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Abstract: Soil preparation tools are subject to severe abrasion. The wear resistance of various
industrial components can be improved using the hardfacing technique. The improvement in
hardfacing wear resistance depends on the microstructure, i.e., the chemical composition of the alloys,
the method of overlay, and the parameters of the selected process. The Plasma Transferred Arc with
Powder (PTA-P) welding process is interesting as a hardfacing technique since it promotes very
low dilution of the substrate in the coating. In this article, the PTA-P welding process was used
for the deposition of Fe-Cr-C-based hard coatings with the addition of vanadium onto cheap and
relatively soft low-carbon steel substrates. Rubber-wheel abrasion tests were performed to compare
the abrasion resistance between commercial anti-wear steel and weld-deposited Fe-Cr-C-V hard
coatings. In addition, the microstructure, dilution, and wear mechanisms were investigated. The
dilution of the coatings affected the microstructure, in particular, the free mean path of the vanadium
carbides, but it only affected abrasion resistance when the wear mechanism involved rolling abrasion.
The deposited coatings proved to be at least three times stronger than a commercial abrasion-resistant
steel due to the distribution and morphology of the vanadium carbides formed in the coatings.

Keywords: abrasive wear; hardfacing; mining; cast iron; vanadium

1. Introduction

Wear is a process of progressive material loss from the surface of components due
to relative movement between the surfaces [1]. Globally, it dramatically impacts energy
consumption, increases costs, and generates CO2 emissions. It is a perennial problem
in several sectors, such as automobiles, agriculture, and mining. Mining, for example,
accounts for almost 3% of the world’s CO2 emissions from wear and tear, contributing
to just over 111 million euros annually for replacement, manufacturing spare parts, and
maintenance [2]. The wear caused by soil particles is predominantly abrasive, which re-
sults in direct costs, such as higher fuel consumption, lower work rates, and poor quality
of soil preparation, contributing to increased energy consumption and greenhouse gas
emissions [3]. Abrasive wear is likely to be most severe in the excavation, earthmoving,
mining, and mineral processing industries. In these areas, component deterioration occurs
in various equipment such as excavator blades, excavator teeth, rock drills, etc. [4]. Due
to their mechanical properties, these tools are typically made from low-alloy, medium-,
or high-carbon steels. However, these tools often do not have sufficient wear resistance
properties [5]. Wear and corrosion of soil tillage tools require thick protective layers to with-
stand harsh conditions of use. Surface coating is an alternative to increase wear resistance
and, in this way, increase the useful life of the components, consequently contributing to
the reduction in maintenance and costs.
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Hardfacing is the deposition of a hard metallic alloy, through a welding process, onto
the surface of a ductile material, often substantially cheaper, to prolong the life of use
and restore and/or to protect the surface from wear or corrosion. Such coatings have a
strong metallurgical bond to the substrate and do not cause significant loss of ductility
or toughness [6,7]. It is one of the most common and cost-effective ways to improve the
component surface property, durability, and performance [8,9].

The welding processes commonly used for hardfacing applications are Flux-Cored Arc
Welding (FCAW), Shielded Metal Arc Welding (SMAW), Gas Metal Arc Welding (GMAW),
Submerged Arc Welding (SAW) [10], and Plasma Transferred Arc (PTA). Each process
differs in cost, efficiency, and substrate dilution.

The PTA process has the lowest dilution percentage (3% to 6%) and can be considered
the best welding process for hardfacings on any type of carbon steel [11]. Due to its high
concentration of energy, it produces coatings with a refined microstructure [12,13], which
can contribute to improving wear resistance [14]. Keränen [15] reports that although PTA
produces coatings with low dilution, the effect of dilution on abrasive wear resistance is
unclear. The study showed that deposits with dilutions below 10%, when subjected to
abrasive wear by a rubber-wheel, lost the same volume of material as coatings with dilution
above 15%. This lack of effect is probably because dilution occurs very close to the fusion
line between the materials, not interfering, in this case, with the surface of the coatings.
Other advantages of the process are a deposition efficiency of more than 85% [16,17] and
the diversity of metal alloys that can be used.

Abrasion-resistant metal alloys often contain carbide-forming alloying elements, which
improve performance, resulting in alloys with greater hardness and strength [18]. Metal
alloys in powder form, based on iron, chromium, and carbon (Fe-Cr-C), deposited by PTA
onto stainless steel substrates, have been studied to improve wear resistance [19] or to
investigate microstructural characteristics of the coatings [20]. The use of low carbon steel
as a substrate for coatings made by PTA is around 37%, while almost 60% of the research
on this welding process is carried out with stainless steel substrates [21]. It is believed that
most studies are carried out using stainless steel substrates due to its low dilution in the
coatings. However, in tools for soil preparation, the substrate is often low-carbon steel,
since it is a low-cost and relatively ductile material.

Fe-Cr-C alloys are widely used as they form dispersed carbides in the matrix, con-
tributing to increased abrasion resistance. This increase is due to the type and size of the
secondary hard phase formed, which prevents effective cutting action by the abrasive
particles [10,22]. The addition of vanadium (V) in iron-based coatings can reduce the size of
primary carbides and improve abrasion resistance [23]. Vanadium carbides (VC) have high
hardness and thermal stability and can be used to reinforce layers of thick coatings [24].

Researchers have reported that the process temperature significantly impacts the
VC size and formation when using laser cladding to perform vanadium-added Fe-Cr-C
coatings (V = 15%) [25]. Using the modified GMAW [26] welding process with a hot wire
(Fe-CrC-12%V alloy) inserted into the weld pool, it was possible to control the energy input
and the amount of deposited material. This technique provided a reduction in substrate
dilution and an increase in the number of carbides and grain refinement.

Fe-Cr-C alloys are widely discussed in the literature; however, alloys of this type with
a large amount of vanadium (greater than 5%wt.) still need to be investigated further.
Tools with a high content of vanadium can replace the high chromium cast iron used in
the mining industry, for example, as the high concentration of vanadium increases wear
resistance by up to five times [27].

Some techniques performed in welding processes are common, among them the use
of preheating of the substrate [15]. The main reason for preheating is to avoid cracking the
coating due to the difference in the thermal expansion coefficients between the substrate
and the coating [28]. The preheating temperature has a strong effect on substrate dilution.
However, in PTA, the dilution depends heavily on other welding parameters, such as
welding current, plasma gas flow rate, material deposition rate, bead dimensions, and torch
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weaving. Thirty-seven variables that affect the PTA welding process have been identified,
but finding the best combination of these parameters is highly complex and not trivial [29],
and are outside the scope of the this paper.

Performing post-welding heat treatments is another widely publicized technique. This
technique can be used to reduce the brittleness of the coating, to reduce the retained austen-
ite [30], or to relieve residual stresses [31]. Retained austenite and martensite formation in
iron-based coatings effect abrasive wear resistance. Combining a martensitic matrix with a
large fraction of coarse morphology carbides can improve abrasion resistance [32].

Although the techniques mentioned above are widely used in several studies, using
these techniques in soil preparation components can become complex and expensive
depending on the dimensions and shapes of the components. It has been reported that not
performing heat treatment after the welding process results in a martensitic structure, with
a small amount of residual austenite with high values of vanadium and carbon, favoring
wear resistance [33].

In this context, there seems to be a field for studies of Fe-Cr-C coatings with high V
content deposited by PTA onto low-carbon steel, without preheating or heat treatments
after welding, to evaluate the effect of dilution on the abrasive wear of these coatings.
Therefore, this work aims to contribute to the literature by investigating the characterization
of V-reinforced Fe-Cr-C coatings (>5%wt.) processed by PTA with potential use in soil
tillage tools. Deposition conditions are correlated with cooling rates, microstructure, and
wear performance.

2. Materials and Methods

Low-carbon steel plates with dimensions of 200 mm × 150 mm with two thicknesses
(12.5 mm and 25.4 mm) were used as substrates. The substrate was chosen because it is a
mild steel commonly used as structural steel in the construction of agricultural equipment
and machine parts and because it is a low-cost, relatively ductile steel, with low wear
resistance [8]. Two substrate thicknesses were used, inferring that the dilution differ for
each thickness. During the welding of the coatings, the heating and cooling temperatures
were measured by thermocouples inserted close to each bead. The cooling rate was
calculated between 800 ◦C and 500 ◦C (CR800-500), as this temperature range is significant
for the relevant phase transformation that occur in ferrous alloys [34]. The welding current
used for both coatings was the same, which provided the same heat input (calculated
from welding parameters) during welding. The cooling rate was calculated and simplified
by Equation (1) [35].

CR800-500 =
∆T800-500

∆t800-500
(1)

where ∆T800-500 was the temperature variation within the selected range of 800 and 500 ◦C.
The cooling time between two given temperatures, commonly between 800 and 500 ◦C
(∆t800-500), for sheets with three-dimensional heat flow, can be calculated by the follow-
ing equation [36].

∆t800-500 =
E

2πk

[
1

500 − To
− 1

800 − To

]
(2)

where E is welding energy (kJ·cm−1), k is material thermal conductivity (W·cm−1·◦C−1),
and To is the initial temperature of the plate (◦C). Welding energy is the energy generated
by the heat source per unit length. It can be expressed by the following equation [37].

E =
U·I

v
(3)

where U is the arc voltage (V), I is the measured current (A), and v is the welding
speed (mm·s−1).

An atomized commercial Fe-Cr-C-V powder alloy (A11) with a grain size ranging
from 53 to 150 µm was deposited onto the substrate. The chemical composition of the
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commercial powder used to produce the hardfacings in this work is presented in Table 1.
For comparison purposes, a commercial anti-wear steel commonly used in manufacturing
tillage tools (USI AR 450) was used as a reference for the wear tests. Its chemical composition
is also shown in Table 1.

Table 1. Chemical composition of the specimens (wt.%).

C Fe Si Cr V Mn Ni

A11—Commercial powder 2.35–2.55 Bal. 0.75–1.10 4.75–5.75 9.15–10.35 0.35–0.60 -
Commercial anti-wear steel USI AR 450 ≥0.25 Bal. - 0.40 - 1.50 0.20

The torch used in the welding process was coupled to a robotic arm with six degrees
of freedom, model Motoman HP20D, which allows for the adjustment of the welding speed
(v) weaving (amplitude and frequency), and distance between nozzle and workpiece (Nd).
Once these parameters are set, they remain constant along the weld path. Table 2 provides
the combinations of the variable parameters used in this investigation; their choice was
based on the literature [38,39]. The parametrization of the welding process for coating
deposition is outside the scope of this manuscript. A signal acquisition system with a rate
of 5 kHz was used to acquire the welding current signals, and in this way, it was it was
possible to obtain the measured welding current.

Table 2. Constant parameters of the PTA process.

Parameters Value

Feeding rate (kg/h) 1.0
Set current (A) 200

Average current (A) 193
Torch weaving frequency (Hz) 3.5

Weaving width (mm) 3.0
Shielding gas; Ar (L/min) 12

Plasma and Carrier gas; Ar (L/min) 2.0
Electrode setback (mm) 1.5

Travel speed (cm·min−1) 7
Nozzle to workpiece distance (mm) 15

The coatings were carried out in a single layer. Beads of approximately 150 mm were
overlapped by approximately 50%; that is, the center of the bead to be deposited coincided
with the edge of the previous bead, controlled via an x-y stage. From the execution of the
first bead, its width was measured, and the coordinate table was adjusted to half its width
until the area was fully covered by the coating (Figure 1). The temperature between the
beads was controlled (lower than 40 ◦C) to avoid any influence of the temperature of the
previous bead on the cooling rate. Samples for characterization were taken, as shown in
Figure 1 by the dashed yellow lines.

The dilution level (D) was evaluated by the area ratio between the area of the sub-
strate (As) and the area of the hardfacing (Ah) measured in the cross section according to
Equation (4).

D =
As

Ah + As
·100 (%) (4)

The samples were prepared by grinding with SiC water abrasive paper (80, 180, 300,
and 1200 grit) and then polished with 2 µm diamond paste. The etching solution for the
microstructural investigation contained 5 g of FeCl3, 10 mL of HNO3, 3 mL of HCl, and
87 mL of ethanol.

The microstructures were analyzed by scanning electron microscopy (SEM). The
images of the microstructures were treated using the Fiji software with the aid of method-
ologies already reported in the literature [40,41] to calculate the carbide volumetric fraction
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(Vf ) and the mean free path between carbides (λ). Vf was calculated as the relationship
between the total area of the carbides (Ac) and the total area of the image (At). Equation (5)
was used to calculate the mean free path between carbides [42].

λ =
1 − Vf

(Nc/Lc)

)
(5)

where Nc is the number of carbides that intersect a straight line with a length defined (Ls).
The formed phases in the coating were characterized using X-ray diffraction (XRD)

analysis with a high-resolution X-ray diffractometer (Shimadzu, model XRD-7000). The X-
ray tube was operated at 30 kV and 30 mA, and the diffractograms were recorded between
30◦ and 100◦ (2θ) with a step of 0.02◦ and a time of 1.2 s. The interpretation of the spectra
obtained was performed using the X’Pert HighScore 2.0© software (Version 3.0).
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Figure 1. Layout of welded coating and cutting of samples for characterization of coatings.

The Vickers hardness measurements of the hardfaces and substrates were carried out
using a hardness tester model Zwick/Roell LKV. The load and dwell times for hardness
measurement were 10 kgf and 10 s, respectively. Ten measurements were performed along
the hardfacing and ten measurements along the substrate, so that hardness profiles could
be obtained.

Abrasive wear tests of the hardfacings were performed based on ASTM G-65 stan-
dard [43]. Although this standard describes the parameters for using the test, some changes
were made to the test to allow for better reproduction of wear mechanisms found in real
applications. The time, the type and granulometry of the abrasive and the loads applied
were changed. For each hardfacing, two tests applying a load of 48 N were performed, and
two others were applying a load of 160 N. For each applied force, two abrasive sizes were
used, thus totaling eight tests for the coatings deposited onto the substrate with thickness
of 12.5 mm and another set of eight tests for the thickness of 25.4 mm. The same forces and
abrasives were used to test the reference anti-wear USI AR 450 steel. The parameters used
in the abrasion tests are summarized in Table 3.

Table 3. Rubber wheel abrasion test parameters.

Parameter Value

Wheel diameter (mm) 225
Rotation speed (rpm) 200

Time (min) 60
Normal load (N) 48 e 160

Sand flow 2 kg·min−1

Sand granulometry # 50 0.6 mm up to 0.3 mm
Sand granulometry # 100 0.3 mm up to 0.15 mm
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The tests were carried out on the surface of the Fe-Cr-C-V coatings without any surface
preparation, aiming to reproduce the same condition used in the field. For comparison,
USI AR 450 steel samples were also tested in the as-received condition. All samples were
ultrasonic cleaned with acetone for 10 min before testing. A semi-analytical scale model
Bel L 5202, with a precision of 0.01 g, was used to measure the mass loss, and Equation (6)
was used to calculate the abrasive wear rate (W).

W =
Q

F·s (6)

where Q (mm3) is the volume of worn material, F (N) is the applied load, and s (m) is the slid-
ing distance. Small samples of the hardfacings were removed from the substrate by milling
to determine the relative density of each coating through the pycnometric technique [44] to
allow for the calculation of the worn volume from the mass loss measurements.

3. Results
3.1. Cooling Rate

Figure 2 shows the assembly of thermocouples before and after welding. Due to the
torch weaving, the thermocouples are practically destroyed, making the acquisition of the
temperature signals quite laborious and complex (Figure 2b). The temperature acquisition
with the thermocouples installed on the counterface of the substrate would not present
actual temperature values. For this reason, we chose to install the thermocouples as close
as possible to the edge of the weld bead.
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Figure 2. Assembly of thermocouples before (a) and after (b) welding.

Figure 3 shows an example of the temperature curves obtained during the welding
of the coatings. The red dots indicate the points used to calculate the cooling rate using
Equation (1). As shown in Figure 3, depending on the distances from the thermocouples
to the weld bead, some thermal cycles do not reach peak temperatures above 800 ◦C (Ta).
These cycles were then not used to calculate the cooling rate. The calculated cooling rate
was found to be the same, approximately 20 ◦C·s−1 for both substrate thicknesses.

The calculated cooling time using Equation (2) considering a three-dimensional heat
flow was approximately 13 s. This result confirms that ∆t800-500 values are constant for
all points subjected to peak temperatures above about 900 ◦C [45]. A similar result was
found in reference Dong, Qiu [41] when welding plates with thicknesses of 15 and 25 mm
to assess the influence of sheet thickness on the cooling rate. Analytically, there seems to be
no influence of sheet thickness on the cooling rate for sheets with intermediate thicknesses.
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Figure 3. Examples of temperature curves obtained during the welding of the coatings on 12.4 mm
and 25.4 mm thick substrates.

3.2. Dilution

The hardfacings deposited on the substrate with a thickness of 12.5 mm showed higher
dilution values (above 20%), as shown in Figure 4 (red dots). The welding arc’s heat is
partly diffused by conduction to preheat and melt the substrate. For both cases, the amount
of heat transferred to the coated plate was the same (welding energy) since the welding
current measured used was the same (~190 A). The more significant dilution that occurred
in the 12.5 mm plates can be explained by the fact that the amount of heat transferred and
absorbed by the plate increases when the heat concentration in thin plates is higher during
the welding process [46].
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The hardness profiles of the coatings deposited by PTA-P are shown in Figure 4. The
hardness of the fusion zone of the coatings deposited on the 25.4 mm thick substrate is
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around 300 HV higher than the anti-wear USI AR 450 teel (450 HV10). As for the coating
deposited onto the thinner substrate, the hardness was 200 HV higher than the USI AR
450 steel. In addition, the deposition of the coating led to nearly 20% increase in the
substrate hardness. The dots highlighted in red show the percentage of substrate dilution
in the 25.4 mm (around 5%) and 12.5 mm (above 20%) coatings.

Figure 5 shows the cross section of the coatings deposited onto 12.5 mm thick (Figure 5a)
and 25.4 mm thick substrates (Figure 5b). It is possible to notice that the coating on the
thinner substrate appears to have defects (yellow arrows). In addition, it can be seen
that in the thinner slab, there is a coating below the fusion line, unlike the coating on the
thicker plate.
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3.3. Microstructure

The microstructures of hardfacings are shown in Figure 6. Upon solidification, primary
carbides rich in vanadium (yellow circles) are formed in a martensitic matrix (dark gray
in Figure 6a). Solidification is likely to start with the formation of vanadium-rich primary
carbides (yellow circles) followed by the formation of primary austenitic dendrites and
transformed martensite laths after cooling [47]. Figure 6b shows carbides (probably primary
VC) more agglomerated when compared to Figure 6a. VC formation as spherical, petal-
like particles, and thin scale-like segments can be seen in Figure 6b, as reported in the
literature [48]. Primary carbides were found in the 25.4 mm substrate coatings along
with the coarse structure of vanadium carbides (marked as 1 and 3 in Figure 6b). EDS
analysis (Table 4) corroborates the hypothesis that they are vanadium carbides. These
formations have already been reported in the literature [26,27]. The main difference in
the microstructures is the appearance of coarser carbides in the coating deposited on the
thicker plate.
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thick substrate.

Table 4. EDS results for the substrate thicknesses of 12.5 and 25.4 mm.

Substrate Point Elements Content (wt.%)

C Si V Cr Mn Fe Mo

12.5 mm

pt1 1.96 1.32 7.42 5.63 0.58 81.52 1.56
pt2 4.13 1.13 18.34 5.54 0.68 67.72 2.46
pt3 2.01 1.29 6.36 4.38 0.75 84.08 1.15
pt4 1.93 1.27 4.81 4.48 0.53 86.33 0.65
pt1 6.71 1.16 24.58 5.55 - 59.16 2.67
pt2 7.59 1.32 24.99 5.77 0.61 57.22 2.50
pt3 7.79 1.16 18.94 5.06 0.55 64.84 1.6625.4 mm

pt4 8.08 0.87 49.85 4.25 - 34.66 1.89

Six transmission electron microscopy (TEM) classifications of VC [49] morphologies
have been reported in the literature: (i) undissolved carbides, (ii) austenite precipitation,
(iii) interphase precipitation, (iv) “fibrous” morphology, (v) matrix precipitation, and
(vi) precipitation on dislocations. However, these differences between the precipitates
and the precipitation sequence of the various morphologies were studied for levels below
1% of V [49,50]. Although the morphologies presented in these studies are for very low
levels of V, compared to the content of this study, it is known that when the content of V is
greater than the percentage of C, most of the C will combine with the V until saturation [51].
The amounts of C from the powder alloy added to the substrate used in this study can
form a matrix composed of a combination of structural components such as martensite
or austenite [33].

From the images obtained by scanning electron microscopy and using Particle Separa-
tion methodologies of the Fiji free available software [40,52], the percentual volume fraction
of vanadium carbides (VC) and mean free distance, or mean free path (λ), were calculated
and shown in Table 5. For the hardfacing deposited on the thicker substrate, the carbides
with different morphologies were separated (primary carbides and coarse microstructures)
to calculate the average size of the areas. The carbide volume fraction for the coating on the
thicker substrate was just over two times higher than for the 12.5 mm substrate coating.
Large conglomerates of particles can come off during abrasive testing and lead to higher
wear rates.
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Table 5. Volume fraction, mean free distance, and size particles area.

Substrate
Volume

Fraction, %
Mean Free

Distance (λ), µm
Size Particles Area, µm2

Primary Carbides Coarse Microstructures

12.5 mm 18 4.2 ± 0.1 1.2 -

25.4 mm 38 2.2 ± 0.1 Min. 0.6
Max. 10.3

Min. 0.6
Max. 33.4

A possible explanation for the differences in VC morphologies found in the microstruc-
tures shown between Figure 6a,b is that the dilution during the coating process would
reduce the vanadium content and consequently decrease the formation of primary vana-
dium carbides along the coating [30].

Table 5 shows EDS results for the points marked in Figure 6 for the 12.5 and 25.5 mm
plates. It is noted that the percentage of Fe for the 12.5 mm plate is higher than the
percentage for the 25.4 mm sheet, and the percentage values of V and C increased for the
plate with greater thickness, intensifying the claim that the dilution decreases the formation
of primary vanadium carbides.

The phase composition of coatings was confirmed by XRD, and the results are shown
in Figure 7. The presence of VC and Fe9V in the coatings of both substrates was confirmed
and can be identified through the XRD powder diffraction pdf card by numbers 01-073-0476
and 03-065-7509, respectively [53]. For the coating deposited onto the substrate with the
highest dilution (12.5 mm), austenite was found (pdf card 00-052-0512). On the other hand,
for the coating on the 25.4 mm substrate, martensite was found (pdf card 00-044-1293).
The software calculated the percentage of phases as follows: 30% VC, 56% Fe9V, and
14% austenite in the coating on the 12.5 mm substrate and; 22% VC, 55% Fe9V, and 24%
martensite for the coating on the 25.4 mm substrate. The higher hardness found in the
coating deposited on the thicker substrate can be explained by the amount of martensite
found in the coating matrix.
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Figure 7. XRD analysis of the coatings deposited onto the substrates with thicknesses of 12.5 mm (red)
and 25.4 mm (black).
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3.4. Wear Rates

For the different test conditions, the newly proposed hardfacing showed lower wear
rate values than the wear-resistant commercial steel (USI AR 450) commonly used in
agriculture applications. Figure 8 plots a nondimensional relative wear resistance of the
coatings as the ratio between the wear rates measured for the commercial wear-resistant
USI AR 450 steel and the wear rate of the coating. It can be seen that when the Fe-Cr-C-V
coating was tested with the larger size abrasive (#50) and different loads, there was no
statistical difference in relative wear resistance between the coatings deposited on plates
with different thicknesses, confirming the results of Keränen [15]. When the test was
performed with the smallest abrasive (#100) and the applied load of 48 N, the highest wear
resistance occurred for the coating welded to the 25.4 mm substrate. This coating was six
times stronger than the commercial anti-wear steel. Under the same test conditions, the
coating welded to the 12.5 mm substrate was almost five times stronger than the USI AR
450 steel. When increasing the load to 160 N with the smaller size abrasive, there seems to
be no difference in the relative strength wear on both coatings. Even so, the coatings were
almost five times more resistant to abrasion than the commercial wear-resistant steel.
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Figure 8. Relative abrasive wear resistance of Fe-Cr-C-V taken the commercial wear-resistant USI AR
450 steel as reference.

The worn surfaces of the samples were analyzed under electron microscopy to identify
the predominant abrasive wear mechanisms. Figures 9 and 10 show secondary electron
images (SEI) of the worn surfaces after the rubber wheel tests for the Fe-Cr-C-V coating
deposited onto 12.5 and 25.4 mm thick substrates, respectively.

The shiny particles present in Figure 9a–c are silica abrasives according to the EDS
analysis (Table 6). In contrast, the darker spots in these figures show oxidation and
vanadium carbides. When the abrasion test was performed with larger particles (#50)
for the two applied loads, it seems that the micro-mechanism of wear is micro-cutting
(Figures 9a,b and 10b).

Table 6. EDS analyses in selected areas of the coatings.

Element Content (wt.%)

C O Si V Cr Mn Fe

shiny
particles 3.72 39.54 17.63 3.80 1.46 - 21.98

darker spots 5.62 18.57 3.02 11.45 3.14 0.38 54.58
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Figure 9. SEI SEM of Fe-Cr-C-V coatings (12.5 mm) tested with (a) sand #50 load 48 N, (b) sand
#50 load 160 N, (c) sand #100 load 48 N, and (d) sand #100 load 160 N.
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Some shallow grooves were seen when the abrasion test was performed with the
smallest particles (#100). However, the predominant wear micromechanism seems to be



Coatings 2022, 12, 1835 13 of 18

rolling abrasion due to microindentations (Figures 9c,d and 10c,d). It seems that in this test
condition, there is rolling of the abrasive particle between the sample and the rubber wheel.
It is important to emphasize that the coatings showed a higher relative resistance to wear
for this test condition, as show in Figure 8.

The abrasive particles are dry and loose in the rubber-wheel abrasion test. During the
test, they interact with the samples in different ways: (i) the particles coming into contact
with the rubber-wheel can plastically deform the matrix of the sample, (ii) the particles
can stick to the rubber and groove the sample surface, and (iii) the abrasive particles can
roll between the wheel and the sample causing plastic deformation similar to a series of
microindentations on the surface. The transition in the abrasive dynamics from grooving to
rolling has been widely reported in the literature, particularly for microabrasion tests [54].
Similar descriptions were also confirmed for rubber-wheel tests [55]. The particle dynamics
depends on a combination of factors, including friction between the abrasives and the
worn surface, normal load, relative hardness between the abrasives and worn surfaces, and
particle size. Generally, when the normal load is higher, the load per particle is higher, so
the abrasive can more easily indent the rubber and groove the specimen surface. Grooving
becomes more severe when the abrasive size is larger, since larger abrasives result in fewer
particles in the contact and, thus, higher load per particle. For lower loads and/or finer
abrasives, the load per abrasive is lower, so that instead of the abrasives becoming fixed on
the rubber and grooving the specimen surface, they remain as free particles rolling between
the rubber and the surface, leading to multiple indentations. This micromechanism is less
severe, often leading to lower wear rates [56].

This transition in wear mechanisms is also obviously influenced by the specimen
hardness and microstructure, which should influence the grooving action of the abrasives.
It is also noteworthy that when the abrasives led to microcutting, the coarse surface carbides
tended to divert or even completely interrupt the grooves.

Figure 11 details the worn surface after the rubber-wheel test of the Fe-Cr-C-V coating
deposited onto the thicker substrate (25.4 mm). Silica particles used as abrasives are the
bright spots in Figure 11a. The wear micromechanisms are a mixture of rolling abrasion and
a few grooves; arrows indicate various points with grooves. In Figure 11b, the same region
is observed with backscattered electrons (BSE), which gives chemical contrast. It is possible
to observe that the Fe matrix appears brighter than the vanadium carbides, highlighted
by the ellipses. The blue arrow exemplifies a change in direction in the grooves due to the
vanadium carbides. The darker spot on the right, marked by a rectangle, is tribochemical
oxidation of the V-rich areas, probably due to the high affinity of vanadium with oxygen.
All of those hypotheses were confirmed by EDS analyses, as shown in Table 7.
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Table 7. EDS results of Fe-Cr-C-V coating (25.4 mm) tested with #50 sand and 48 N.

Point
Elements Content (wt.%)

C O Si V Cr Mn Fe Mo

pt1 2.73 4.92 1.77 21.80 6.21 0.51 58.37 3.20
pt2 1.67 11.58 3.52 12.67 4.69 0.54 61.97 1.41
pt3 1.37 0.97 1.70 5.14 4.61 0.75 84.23 0.88
pt4 1.17 37.13 5.83 23.53 2.99 0.39 22.56 1.82
pt5 1.44 36.24 12.91 7.95 2.61 0.40 29.17 1.18

The hardfacing shown in Figure 10 had the lowest dilution value; it had lower con-
centrations of Fe from the substrate and higher concentrations of V and C. The cooling
rates were monitored; for both substrate thicknesses, it was approximately 20 oC·s−1, so
the cooling rate was not responsible for the difference in dilution. The welding energy
used was also the same for both coatings. A possible explanation for the difference in
dilution for the substrate thicknesses could be that the amount of heat transferred and
absorbed by the plate is higher for the 12.5 mm thick plate. The welding time for the
coating beads (open plasma arc time) is the same for both thicknesses. However, for the
smaller thickness, it is more difficult to dissipate or lose heat than for the thicker plate,
which makes the plate hotter for longer and favors the increase in dilution for the plate of
smaller thickness. For both plates, heat losses by convection occurred at the surface (top)
and the base (bottom) of the plate, but heat loss is favored in the thicker plate because it
has more mass to diffuse heat by conduction. These phenomena are analogous to those
presented by Quintino, Liskevich [46].

Due to the lower dilution for the 25.4 mm substrate, the concentration of C is higher,
while that of Fe is lower. The higher percentages of C combined with the high concentration
of V favored the formation of coarse vanadium structures [27] (Table 5). In addition to the
presence of martensite, these coarser VC structures seem to have favored the protection of
the matrix during the abrasive wear test with smaller abrasive particles (#100) and lower
applied load (48N), as it presented a relative wear resistance superior to all other conditions
of use. On the other hand, when the highest load was applied (160 N), the different
microstructures formed from the different dilutions did not seem to have influenced the
wear resistance. In the test conditions with the largest abrasive particle (#50), the different
microstructures formed due to the dilution do not seem to have influenced the wear
behavior. For both applied loads, the wear was practically the same for both conditions.
It probably results from the high load per particle when coarse abrasives and high loads
are used. The grooves formed probably are too large to be stopped by the carbides, being
removed together with the matrix.

Although the dilution does not seem to directly influence the wear resistance of the
coatings when grooving abrasion prevailed, it contributed to the morphology and number
of carbides. The area occupied by the primary carbides in the 12.5 mm substrate coating
is 18%, while the primary carbides alone occupy an area of 24% in the 25.4 mm substrate
coating. When the coarse VCs are considered for the 25.4 mm substrate coating, the area
occupied by the carbides rises to 38%.

This increase in carbides should influence the wear resistance of the coating for the
thicker substrate in all test conditions, but the abrasive wear test results did not show a
significant difference for the most severe test conditions. As indicated in the literature [18],
there is a tendency to increase the abrasion resistance with the increase in the number of
carbides. On the other hand, if the precipitates have a low level of cohesion with the matrix,
they can quickly come off and act as abrasive particles [57,58]. For example, adding VC
from 6% to 10% by Gates [56] caused higher wear rates due to the detachment of precipitates
from the matrix that acted as abrasive particles. On the other hand, the combination of
high contents of vanadium (>10%wt.) and carbon (>2%wt.) in [25] provided high wear
resistance due to the amount, morphology, and distribution of VC in the matrix. When
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comparing the average areas of the precipitates of the coatings, for the substrate thickness of
12.5 mm, the average area of the precipitates was 1.2 µm2 without showing coarse carbide
structures. The 25.4 mm substrate coating led to coarse structures with average areas of up
to 33.4 µm2, in addition to the primary carbides with an average area of 10.3 µm2. These
structures together, on the thicker substrate, provided a free distance between carbides of
2.2 µm, almost half the value for the thinner substrate. These results show the marked effect
of the distribution and size of the precipitates on wear resistance. Possibly the morphology
and distribution of vanadium carbides must have contributed to the better wear resistance
of the sample tested with the smallest abrasive particle (#100) and applied load of 48 N.
When the abrasion test was performed with a larger abrasive particle (#50), the distribution
and morphology of the precipitates in both coatings did not affect the wear resistance, even
though it was still around three times greater than the commercial anti-wear steel. There
may have been a generalized detachment of the precipitates from the matrix, and, in this
way, they could have contributed as abrasive particles during the tests. However, when
rolling abrasion prevails, the removal of the carbides becomes less likely, and the specimen
with more carbides showed superior performance. Therefore, it can be inferred that the
effectiveness of carbides in increasing wear resistance depends on the distribution and size
of the carbides [59] as well as on the dominant wear mechanism.

A relationship was established between the mean width of the grooves (L) after
abrasion and the mean free distance (λ) for a possible explanation of the discrepancy
in wear rates, as suggested by De Mello, Durand-Charre [60] (Table 8). For the coating
deposited on the 12.5 mm substrate, L varies from 1.6 ± 1 µm to 12.4 ± 1 µm. For the
coating deposited on the 25.4 mm substrate, L varies from 1.5 ± 0.2 µm to 3.9 ± 0.2 µm.
When compared to the mean free distance (λ), these values suggest a greater material
pullout for the coatings deposited on the 12.5 mm substrate. The mean groove widths
caused in the abrasive test are smaller than λ in the test with the smallest abrasive particle
(#100); this seems to be a reasonable explanation for the six times wear resistance of the
coatings for the two substrates.

Table 8. Average width L of grooves.

Substrate Sand Load, N Mean Free Distance (λ), µm Average Width of Grooves L, µm

12.5 mm
#50

48

4.2

5.4 ± 2
160 12.4 ± 1

#100
48 2.7 ± 1
160 1.6 ± 1

25.4 mm
#50

48

2.2

2.2 ± 2
160 5.2 ± 3

#100
48 1.5 ± 0.2
160 3.9 ± 0.2

4. Conclusions

Fe-Cr-C-V coatings were deposited onto steel substrates by PTA. All coatings showed
substantially higher abrasion resistance than a commercial anti-wear steel commonly used
in soil preparation and mining applications;

The thickness of the substrate affected the dilution and, thus, the formation and distri-
bution of carbides in the coating as well as the amount of martensite. Thicker substrates
resulted in harder and more wear-resistant coatings. However, improved wear resistance
for the harder coatings was only observed for less severe abrasion conditions.

Transitions in the wear mechanism occurred due to abrasive size and normal load,
with grooving abrasion occurring for higher loads and coarser abrasives. The dilution effect
on abrasion resistance was only significant when rolling abrasion was preponderant.
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