Advanced Nb2O5 Anode towards Fast Pseudocapacitive Sodium Storage
Abstract
:1. Introduction
1.1. Battery Technology
1.2. Anodes of Sodium-Ion Batteries
1.3. Intercalation-Type Nb2O5 Anode
2. Energy Storage Structure of Nb2O5 Anode
3. Pseudocapacitive Energy Storage Mechanisms
4. Applications in Sodium-Ion Batteries
4.1. Carbon Modification
4.2. Structure Optimization
4.3. Defect Engineering
4.4. Increased Mass Loading
4.5. Flexible Electrode
4.6. Electrode Based on Synergistic Effects
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omer, A.M. Energy, environment and sustainable development. Renew. Sustain. Energy Rev. 2008, 12, 2265–2300. [Google Scholar] [CrossRef]
- Midilli, A.; Dincer, I.; Ay, M. Green energy strategies for sustainable development. Energy Policy 2006, 34, 3623–3633. [Google Scholar] [CrossRef]
- Rahman, A.; Farrok, O.; Haque, M.M. Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renew. Sustain. Energy Rev. 2022, 161, 492–505. [Google Scholar] [CrossRef]
- Yu, Y.; Lee, S.J.; Theerthagiri, J.; Lee, Y.; Choi, M.Y. Architecting the AuPt alloys for hydrazine oxidation as an anolyte in fuel cell: Comparative analysis of hydrazine splitting and water splitting for energy-saving H-2 generation. Appl. Catal. B 2022, 316, 121603. [Google Scholar] [CrossRef]
- Iqbal, K.; Ikram, M.; Afzal, M.; Ali, S. Efficient, low-dimensional nanocomposite bilayer CuO/ZnO solar cell at various annealing temperatures. Mater. Renew. Sustain. Energy 2018, 7, 4. [Google Scholar] [CrossRef][Green Version]
- Ikram, M.; Murray, R.; Imran, M.; Ali, S.; Shah, S.I. Enhanced performance of P3HT/(PCBM:ZnO:TiO2) blend based hybrid organic solar cells. Mater. Res. Bull. 2016, 75, 35–40. [Google Scholar] [CrossRef]
- Hall, P.J.; Bain, E.J. Energy-storage technologies and electricity generation. Energy Policy 2008, 36, 4352–4355. [Google Scholar] [CrossRef][Green Version]
- Arico, A.S.; Bruce, P.; Scrosati, B.; Tarascon, J.M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377. [Google Scholar] [CrossRef]
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion Batteries. Adv. Mater. 2018, 30, 1800561. [Google Scholar] [CrossRef][Green Version]
- Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699. [Google Scholar] [CrossRef]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Source 2013, 226, 272–288. [Google Scholar] [CrossRef]
- Huang, B.; Pan, Z.; Su, X.; An, L. Recycling of lithium-ion batteries: Recent advances and perspectives. J. Power Source 2018, 399, 274–286. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Nayak, P.K.; Yang, L.; Brehm, W.; Adelhelm, P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises. Angew. Chem. Int. Ed. 2018, 57, 102–120. [Google Scholar] [CrossRef]
- Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 710–721. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef][Green Version]
- Delmas, C. Sodium and Sodium-Ion Batteries: 50 Years of Research. Adv. Energy Mater. 2018, 8, 1703137. [Google Scholar] [CrossRef]
- Li, L.; Zheng, Y.; Zhang, S.; Yang, J.; Shao, Z.; Guo, Z. Recent progress on sodium ion batteries: Potential high-performance anodes. Energy Environ. Sci. 2018, 11, 2310–2340. [Google Scholar] [CrossRef][Green Version]
- Xiang, X.; Zhang, K.; Chen, J. Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries. Adv. Mater. 2015, 27, 5343–5364. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q. Advanced Materials for Electrocatalysis and Energy Storage. Coatings 2022, 12, 901. [Google Scholar] [CrossRef]
- Lao, M.; Zhang, Y.; Luo, W.; Yan, Q.; Sun, W.; Dou, S.X. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries. Adv. Mater. 2017, 29, 1700622. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Chen, Z.; Cao, Y. Transition metal oxides based on conversion reaction for sodium-ion battery anodes. Mater. Today Chem. 2018, 9, 114–132. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Du, R.; He, X.-X.; Wang, J.-C.; Qiao, Y.; Li, L.; Chou, S.-L. Recent Progress on Intercalation-Based Anode Materials for Low-Cost Sodium-Ion Batteries. ChemSusChem 2021, 14, 3724–3743. [Google Scholar] [CrossRef]
- Tan, H.; Chen, D.; Rui, X.; Yu, Y. Peering into Alloy Anodes for Sodium-Ion Batteries: Current Trends, Challenges, and Opportunities. Adv. Funct. Mater. 2019, 29, 1808745. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, N.; Jiao, L.; Tao, Z.; Chen, J. Ultrasmall Sn Nanoparticles Embedded in Carbon as High-Performance Anode for Sodium-Ion Batteries. Adv. Funct. Mater. 2015, 25, 214–220. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, X.-Y.; Lou, X.W.; Paik, U. Sb@C coaxial nanotubes as a superior long-life and high-rate anode for sodium ion batteries. Energy Environ. Sci. 2016, 9, 2314–2318. [Google Scholar] [CrossRef]
- Zhang, H.; Hasa, I.; Passerini, S. Beyond Insertion for Na-Ion Batteries: Nanostructured Alloying and Conversion Anode Materials. Adv. Energy Mater. 2018, 8, 1702582. [Google Scholar] [CrossRef]
- Fang, L.; Bahlawane, N.; Sun, W.; Pan, H.; Xu, B.B.; Yan, M.; Jiang, Y. Conversion-Alloying Anode Materials for Sodium Ion Batteries. Small 2021, 17, 2101137. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, X.; Tan, X.; An, Q.; Mai, L. Nanostructured Conversion-Type Negative Electrode Materials for Low-Cost and High-Performance Sodium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1804458. [Google Scholar] [CrossRef]
- Xu, Z.-L.; Park, J.; Yoon, C.; Kim, H.; Kang, K. Graphitic Carbon Materials for Advanced Sodium-Ion Batteries. Small Methods 2019, 3, 1800227. [Google Scholar] [CrossRef]
- Hou, H.; Qiu, X.; Wei, W.; Zhang, Y.; Ji, X. Carbon Anode Materials for Advanced Sodium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602898. [Google Scholar] [CrossRef]
- Lee, S.J.; Theerthagiri, J.; Nithyadharseni, P.; Arunachalam, P.; Balaji, D.; Kumar, A.M.; Madhavan, J.; Mittal, V.; Choi, M.Y. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renew. Sustain. Energy Rev. 2021, 143, 110849. [Google Scholar] [CrossRef]
- Pan, H.; Lu, X.; Yu, X.; Hu, Y.-S.; Li, H.; Yang, X.-Q.; Chen, L. Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room-Temperature Sodium-Ion Batteries. Adv. Energy Mater. 2013, 3, 1186–1194. [Google Scholar] [CrossRef]
- Lou, S.; Zhao, Y.; Wang, J.; Yin, G.; Du, C.; Sun, X. Ti-Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. Small 2019, 15, 1904740. [Google Scholar] [CrossRef]
- Deng, Q.; Fu, Y.; Zhu, C.; Yu, Y. Niobium-Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges. Small 2019, 15, 1804884. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Qian, R.; Cheng, Y.; Wu, H.-H.; Wu, X.; Pan, K.; Zhang, Q. Micro/nanostructured TiNb2O7-related electrode materials for high-performance electrochemical energy storage: Recent advances and future prospects. J. Mater. Chem. A 2020, 8, 18425–18463. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Y.; Lv, H.; Chen, S.; van Aken, P.A.; Wu, X.; Maier, J.; Yu, Y. Ultrathin Ti2Nb2O9 Nanosheets with Pseudocapacitive Properties as Superior Anode for Sodium-Ion Batteries. Adv. Mater. 2018, 30, 1804378. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.; Jo, C.; Kim, M.S.; Kim, M.-H.; Chun, J.; Kim, H.; Park, J.; Roh, K.C.; Kang, K.; Yoon, S.; et al. High-Performance Sodium-Ion Hybrid Supercapacitor Based on Nb2O5@Carbon Core-Shell Nanoparticles and Reduced Graphene Oxide Nanocomposites. Adv. Funct. Mater. 2016, 26, 3711–3719. [Google Scholar] [CrossRef]
- Yi, T.-F.; Sari, H.M.K.; Li, X.; Wang, F.; Zhu, Y.-R.; Hu, J.; Zhang, J.; Li, X. A review of niobium oxides based nanocomposites for lithium-ion batteries, sodium-ion batteries and supercapacitors. Nano Energy 2021, 85, 105955. [Google Scholar] [CrossRef]
- Sun, H.; Mei, L.; Liang, J.; Zhao, Z.; Lee, C.; Fei, H.; Ding, M.; Lau, J.; Li, M.; Wang, C.; et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Deng, Q.; Li, M.; Wang, J.; Jiang, K.; Hu, Z.; Chu, J. Free-anchored Nb2O5@graphene networks for ultrafast-stable lithium storage. Nanotechnology 2018, 29, 185401. [Google Scholar] [CrossRef]
- Jing, P.; Liu, K.; Soule, L.; Wang, J.; Li, T.; Zhao, B.; Liu, M. Engineering the architecture and oxygen deficiency of T-Nb2O5-carbon-graphene composite for high-rate lithium-ion batteries. Nano Energy 2021, 89, 106398. [Google Scholar] [CrossRef]
- Griffith, K.J.; Forse, A.C.; Griffin, J.M.; Grey, C.P. High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases. J. Am. Chem. Soc. 2016, 138, 8888–8899. [Google Scholar] [CrossRef][Green Version]
- Wu, Y.; Fan, X.; Chen, Y.; Gaddam, R.R.; Yu, F.; Xiao, C.; Lin, C.; Zhao, Q.; Sun, X.; Wang, H.; et al. Fluorine substitution enabling pseudocapacitive intercalation of sodium ions in niobium oxyfluoride. J. Mater. Chem. A 2019, 7, 20813–20823. [Google Scholar] [CrossRef]
- Chen, D.; Wang, J.-H.; Chou, T.-F.; Zhao, B.; El-Sayed, M.A.; Liu, M. Unraveling the Nature of Anomalously Fast Energy Storage in T-Nb2O5. J. Am. Chem. Soc. 2017, 139, 7071–7081. [Google Scholar] [CrossRef]
- Augustyn, V.; Come, J.; Lowe, M.A.; Kim, J.W.; Taberna, P.-L.; Tolbert, S.H.; Abruna, H.D.; Simon, P.; Dunn, B. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12, 518–522. [Google Scholar] [CrossRef]
- Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614. [Google Scholar] [CrossRef]
- Wei, Q.; DeBlock, R.H.; Butts, D.M.; Choi, C.; Dunn, B. Pseudocapacitive Vanadium-based Materials toward High-Rate Sodium-Ion Storage. Energy Environ. Mater. 2020, 3, 221–234. [Google Scholar] [CrossRef]
- Yu, F.; Huang, T.; Zhang, P.; Tao, Y.; Cui, F.-Z.; Xie, Q.; Yao, S.; Wang, F. Design and synthesis of electrode materials with both battery-type and capacitive charge storage. Energy Storage Mater. 2019, 22, 235–255. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J. Definitions of Pseudocapacitive Materials: A Brief Review. Energy Environ. Mater. 2019, 2, 30–37. [Google Scholar] [CrossRef][Green Version]
- Choi, C.; Ashby, D.S.; Butts, D.M.; DeBlock, R.H.; Wei, Q.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2020, 5, 5–19. [Google Scholar] [CrossRef]
- Lukatskaya, M.R.; Kota, S.; Lin, Z.; Zhao, M.-Q.; Shpigel, N.; Levi, M.D.; Halim, J.; Taberna, P.-L.; Barsoum, M.; Simon, P.; et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105. [Google Scholar] [CrossRef][Green Version]
- Xu, G.; Wang, Q.; Su, Y.; Liu, M.; Li, Q.; Zhang, Y. Revealing Electrochemical Sodiation Mechanism of Orthogonal-Nb2O5 Nanosheets by In Situ Transmission Electron Microscopy. Acta Phys.-Chim. Sin. 2022, 38, 2009073. [Google Scholar]
- Ni, J.; Wang, W.; Wu, C.; Liang, H.; Maier, J.; Yu, Y.; Li, L. Highly Reversible and Durable Na Storage in Niobium Pentoxide through Optimizing Structure, Composition, and Nanoarchitecture. Adv. Mater. 2017, 29, 1605607. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, Y.-E.; Sheng, J.; Li, F.; Tang, B.; Zhang, Y.; Zhou, Z. T-Nb2O5/C Nanofibers Prepared through Electrospinning with Prolonged Cycle Durability for High-Rate Sodium-Ion Batteries Induced by Pseudocapacitance. Small 2017, 13, 1702588. [Google Scholar] [CrossRef]
- Yan, L.; Chen, G.; Sarker, S.; Richins, S.; Wang, H.; Xu, W.; Rui, X.; Luo, H. Ultrafine Nb2O5 Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery. ACS Appl. Mater. Interfaces 2016, 8, 22213–22219. [Google Scholar] [CrossRef]
- Wang, L.; Bi, X.; Yang, S. Partially Single-Crystalline Mesoporous Nb2O5 Nanosheets in between Graphene for Ultrafast Sodium Storage. Adv. Mater. 2016, 28, 7672–7679. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Dong, S.; Shen, L.; Chen, Z.; Zhang, X.; Yu, G. Self-Assembled Nb2O5 Nanosheets for High Energy-High Power Sodium Ion Capacitors. Chem. Mater. 2016, 28, 5753–5760. [Google Scholar] [CrossRef]
- Bi, Z.; Zhang, Y.; Li, X.; Liang, Y.; Ma, W.; Zhou, Z.; Zhu, M. Porous fibers of carbon decorated T-Nb2O5 nanocrystal anchored on three-dimensional rGO composites combined with rGO nanosheets as an anode for high-performance flexible sodium-ion capacitors. Electrochim. Acta 2022, 411, 140070. [Google Scholar] [CrossRef]
- Zhao, Z.; Cheng, J.; Li, K.; Li, C.; Zhang, S.; Pei, X.; Niu, Z.; Liu, Z.; Fu, Y.; Li, D. Heterojunction interfacial promotion of fast and prolonged alkali-ion storage of urchin-like Nb2O5@C nanospheres. J. Mater. Chem. A 2021, 9, 23467–23476. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, W.; Wang, H.; Xiao, Z.; Yu, F. N-doped carbon-coated ultrasmall Nb2O5 nanocomposite with excellent long cyclability for sodium storage. Nanoscale 2020, 12, 18673–18681. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Liu, S.; Zhou, Y.; Zhao, J.; Wu, Y.; Wang, Y.; Li, Y. Rapid redox kinetics in uniform sandwich-structured mesoporous Nb2O5/graphene/mesoporous Nb2O5 nanosheets for high-performance sodium-ion supercapacitors. Energy Storage Mater. 2018, 13, 223–232. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Zhang, L.; Hu, Z.; Yu, L.; Jiang, T.; Lu, C.; Yan, C.; Sun, J.; Liu, Z. Caging Nb2O5 Nanowires in PECVD-Derived Graphene Capsules toward Bendable Sodium-Ion Hybrid Supercapacitors. Adv. Mater. 2018, 30, 1800963. [Google Scholar] [CrossRef]
- Liu, F.; Cheng, X.; Xu, R.; Wu, Y.; Jiang, Y.; Yu, Y. Binding Sulfur-Doped Nb2O5 Hollow Nanospheres on Sulfur-Doped Graphene Networks for Highly Reversible Sodium Storage. Adv. Funct. Mater. 2018, 28, 1800394. [Google Scholar] [CrossRef]
- She, L.; Iran, Z.; Kang, L.; He, X.; Lei, Z.; Shi, F.; Xu, H.; Sun, J.; Liu, Z.-H. Nb2O5 Nanoparticles Anchored on an N-Doped Graphene Hybrid Anode for a Sodium-Ion Capacitor with High Energy Density. ACS Omega 2018, 3, 15943–15951. [Google Scholar] [CrossRef][Green Version]
- Zhu, S.; Yang, Y.; Liu, J.; Sun, J. Carbon-confined ultrasmall T-Nb2O5 nanocrystals anchored on carbon nanotubes by pyrolysing MLD-niobiumcone films for enhanced electrochemical applications. J. Mater. Chem. A 2020, 8, 25371–25381. [Google Scholar] [CrossRef]
- Wu, Y.; Fan, X.; Gaddam, R.R.; Zhao, Q.; Yang, D.; Sun, X.; Wang, C.; Zhao, X.S. Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. J. Power Source 2018, 408, 82–90. [Google Scholar] [CrossRef]
- Yuan, J.; Li, X.; Liu, J.; Zuo, S.; Li, X.; Li, F.; Gan, Y.; He, H.; Xu, X.; Zhang, X.; et al. Pomegranate-like structured Nb2O5/Carbon@N-doped carbon composites as ultrastable anode for advanced sodium/potassium-ion batteries. J. Colloid Interface Sci. 2022, 613, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, Y.; Veerasubramani, G.K.; Park, M.-S.; Kim, D.-W. Core-shell structured Nb2O5@N-doped carbon nanoparticles as an anode material for Na-ion batteries. Mater. Lett. 2022, 314, 131891. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, S.; Li, Y.; Hu, X. Rapid microwave synthesis of carbon-bridged Nb2O5 mesocrystals for high-energy and high-power sodium-ion capacitors. J. Mater. Chem. A 2022, 10, 11470–11476. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Wang, X.; Li, Y.; Zhao, Y.; Bakenov, Z.; Li, G. 3D ordered macroporous amorphous Nb2O5 as anode material for high-performance sodium-ion batteries. Appl. Surf. Sci. 2021, 567, 150862. [Google Scholar] [CrossRef]
- Jin, J.; Cai, J.; Wang, X.; Sun, Z.; Song, Y.; Sun, J. Architecturing aligned orthorhombic Nb2O5 nanowires toward sodium-ion hybrid capacitor and Lithium-Sulfur battery applications. Flatchem 2021, 27, 100236. [Google Scholar] [CrossRef]
- Lian, Y.; Yang, N.; Bai, Y.; Wang, D.; Yan, H.; Wang, Z.; Zhao, J.; Zhang, H. Nb2O5 quantum dots confined in multi-chamber yeast carbon for sodium ion hybrid capacitors. J. Alloys Compd. 2022, 896, 163128. [Google Scholar] [CrossRef]
- Huang, H.; Xu, R.; Feng, Y.; Zeng, S.; Jiang, Y.; Wang, H.; Luo, W.; Yu, Y. Sodium/Potassium-Ion Batteries: Boosting the Rate Capability and Cycle Life by Combining Morphology, Defect and Structure Engineering. Adv. Mater. 2020, 32, 1904320. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Lv, C.; Zhang, R.; Wang, H.; Wang, J.; Zhang, Q. Defect engineering of molybdenum disulfide for energy storage. Mater. Chem. Front. 2021, 5, 5880–5896. [Google Scholar] [CrossRef]
- Luo, D.; Ma, C.; Hou, J.; Zhang, Z.; Feng, R.; Yang, L.; Zhang, X.; Lu, H.; Liu, J.; Li, Y.; et al. Integrating Nanoreactor with O-Nb-C Heterointerface Design and Defects Engineering Toward High-Efficiency and Longevous Sodium Ion Battery. Adv. Energy Mater. 2022, 12, 2103716. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, R.; Wu, S.; Shen, D.; Jiao, T.; Zhang, K.; Zhang, W.; Lee, C.-S. Surface-Engineered Black Niobium Oxide@Graphene Nanosheets for High-Performance Sodium-/Potassium-Ion Full Batteries. Small 2019, 15, 1901272. [Google Scholar] [CrossRef]
- Chen, Y.; Yousaf, M.; Wang, Y.; Wang, Z.; Lou, S.; Han, R.P.S.; Yang, Y.; Cao, A. Nanocable with thick active intermediate layer for stable and high-areal-capacity sodium storage. Nano Energy 2020, 78, 105265. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ramakrishna, S.; Aberle, A.G. Recent progress in flexible-wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743. [Google Scholar] [CrossRef]
- Wang, J.-L.; Hassan, M.; Liu, J.-W.; Yu, S.-H. Nanowire Assemblies for Flexible Electronic Devices: Recent Advances and Perspectives. Adv. Mater. 2018, 30, 1803430. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D.-H. Recent Advances in Flexible and Stretchable Bio-Electronic Devices Integrated with Nanomaterials. Adv. Mater. 2016, 28, 4203–4218. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, Y.; Han, F.; Luo, C.; Wang, C. 3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li-Ion Batteries. Adv. Energy Mater. 2015, 5, 1400753. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Wang, L.; Mao, Z.; Wang, R.; He, B.; Gong, Y.; Hu, X. Mesopore-Induced Ultrafast Na+-Storage in T-Nb2O5/Carbon Nanofiber Films toward Flexible High-Power Na-Ion Capacitors. Small 2019, 15, 1804539. [Google Scholar] [CrossRef]
- She, L.; Zhang, F.; Jia, C.; Kang, L.; Li, Q.; He, X.; Sun, J.; Lei, Z.; Liu, Z.-H. Electrospun Nb2O5 nanorods/microporous multichannel carbon nanofiber film anode for Na+ ion capacitors with good performance. J. Colloid Interface Sci. 2020, 573, 1–10. [Google Scholar] [CrossRef]
- Jia, R.; Jiang, Y.; Li, R.; Chai, R.; Lou, Z.; Shen, G.; Chen, D. Nb2O5 nanotubes on carbon cloth for high performance sodiumion capacitors. Sci. China Mater. 2020, 63, 1171–1181. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, H.; Zhan, Z.; Li, Y.; Ling, M.; Gao, X. Construction of a Flexible Nb2O5/Carboxyl Multiwalled Carbon Nanotube Film as Anode for Lithium and Sodium Storages. ACS Appl. Energy Mater. 2020, 3, 11841–11847. [Google Scholar] [CrossRef]
- Real, C.G.; Thaines, E.H.N.S.; Pocrifka, L.A.; Freitas, R.G.; Singh, G.; Zanin, H. Freestanding niobium pentoxide-decorated multiwalled carbon nanotube electrode: Charge storage mechanism in sodium-ion pseudocapacitor and battery. J. Energy Storage 2022, 52, 104793. [Google Scholar] [CrossRef]
- Yang, H.; Xu, R.; Gong, Y.; Yao, Y.; Gu, L.; Yu, Y. An interpenetrating 3D porous reticular Nb2O5@carbon thin film for superior sodium storage. Nano Energy 2018, 48, 448–455. [Google Scholar] [CrossRef]
- Wang, H.-G.; Li, W.; Liu, D.-P.; Feng, X.-L.; Wang, J.; Yang, X.-Y.; Zhang, X.-b.; Zhu, Y.; Zhang, Y. Flexible Electrodes for Sodium-Ion Batteries: Recent Progress and Perspectives. Adv. Mater. 2017, 29, 1703012. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Chen, F.; Liu, S.; Bayaguud, A.; Feng, Y.; Zhang, Z.; Fu, Y.; Yu, Y.; Zhu, C. Advantageous Functional Integration of Adsorption-Intercalation-Conversion Hybrid Mechanisms in 3D Flexible Nb2O5@Hard Carbon@MoS2@Soft Carbon Fiber Paper Anodes for Ultrafast and Super-Stable Sodium Storage. Adv. Funct. Mater. 2020, 30, 1908665. [Google Scholar] [CrossRef]
- Wang, L.; Bi, X.; Yang, S. Synergic antimony-niobium pentoxide nanomeshes for high-rate sodium storage. J. Mater. Chem. A 2018, 6, 6225–6232. [Google Scholar] [CrossRef]
- Fan, M.; Lin, Z.; Zhang, P.; Ma, X.; Wu, K.; Liu, M.; Xiong, X. Synergistic Effect of Nitrogen and Sulfur Dual-Doping Endows TiO2 with Exceptional Sodium Storage Performance. Adv. Energy Mater. 2021, 11, 2003037. [Google Scholar] [CrossRef]
- Huo, J.; Ren, Y.; Zhang, G.; Wang, X.; Guo, S. Boosting Sodium Storage of Hierarchical Nanofibers with Porous Carbon-Supported Anatase TiO2/TiO2(B) Nanowires. ACS Appl. Energy Mater. 2022, 5, 3447–3453. [Google Scholar] [CrossRef]
- Zhong, W.; Tao, M.; Tang, W.; Gao, W.; Yang, T.; Zhang, Y.; Zhan, R.; Bao, S.-J.; Xu, M. MXene-derivative pompon-like Na2Ti3O7@C anode material for advanced sodium ion batteries. Chem. Eng. J. 2019, 378, 122209. [Google Scholar] [CrossRef]
- Chen, J.; Mu, H.; Ding, J.; Zhang, Y.; Wang, W.; Wang, G. Stretchable sodium-ion capacitors based on coaxial CNT supported Na2Ti3O7 with high capacitance contribution. Nanoscale 2022, 14, 8374–8384. [Google Scholar] [CrossRef]
LIBs | SIBs | |
---|---|---|
Battery structure | Similar | Similar |
Ionic radius | 0.076 nm (Li) | 0.102 nm (Na) |
Voltage vs. SHE | −3.04 V (Li) | −2.71 V (Na) |
Crust Abundance | 0.0017 mass % (Li) | 2.3 mass % (Na) |
Advantages |
|
|
Disadvantages |
|
|
Materials | Sodium Storage Performances | References |
---|---|---|
Nb2O5@NC | 128.4 mA h g−1 and 95.9 mA h g−1 after 3000 cycles at 5 A g−1 and 10 A g−1, respectively. | [64] Nanoscale, 2020, 12, 18673 |
Nb2O5@C | 255 mA h g−1 at 1 A g−1 over 150 cycles, and 160 mA h g−1 at 10 A g−1 over 1000 cycles | [63] J. Mater. Chem. A, 2021, 9, 23467 |
T-Nb2O5-C-rGO | 240 mA h g−1 at 0.1 A g−1, with a 68% capacity retain at 1 A g−1 after 1000 cycles | [62] Electrochim. Acta, 2022, 411, 140070 |
T-Nb2O5−xFy-C-NBs | 292 mA h g−1 at 0.05 A g−1, 0.002% capacity decay per cycle over 10,000 cycles at 1 A g−1 | [47] J. Mater. Chem. A, 2019, 7, 20813 |
black Nb2O5−x@rGO | 202 and 123 mA h g−1 at 500 and 3000 mA g−1, respectively. | [80] Small, 2019, 15, 1901272 |
meso-Nb2O5@C | 133.4 mA h g−1 at 50C, 112.4 mA h g−1 (80.5% retention) after 10,000 cycles even at 20 C | [73] J. Mater. Chem. A, 2022, 10, 11470 |
Nb2O5−x@MEC | 105 mA h g−1 at 20 A g−1 with stable Coulombic efficiency of nearly 100% after 5000 cycles | [79] Adv. Energy Mater., 2022, 12, 2103716 |
CNT@T-Nb2O5@C | Areal capacities of 2.7 mA h cm−2 after 200 cycles at the mass loading of 16.6 mg cm−2 | [81] Nano Energy, 2020, 78, 105265 |
(m-Nb2O5)/CNF | 287 mA h g−1 and 172 mA h g−1 at the rate of 0.5 C and 150 C, respectively | [86] Small, 2019, 15, 1804539 |
(NS-TiO2) | 307.5 and 156.4 mA h g−1 at 33.5 and 5025 mA g−1, respectively, and 90.5% retention over 2400 cycles at 3350 mA g−1 | [95] Adv. Energy Mater., 2021, 11, 2003037 |
TiO2/C | 262 and 97 mA h g−1 at 0.1 and 2.0 A g−1, respectively, and ∼109 mA h g−1 over 1000 cycles at 1.0 A g−1 | [96] ACS Appl. Energy Mater., 2022, 5, 3447 |
Na2Ti3O7@C | 173 mA h g−1 at 200 mA g−1 and only 0.026% attenuation per cycle at 2 A g−1 after 200 cycles | [97] Chem. Eng. J., 2019, 378, 122209 |
nCNT@Na2Ti3O7 | 206.5 mA h g−1 at 0.1 A g−1, and ∼93% capacity retention after 1000 cycles at 5 A g−1) | [98] Nanoscale, 2022, 14, 8374 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Q.; Yao, L. Advanced Nb2O5 Anode towards Fast Pseudocapacitive Sodium Storage. Coatings 2022, 12, 1873. https://doi.org/10.3390/coatings12121873
Deng Q, Yao L. Advanced Nb2O5 Anode towards Fast Pseudocapacitive Sodium Storage. Coatings. 2022; 12(12):1873. https://doi.org/10.3390/coatings12121873
Chicago/Turabian StyleDeng, Qinglin, and Lingmin Yao. 2022. "Advanced Nb2O5 Anode towards Fast Pseudocapacitive Sodium Storage" Coatings 12, no. 12: 1873. https://doi.org/10.3390/coatings12121873