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Abstract: Thermochromic Vanadium dioxide (VO2) has strong potential for smart window appli-
cations but its commercial scale usage is limited due to low visible light transmission. To address
this issue, aluminum doped zinc oxide (AZO) anti-reflecting layer is integrated with VO2 layer in
the present work. VO2 single layer and AZO/VO2 bilayer thin film samples were deposited by
sputtering technique on quartz substrate. The single-phase growth of VO2 and AZO in single layer
and bilayer thin film samples is confirmed by X-ray diffraction measurements. Monoclinic M1 phase
of VO2 is detected in VO2 and AZO/VO2 thin film samples at room temperature. Monoclinic to rutile
structural phase transition (SPT) in these samples is studied by performing temperature-dependent
X-ray diffraction measurements. SPT in VO2 thin film samples is close to 68 ◦C and SPT temperature
appears slightly lower in AZO/VO2 sample as compared to VO2 sample. Spectral transmittance
measurement at room temperature showed significant improvement in the visible transmittance of
AZO bilayer film than that of single layer VO2 thin film. These results demonstrate the possibility
of integration of anti-reflecting layers such as AZO with VO2 layer for better visible transmittances
suitable for large-scale smart window applications.

Keywords: thin film; smart window; phase transition; vanadium dioxide

1. Introduction

The most common chromogenic materials are thermochromic, electrochromic, and
photochromic materials which change their optical properties in response to temperature,
external voltage bias, and photons, respectively. Thermochromic materials could potentially
be used in wide technological applications such as Mott transistors, optical switches, filters,
thermometers, smart windows, gas sensors, memory devices, and metamaterials [1–7].
Thermochromic materials involve temperature-dependent changes and are suitable for
energy-saving smart windows to reduce building energy consumption [1,8,9]. Smart
windows help to control the temperature inside the building even when there is a significant
change in the temperature outside. Thermochromism can either be reversible or irreversible
and can occur both over a range of temperatures or at particular transition temperature
depending on the thermodynamics of the material [9]. Vanadium dioxide (VO2) is a
popular thermochromic material which shows reversible insulation (monoclinic M1 crystal
structure) to metal (rutile crystal structure) at a critical temperature of ~68 ◦C [8,10–12].
The structural and electrical phase transition is also accompanied by optical transition.
Below 68 ◦C, monoclinic insulating phase of VO2 is infrared (IR) transparent while above
68 ◦C rutile metallic phase of VO2 is infrared (IR) opaque [1,12]. Compared to other
thermochromic materials, the transition temperature of VO2 is closest to room temperature
and therefore can be used for the development of smart windows [6,13]. This is the reason
VO2 is explored as a thermochromic material for the smart windows application across the
world. However, large-scale use of VO2 in smart window application is limited by its higher
transition temperature and low visible transmittance. Therefore, different approaches such
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as deposition parameters control, strain/stress, doping, ion-implantation, oxygen vacancies,
hydrogenation etc. [12,14–18] were extensively explored to tune the transition temperature
of VO2 close to the room temperature. The other crucial issue of low visible transmittance
in VO2 is not yet addressed well, unlike the issue of transition temperature tuning. Some
groups have attempted to enhance the room temperature luminous transmittance of VO2 by
means of integration of VO2 with an anti-reflecting layer such as TiO2, Ti:ZnO etc. [19–22].
In continuation, we have explored AZO (ZnO having 5 wt% Al) as an anti-reflecting layer
for integration with VO2 in order to modify the luminous transmittance. ZnO is known to
show good visible transmittance and its band gap can be tuned by properly selecting the
dopant [23–26]. Earlier, attempts were made to study the effect of integration of AZO layer
with VO2 [21,22]. However, these works lack structural phase transition study aspect in the
integrated samples.

In present work, we have deposited VO2 single layer and AZO/VO2 bilayer thin film
samples on quartz substrate by sputtering and studied their structural phase transition and
optical properties. Higher luminous transmittance was observed in the AZO/VO2 sample
compared to that of the VO2 sample, which highlights the importance of anti-reflecting
layer for realization of VO2-based smart windows.

2. Materials and Methods

Ultrasonically cleaned quartz substrates were used to grow thin films of VO2 and
AZO. Using radio frequency (RF) magnetron sputtering technique, VO2 and AZO layers
were grown from commercially purchased VO2 and AZO targets, respectively. At first, VO2
thin film of about 100 nm thickness was simultaneously grown on two quartz substrates,
one of which was used for bilayer growth later. Before the deposition, the deposition
chamber was evacuated to 1 × 10−6 Torr. VO2 film growth was carried out at 500 ◦C
temperature, 120 W deposition power and 30 mTorr sputtering Ar gas pressure. One of
the VO2 thin film samples was taken out from the deposition chamber, and in place of it,
another quartz substrate was mounted. Subsequently, AZO layer of about 50 nm thickness
was simultaneously grown on substrate and the freshly prepared VO2 thin film sample.
AZO layer growth was carried out at room temperature, 100 W deposition power and
35 mTorr sputtering Ar gas pressure. Table 1 tabulates the growth parameters for different
layers of VO2 and AZO/VO2 thin film samples.

Table 1. Growth parameters for different layers of VO2 and AZO/VO2 thin film samples.

Film Layer Target
RF (W)

Ar Gas
Pressure (mTorr)

Thickness
(nm)

VO2 120 30 100
AZO 100 35 50

The crystallographic properties of the grown thin film samples were studied at
BL5A beamline of Pohang Light source-II, Pohang, South Korea. Room temperature and
temperature-dependent grazing incidence X-ray diffraction (GIXRD) measurements were
performed with X-ray of 11.57 keV energy and the incidence angle was kept at 0.5◦. The ob-
tained GIXRD data was converted to Cu Kα wavelength using Bragg’s diffraction formula
to show in the present work. The surface microstructure of films was characterised by field
emission scanning electron microscopy (FESEM) using Sigma FESEM instrument (Zeiss Mi-
crosccopy, Jena, Germany). Furthermore, Lambda 950 UV-Vis spectrophotometer (Perkin
Elmer, Waltham, MA, USA) in transmission mode was used to measure transmittance
spectra in 200–800 nm wavelength range.

3. Results

Figure 1 shows the room temperature GIXRD data of grown samples along with
substrate. In VO2 single layer thin film sample, apart from the substrate hump, only one
diffraction peak is seen, and it belongs to (011) plane of monoclinic M1 phase of VO2
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(JCPDS card number 0431051). This observation of single peak in the GIXRD data points to
preferred growth of VO2 along this plane in single layer thin film sample. In case of AZO
single layer sample, only the c-axis-oriented diffraction peaks representing the hexagonal
structure of ZnO (JCPDS card number 0011136) are observed [27]. In AZO/VO2 bilayer
thin film sample, the diffraction peaks observed in the GIXRD data are only those which
appeared in the single layer VO2 and AZO thin film samples. Any other diffraction peak of
significant intensity is not observed in the AZO/VO2 thin film sample. Room temperature
GIXRD results confirm the single-phase growth of VO2 (monoclinic M1 phase) in single
layer as well as bilayer sample. Moreover, the deposition of AZO layer on top of VO2 did
not produce any significant changes in the crystalline structure of VO2. Earlier, extra peak
corresponding to other vanadium oxides and/or zinc vanadate was observed when VO2
layer was grown on top of ZnO layer for substrate temperature higher than 250 ◦C [21].
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Figure 1. Room temperature GIXRD data of substrate, VO2, AZO and AZO/VO2 thin film samples.

After confirming the single-phase growth of VO2 in single and AZO/VO2 thin film
samples, we have recorded the temperature-dependent GIXRD data of these samples
focused to M(011) diffraction peak in temperature range 28 to 90 ◦C. This enabled us to track
the structural phase transition in these samples. The temperature-dependent diffraction
data of VO2 and AZO/VO2 thin film samples are shown in Figure 2a,b, respectively. In VO2
thin film sample, M(011) diffraction peak remains stable from 28 to ~60 ◦C, and beyond that
it starts to shift towards lower 2θ values with increasing temperature and finally transforms
to rutile phase R(110) diffraction peak. Similar behavior of M(011) diffraction peak with
increasing temperature is also noticed in the AZO/VO2 thin film sample.

For better visualization of monoclinic to rutile structural phase transition and to iden-
tify the transition temperature in VO2 and AZO/VO2 thin film samples, the intensity
variation of R(110) diffraction peak with increasing temperatures are plotted in Figure 3 for
these samples. One can clearly see the emergence of R(110) diffraction peak when tempera-
ture is increased above 60 ◦C. The dotted line in Figure 3 represents the structural phase
transition temperature (68 ◦C) seen in bulk VO2 and good quality thin film samples [10].
The temperature-dependent intensity variation of R(110) diffraction peak of VO2 thin film
sample shown in Figure 3 also indicates that the structural phase transition temperature of
this sample is close to 68 ◦C, which highlights its good growth quality. R(110) diffraction
peak intensity variation trend is similar for VO2 as well as AZO/VO2 thin film samples, ex-
cept the fact that the structural phase transition temperature in AZO/VO2 sample appears
to be on slightly lower temperature than that of VO2 thin film sample. This is possible
due to the formation of defects such as oxygen vacancies during the AZO layer growth on
top of the VO2 thin film. As AZO layer was grown at room temperature and no further
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annealing was performed after that, the defects were fewer and the change in transition
temperature of AZO/VO2 sample was not much different to that of VO2 layer.
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Figure 2. Temperature-dependent GIXRD data of (a) VO2 thin film sample and (b) AZO/VO2 thin
film sample measured during heating cycle.
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Figure 3. Temperature-dependence intensity variation of R(110) diffraction peak (rutile phase of VO2)
for VO2 and AZO/VO2 thin film samples.

The surface morphology of VO2 and AZO/VO2 thin film samples was studied by
means of FESEM (as seen in Figure 4). From Figure 4a, it can be seen that VO2 film has large
flat aggregated particles. In AZO/VO2 thin film sample, uniform and continuous grain
growth of AZO on VO2 layer is observed (Figure 4b). Inset of Figure 4b shows the phot of
VO2 and AZO/VO2 layers grown on quartz substrate. The uniform surface coverage of
these layers is evident in this photo.

After structural characterization and surface morphological study of VO2 and AZO/VO2
thin film samples, UV-vis spectroscopy at room temperature in transmission mode was
performed to examine the optical properties of these samples. Recorded UV-Vis spectra of
VO2 and AZO/VO2 thin film samples in 200 to 800 nm range is shown in Figure 5. From
Figure 5, it can be seen that growth of AZO layer on top of VO2 has significantly modulated
the optical transmittance in AZO/VO2 sample as compared to the VO2 thin film sample.
It is worthy to note that transmittance is very little for both films in the UV region, while
transmittance in visible region is significantly higher for the AZO/VO2 bilayer film sample
as compared to the VO2 single layer sample. Better transmittance of AZO/VO2 bilayer
film sample is likely to be driven by the antireflection property of AZO layer that reduces
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the light loss by making use of phase change and the reflectivity dependence on index of
refraction [19].
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Figure 4. SEM images of (a) VO2 thin film sample and (b) AZO/VO2 thin film sample measured at
room temperature. Inset of figure (b) shows the photo of sample used for SEM measurement.
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Figure 5. UV-Vis spectroscopy spectra of VO2 and AZO/VO2 thin film sample measured at room
temperature.

4. Conclusions

In summary, some initial results of VO2 single layer and AZO/VO2 bilayer films
grown on quartz substrate by RF magnetron sputtering have been presented. Preferential
crystal orientation of VO2 and AZO in single and bilayer samples was confirmed by GIXRD
measurements at room temperature. GIXRD results confirmed the absence of any extra
peak corresponding to other vanadium oxides and/or zinc vanadate in VO2 and azo/VO2
thin film samples. Temperature-dependent GIXRD measurements revealed the monoclinic
to rutile structural phase transition in VO2 close to 68 ◦C and with slight shift towards
lower temperature in AZO/VO2 thin film sample. Through UV-Vis spectroscopy, it was
found that bilayer structures have significantly higher optical transmittance than the VO2
single layer, and the enhanced transmittance in bilayer sample is associated with anti-
reflecting AZO layer. The use of anti-reflecting layer such as AZO leads to enhanced visible
transmittance in the AZO/VO2 integrated structure and can eventually solve the issue of
low visible transmittance of VO2 single layer.
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