio. In addition, Zhang et al. have revealed the
electrochemical sodium storage mechanism of orthogonal-Nb2O5 nanosheets using in situ
transmission electron microscopy [56].
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4. Applications in Sodium-Ion Batteries

The application of T-Nb2O5 electrodes in SIBs is limited due to their poor intrinsic
conductivity (~3.4 × 10−6 S cm−1 at 300 K) [42]. Structure optimization and surface en-
gineering are often used to improve the energy storage of electrode materials [41,57–61].
An ideal modified electrode structure requires the ability to effectively improve the con-
ductivity of the material, buffer volume expansion and increase the contact area with
the electrolyte.

4.1. Carbon Modification

Due to the poor intrinsic electronic conductivity of the Nb2O5 electrode, its application
in SIBs is limited, which is one of the most important problems that need be solved for this
material. Poor electronic conductivity will greatly affect the high-rate performance and
cycle stability of Nb2O5. An effective method is to composite Nb2O5 with carbon materials
to improve the electronic conductivity. As shown in Figure 5, Zhou et al. prepared
nanocomposites of carbon-decorated T-Nb2O5 nanocrystals anchored on rGO nanosheets
(T-Nb2O5-C-rGO) [62]. They have a high reversible specific capacity of 240 mA h g−1 under
the current density of 0.1 A g−1, with a good cycle stability with 68% capacity retained at
1 A g−1 after 1000 cycles. With the aid of the three-dimensional porous rGO fiber structure
and carbon coating layer, the electronic conductivity of the composite was significantly
improved, resulting in the excellent sodium storage performance. Moreover, Liu et al.
designed an N-doped carbon-coated urchin-like Nb2O5 nanoarchitecture (Nb2O5@C) [63].
Such structure can decrease the diffusion pathway of ions and electrons. It can also improve
the electronic conductivity and buffer the volume expansion. As a result, this electrode
presented excellent rate and cycle stability performances in SIBs. It has a higher reversible
specific capacity of 255 mA h g−1 under the current density of 1 A g−1 over 150 cycles with
a Coulombic efficiency approaching 100%, which is much better than Nb2O5 (94 mA h g−1

with a Coulombic efficiency of about 82%). When the current density increases to 10 A g−1,
it still shows a high reversible specific capacity of 160 mA h g−1 over 1000 cycles. In addition,
ultrasmall Nb2O5 nanoparticles wrapped with nitrogen-doped carbon were synthesized
by Yu et al. [64] They show an outstanding cycling stability with a high reversible specific
capacity of 128.4 mA h g−1 and 95.9 mA h g−1 after 3000 cycles under high current densities
of 5 A g−1 and 10 A g−1, respectively. The enhanced sodium storage performance can be
attributed to the improved electronic conductivity, relief of stress and shortening of ion and
electron transmission distance.

Graphene is often used as a modifier based on its excellent electronic conductiv-
ity. Li et al. prepared uniform sandwich-like mesoporous Nb2O5/graphene/mesoporous
Nb2O5 nanosheets as the anode for SIBs [65]. Sun et al. prepared Nb2O5 nanowires@PECVD-
derived graphene anode [66]. Both of them demonstrated excellent sodium storage perfor-
mances with the aid of graphene, along with improved electronic conductivity. Yu et al.
prepared S-doped T-Nb2O5 hollow nanospheres/S-doped graphene networks [67]. Ow-
ing to the effects of S-doping and the excellent electronic conductivity of graphene, the
sodium storage performance of T-Nb2O5 was dramatically improved. It demonstrated
a high specific capacity of 100 mA h g−1 at 20C rate after 3000 cycles. In addition, other
carbon-modified samples, such as Nb2O5 nanoparticles/N-doped graphene hybrid an-
ode [68], carbon-confined ultrasmall T-Nb2O5 nanocrystals anchored on a carbon nan-
otube electrode [69], mesoporous niobium pentoxide/carbon composite electrode [70],
pomegranate-like structured Nb2O5/carbon@N-doped carbon composites [71], core-shell
structured Nb2O5@N-doped carbon nanoparticles [72], etc., all delivered excellent rate and
cycle stability performances.
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4.2. Structure Optimization

The combination of nanostructures and carbon modification can effectively enhance
ion transport kinetics. Hu et al. prepared carbon-bridged Nb2O5 mesocrystals by a rapid
microwave-assisted method and subsequent heat treatment [73]. Carbon coating/bridging
can improve electronic conductivity. The designed mesocrystalline structure possesses
rich boundaries and a uniform nanocrystalline orientation. Supported by these structural
advantages, the electrode shows ultrafast sodium storage performances. It shows a high
specific capacity of 133.4 mA h g−1 under a high current density of 50 C (72 s). The electrode
also exhibits excellent cycle stability with a high retention of 80.5% (112.4 mA h g−1) after
10,000 cycles at the high current density of 20 C. Moreover, the galvanostatic intermittent
titration technique (GITT) results indicate that the well-defined mesocrystalline architecture
dramatically shorten the Na-ion transport distance and promotes the intercalation behavior
of Na-ions. As we know, during the charging and discharging process, the crystalline phase
of the Nb2O5 electrode will change to amorphous, limiting its electrochemical sodium
storage performance. Aiming at this problem, Li et al. designed a 3D ordered macroporous
amorphous Nb2O5 with rich mesoporosity [74]. The hierarchical porous structure promotes
the insertion and extraction of sodium ions. As the anode of SIBs, it shows good sodium
storage performances with a high specific capacity of 131 mA h g−1 after 500 cycles at
the current density of 5 A g−1. In addition, owing to the effective structural regulation
strategies of nanowires and quantum dots, architecturing aligned orthorhombic Nb2O5
nanowires and Nb2O5 quantum dots confined in multi-chamber yeast carbon also exhibit
excellent energy storage performance in SIBs [75,76].

4.3. Defect Engineering

Nanoscale defect engineering has been widely used to improve the energy stor-
age performance of electrodes [77,78]. As shown in Figure 6, Chen et al. designed a
Nb2O5@carbon nanoreactor containing both an O–Nb–C heterointerface and oxygen va-
cancies (Nb2O5−x@MEC) [79]. This nanoreactor not only effectively immobilizes defective
Nb2O5 by forming an O-Nb-C heterointerface, but also provides uniform dispersion of
Nb2O5 to prevent their agglomeration. The framework is favorable to improve sodium
storage and enhance redox reaction kinetics. Benefiting from such structural advantages, as
the anode of SIBs, it presents a high discharge specific capacity of 450, 325, 250, 215, 192, 179,
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156 and 130 mA h g−1 at 0.2, 0.4, 1, 2, 4, 6, 10 and 20 A g−1, respectively. Even under a high
current density of 20 A g−1, it still has reversible specific capacity of 105 mA h g−1 with
stable Coulombic efficiency of nearly 100% after 5000 cycles. Moreover, Lee et al. prepared
partially surface-amorphized and defect-rich black Nb2O5−x@graphene nanosheets with
the aid of surface-engineering treatment [80]. The sample shows lots of defects including
Nb4+ ions, oxygen vacancies and an amorphous surface layer, which bring improved elec-
tron transport and enhanced surface capacitance energy storage. As a result, the electrode
delivers excellent rate performance with a high specific capacity of 202 and 123 mA h g−1

at the current densities of 500 and 3000 mA g−1, respectively.
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4.4. Increased Mass Loading

As we know, through structural optimization and carbon modification engineering,
the sodium storage performance of Nb2O5 electrode can be effectively improved. However,
most of the reported electrodes are based on low mass loading of active materials. In
order to maximize the energy density of batteries, commercial secondary batteries put
forward higher requirements on the mass loading of active electrode materials. Although
the electrode with low mass loading has obvious advantages in the transport of ions and
electrons, its practical application is limited. Especially for SIBs, developing an effective
electrode structure with excellent sodium storage performance under high mass loading
is crucial for future commercial applications. Duan et al. made a major breakthrough in
the research of using the high mass loading of Nb2O5 electrode in LIBs [43]. It was found
that three-dimensional porous graphene can be used as a frame structure to achieve high
mass loading of electrode materials. The research also optimized the rate performance
and area capacity of the electrode at high mass loading, which indicates that the Nb2O5
composite electrode shows great potential in commercial application. For its sodium
storage applications, as shown in Figure 7, Cao et al. designed a 3D porous network
composed of carbon nanotube (CNT)@T-Nb2O5@C nanocables [81]. In this structure, an
Nb2O5 intermediate layer is sandwiched between an underlying CNT skeleton and an
outer carbon shell. By thickening the Nb2O5 intermediate layer, the mass loading of a
sponge anode can be effectively improved. As the anode of SIBs, the sponge electrode
shows reversible areal capacities of 2.7 mA h cm−2 after 200 cycles when the mass loading
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reaches 16.6 mg cm−2 with a negligible capacity fading rate. Such performance is more
than 9 times better than the previously reported Nb2O5-based samples.
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4.5. Flexible Electrode

Flexible electronic devices have important application prospects in biological, medical,
display, wearable health devices and other fields [82–84]. Accordingly, it is necessary to
develop flexible power supply devices. Therefore, the development of flexible energy
storage electrodes is one of the most critical steps for the wide application of flexible
electronic devices. In addition, the active material of the electrode is usually loaded on a
heavy metal collector. If taking the weight of the metal collector into account, the specific
capacity of the entire electrode is much smaller [85]. Therefore, the development of free-
standing, adhesive-free, conductive agent-free and metal collector-free flexible electrodes
can effectively improve the energy density of the entire battery. Based on the rapid sodium-
ion insertion/extraction kinetics of Nb2O5, developing flexible Nb2O5 sodium storage
anodes will have an important application prospect.

As shown in Figure 8, Hu et al. designed large-area free-standing mesoporous T-
Nb2O5/carbon nanofiber films (m-Nb2O5/CNF) via an electrospinning method [86]. In
this structure, polyacrylonitrile is used as a carbon source and flexible support frame
after carbonization. Tetraethyl orthosilicate is a template precursor. Mesoporous net-
works are obtained after thermal treatment of the precursor nanofibers and subsequent
SiO2-etching. As the anode of SIBs, the m-Nb2O5/CNF film electrode delivers a high
specific capacity of 287 mA h g−1 and 172 mA h g−1 at the rates of 0.5 C and 150 C, respec-
tively. By applying electrospinning technology, Liu et al. also fabricated flexible Nb2O5
nanorods/microporous multichannel carbon nanofiber film anode [87]. It shows a high
specific capacity of 287 mA h g−1 at 4 A g−1 and a high retention of 91% after 10,000 cy-
cles at 2 A g−1. Moreover, carbon cloth is also often used as a flexible self-supporting
framework. Chen et al. investigated the sodium storage application of Nb2O5 nanotubes
on carbon cloth [88]. In addition, Cao et al. prepared a flexible Nb2O5/carbon nanotube
film through a facile hydrothermal treatment and vacuum filtration process [89]. With the
aid of multiwalled carbon nanotubes and vacuum filtration, Zanin et al. also obtained a
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free-standing Nb2O5-based sodium storage anode [90]. In addition, Yu et al. designed 3D
porous reticular T-Nb2O5@carbon thin film electrodes via an electrostatic spray deposition
technique, showing excellent rate and cycle stability performances [91]. As we can see,
selecting appropriate preparation technology is an effective way to prepare self-standing
electrodes.
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and SEM images of (b,c) Nb2O5/SiO2/CNF and (d,e) m-Nb2O5/CNF. (f) The relationship between
peak currents and scan rates of m-Nb2O5/CNF and Nb2O5/CNF. (g) Capacitive contribution curves
of m-Nb2O5/CNF at 10 mV s−1. (h) Normalized ratio for m-Nb2O5/CNF and Nb2O5/CNF at
different scan rates. Reproduced with permission from Ref. [86] Copyright 2019 Wiley.

4.6. Electrode Based on Synergistic Effects

Structural engineering, defect engineering and carbon modification strategies have
been widely used to solve Nb2O5‘s poor conductivity and improve its sodium storage
performance. Lots of remarkable achievements have been achieved [38]. The flexible
electrode strategy is also expected to significantly improve the energy density of the
entire battery [92]. Although these modification projects can effectively improve the
sodium storage performance, the relatively low theoretical specific capacity still limits
the practical application of Nb2O5 in SIBs. Based on the inherent structural advantages,
the intercalation-type Nb2O5 shows a rapid sodium insertion/extraction behavior and
excellent cycle stability performance. In order to give full play to the energy storage
advantages of Nb2O5 and make up for its relatively low specific capacity of sodium storage,
an effective strategy is to composite alloy-type or conversion-type anodes, which have
higher theoretical specific capacity but poor rate and cycle stability performances. With the
aid of multiple mechanism synergetic effects, the composite electrodes will give play to
their respective energy storage advantages of different anode materials and complement
their respective energy storage disadvantages, which can effectively improve the specific
capacity, rate and cycle performances of SIBs.

As shown in Figure 9, by subtly utilizing the synergistic effect of three different sodium
storage mechanisms, including the intercalation-type Nb2O5, conversion-type MoS2 and
adsorption-type hard carbon, Zhu et al. designed a three-dimensional flexible Nb2O5@hard
carbon@MoS2@Soft carbon composite electrode material [93]. The hard carbon network
derived from electrospinning provides a flexible support framework. Intercalation-type
Nb2O5 has the inherent advantage of sodium storage, showing excellent rate and cycle
stability performance. The recombination of MoS2 significantly improves the specific ca-
pacity of the electrode and therefore constructs a Nb2O5@MoS2 heterojunction channel
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with enhanced sodium transport. The coated soft carbon not only improves the electronic
conductivity, but also restrains the volume expansion of the electrode. The sodium storage
capacity of the prepared composite electrode is higher than that of hard carbon and Nb2O5,
and the rate and cycling performance are better than MoS2. After 20,000 cycles, the capacity
maintenance rate is still more than 82%. Such excellent performance can be attributed to
the beneficial integration of multiple mechanisms in adsorption, intercalation and conver-
sion, as well as the accompanying multiple synergistic effects. In particular, Nb2O5 with
fast pseudocapacitive sodium storage behavior plays an important role in enhancing the
electrochemical sodium storage performance of this composite electrode [93]. In addition,
alloy-type antimony (Sb) anode shows a high theoretical capacity of 660 mA h g−1 for
SIBs, but with a poor rate performance. Based on the energy storage advantages and
disadvantages of Nb2O5 and Sb, Bi et al. prepared Sb-Nb2O5 nano-meshes [94]. As for
the application in SIBs, they show a high specific capacity of 190 mA h g−1 at the current
density of 10 A g−1 under the accompanying synergistic effect. Table 2 shows the energy
storage performances of the reported Nb2O5-based and other typical intercalation-type
anode materials for application in SIBs.
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Table 2. Energy storage performances of the reported Nb2O5-based and other typical intercalation-
type anode materials for application in SIBs.

Materials Sodium Storage Performances References

Nb2O5@NC 128.4 mA h g−1 and 95.9 mA h g−1 after 3000 cycles at
5 A g−1 and 10 A g−1, respectively.

[64] Nanoscale, 2020, 12, 18673

Nb2O5@C 255 mA h g−1 at 1 A g−1 over 150 cycles, and 160 mA h g−1 at
10 A g−1 over 1000 cycles

[63] J. Mater. Chem. A, 2021, 9, 23467

T-Nb2O5-C-rGO 240 mA h g−1 at 0.1 A g−1, with a 68% capacity retain at
1 A g−1 after 1000 cycles

[62] Electrochim. Acta, 2022, 411, 140070

T-Nb2O5−xFy-C-NBs 292 mA h g−1 at 0.05 A g−1, 0.002% capacity decay per cycle
over 10,000 cycles at 1 A g−1 [47] J. Mater. Chem. A, 2019, 7, 20813
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Table 2. Cont.

Materials Sodium Storage Performances References

black Nb2O5−x@rGO 202 and 123 mA h g−1 at 500 and 3000 mA g−1, respectively. [80] Small, 2019, 15, 1901272

meso-Nb2O5@C 133.4 mA h g−1 at 50C, 112.4 mA h g−1 (80.5% retention) after
10,000 cycles even at 20 C

[73] J. Mater. Chem. A, 2022, 10, 11470

Nb2O5−x@MEC 105 mA h g−1 at 20 A g−1 with stable Coulombic efficiency of
nearly 100% after 5000 cycles

[79] Adv. Energy Mater., 2022, 12,
2103716

CNT@T-Nb2O5@C Areal capacities of 2.7 mA h cm−2 after 200 cycles at the mass
loading of 16.6 mg cm−2 [81] Nano Energy, 2020, 78, 105265

(m-Nb2O5)/CNF 287 mA h g−1 and 172 mA h g−1 at the rate of 0.5 C and 150 C,
respectively

[86] Small, 2019, 15, 1804539

(NS-TiO2)
307.5 and 156.4 mA h g−1 at 33.5 and 5025 mA g−1,
respectively, and 90.5% retention over 2400 cycles at

3350 mA g−1

[95] Adv. Energy Mater., 2021, 11,
2003037

TiO2/C 262 and 97 mA h g−1 at 0.1 and 2.0 A g−1, respectively, and
∼109 mA h g−1 over 1000 cycles at 1.0 A g−1

[96] ACS Appl. Energy Mater., 2022, 5,
3447

Na2Ti3O7@C 173 mA h g−1 at 200 mA g−1 and only 0.026% attenuation per
cycle at 2 A g−1 after 200 cycles

[97] Chem. Eng. J., 2019, 378, 122209

nCNT@Na2Ti3O7
206.5 mA h g−1 at 0.1 A g−1, and ∼93% capacity retention

after 1000 cycles at 5 A g−1)
[98] Nanoscale, 2022, 14, 8374

5. Conclusions and Perspectives

As a typical representative of niobium-based oxides used as anodes in secondary
battery applications, Nb2O5 has received extensive attention due to its inherent structural
energy storage advantages. The 4g layer in its structure has a spacious atom holding space,
which can provide a preferred storage and transport place for ions, forming a quasi-2D
channel for sodium ion transport. In addition, due to its rich redox chemistry and high
chemical structure stability, it shows excellent rate and cycle stability performance in SIBs.
However, the poor electronic conductivity hinders its application in electrochemical energy
storage. Although the sodium storage performance of Nb2O5 electrode can be improved
through various strategies, such as structure optimization and electronic conductivity
improvement engineering, there are still some important problems that need to be clarified
and solved so that they can be applied to large-scale energy storage and smart grids based
on their cost advantages in the future.

There are many researches on theoretical calculation of Nb2O5 in LIBs, but few in SIBs.
Although it has the large interplanar spacing of 0.39 nm for the (001) planes, it is necessary
to calculate the spatial steric resistance, migration path and barrier range of sodium ions
due to its larger Na-ion radius after they are embedded. In the future, more theoretical
calculation research should focus on the Na-ion insertion/extraction process, as well as
dendrites and side reactions in SIBs.

Although Nb2O5 has many advantages in sodium storage, it also has some disadvan-
tages. Its poor electronic conductivity restricts its structural energy storage advantages.
Compared with the conversion-type and alloy-type sodium storage anodes, its theoretical
specific capacity is relatively lower, which further limits its practical application. How to
significantly improve the electronic conductivity of Nb2O5 through effective strategies is
still the key research direction in the future. Among them, carbon modification, structural
optimization and defect engineering are still the main modification methods. Although
a nano-sized electrode is conducive to enhance its electrochemical sodium storage per-
formance, it also brings additional and complex synthesis processes, low tap density and
difficulties in commercial batch production. The development and application of micron-
sized electrodes will be an important research topic in the future. In addition, during
the process of carbon modification, the mass percentage of carbon material is often high.
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Although more carbon can bring better electronic conductivity, its sodium storage capacity
is low, which will further reduce the sodium storage capacity of the whole Nb2O5-based
electrode. Developing low-carbon modification projects, which can still significantly im-
prove their electronic conductivity, will be the focus of carbon modification strategies in
the future.

For the practical application of Nb2O5 anodes, at present, most of the modified prepa-
ration methods are complex, with many preparation processes, expensive reaction ma-
terials, harsh conditions, expensive equipment, etc., which are not conducive to their
large-scale preparation and application. In the future, the modification strategy should
focus on the simple and easy methods for large-area preparation. In addition, high- and
low-temperature research on Nb2O5 electrodes and the synergistic effect of composite
electrodes are all worthy of study in the future.
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