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Abstract: In this paper, a novel pH-responsive brass mesh modified by 3-mercaptobenzoic acid
(MBA) and 2-naphthalenethiol (NPT) was demonstrated via a facile chemical etching method fol-
lowed by surface modification. The smart wettability was dependent on the assembled MBA and
NPT with suitable thiol proportions. The on–off control of water penetrating intelligently into the
nanostructured brass mesh substrate was carried out by the pH change in the outside environment.
The brass mesh modified with XNPT = 0.4 (mole fraction of NBT in the mixed solution) exhibited
the strongest pH responsivity from superhydrophobicity to superhydrophilicity. Furthermore, the
resulted Janus membrane (JM) fabricated by the integration of a smart brass mesh and hydrophobic
Ni foam could be used as a water diode in air and liquid systems. Unidirectional penetration for
the water droplet was realized by the resulting smart JM with a hydrophobic upper layer and a
pH-responsive layer below.

Keywords: smart material; brass mesh; 3-mercaptobenzoic acid; 2-naphthalenethiol; Janus membrane

1. Introduction

Stimuli-responsive materials have been widely studied for their different interesting
and practical applications [1,2]. Such materials are fabricated through the polymerization of
some specific monomers, or via the physical or chemical attachment of stimuli-responsive
compounds on the selected substrates. Depending on the stimuli-responsive molecules on
the substrate surface, it is possible to design different smart surfaces with a wide range of
responsivities toward light, temperature, pH, force, etc. [3–6].

Liu et al. fabricated a kind of porous polysulfone microcapsule by mixed solvent
volatilization, in which a coating of stearic acid acted as a pH-responsive smart micro-
capsule slow-release filler. The resultant microcapsules exhibited a typical pH-triggering
performance in an alkaline environment [4]. Yang et al. developed a spray-coating method
to prepare a flexible surface, whose reversible switch was realized between hydrophobic
and hydrophilic states under UV/vis irradiation. The resulting intelligent material was
successfully used for “oil-removing” and “water-removing” by varying the lighting mode.
Moreover, it could repeatedly withstand mechanical deformation during multiple practical
applications [5]. Štular and et al. synthesized two kinds of hydrogels, namely poly(N-
isopropylacrylamide) and chitosan, with an average particle size of 405 nm and 76 nm,
respectively. Both hydrogels were used to produce poly(lactic acid) fabric and, the tempera-
ture and pH responsiveness of the modified fabrics were investigated based on the moisture
content, water uptake, and water vapor transition rate [6]. At present, smart materials with
pH responsiveness are attracting widespread concern due to their versatile applicability in
water transformation systems [7–9]. Such a modification enables the material to respond
smartly to variation in the pH of an aqueous solution. Guo’s group demonstrated a novel
pH-responsive liquid marble covered by thiol-modified copper powders through a facile
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one-step self-assembly method [10]. The protonation and deprotonation processes of cop-
per powder modified by HS(CH2)9CH3 and HS(CH2)10COOH can be tailored via the pH
change from the external environment, and the controllable and switchable wettability of
copper powder was used to maintain or break liquid marble. Cheng et al. reported a novel
strategy to control water permeation on a copper mesh modified by HS(CH2)9CH3 and
HS(CH2)10COOH [11]. Shi’s group described a combined approach to prepare a smart
material including the initial electroless deposition of gold and subsequent immersion in a
mixed solution of HS(CH2)11CH3, HS(CH2)10COOH, and HS(CH2)11NH2. The resultant
surface underwent a reversible transformation with the pH change in the external liquid
droplets [12]. Liu et al. fabricated a novel pH-responsive smart device by electroless silver
deposition followed by surface modification with a mixed thiol solution of HS(CH2)11CH3
and HS(CH2)10COOH. It was successfully applied for continuous separations of oil/water
mixtures using the as-prepared copper foams, and the surface wettability was tailored
reversibly between superhydrophobicty and hydrophilicity by varying the pH value of
the aqueous solution [13]. Wang et al. reported a pH-responsive Janus membrane (JM)
modified by HS(CH2)10COOH, which could be used for responsive gating and the uni-
directional transformation of water droplets [14]. Zhang et al. prepared pH-responsive
smart non-woven fabrics with reversible transformations via the in situ grafting of Ag
nanoparticles through redox between AgNO3 and ascorbic acid. After modification with
a mixed thiol solution, including HS(CH2)10CH3, HS(CH2)10COOH and HS(CH2)11OH,
oil/water separation was successfully carried out using the fabricated fabrics [15].

Herein, in order to extend the immobilized stimuli-responsive unit on the metal sub-
strates, we firstly attempted to self-assemble two kinds of novel pH-responsive molecules
of 3-mercaptobenzoic acid (HS-C6H4-COOH) and 2-naphthalenethiol (HS-C10H7) on an
etched brass mesh. The pH-responsive SAMis formed by chemisorption of both of the
novel thiol-molecules onto the substrate, resulting in different surface wettability in re-
sponses to the pH change. Moreover, in situ grafting, depositing, or spraying of Ag or
Au nanoparticles was avoided before the modification of the pH-responsive molecules
compared with previous studies [10–15].

2. Results and Discussion
2.1. Characterization of the Smart Brass Mesh

Figure 1(a1) shows the morphology of the pristine brass mesh. The diameter of one
brass wire and the size of one square pore were about 40 µm and 58 µm, respectively. The
brass skeleton exhibited a smooth surface morphology, and no thorns were observed as
shown in the enlarged SEM images illustrated in Figure 1(a2). On the contrary, the brass
skeleton surface was uniformly covered by a large number of thorns on a micro/nano-scale
after being chemically etched as shown in Figure 1(b1) and in the high-magnification image
of Figure 1(b2). The pine-needle-shaped structures on its surface had a length of a few
micrometers and each pine needle consisted of many tiny branches of a few microns or
a few hundred nanometers. Figure 1c further indicates the structure of the coating layer
with thin self-assembled monolayers of thiol-compounds after modification. The surface of
the brass skeleton was tightly covered by some pine-needle-shaped structures with a thin
layer of film. These hierarchical structures with micro-/nanoscale dimensions contributed
to the maximized change in the surface wettability between the superhydrophobic and
superhydrophilic states.

The EDS in Figure 1d shows the elements of C, O, Cu, Zn, and S with different
contents on the modified brass mesh treated by the mixed thiols. XPS was used to observe
the chemical composition of the thin film of the etched surface. As shown in Figure 1f, the
XPS spectrum displays the presence of C, O, Cu, Zn, and S on the as-prepared substrates.
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Figure 1. Characterization of the pristine, etched, and modified brass meshes by SEM, EDS, and XPS.
(a1) The morphology of the pristine brass mesh;(a2) The enlarged SEM images for the morphology of
the pristine brass mesh; (b1) The morphology of the chemically etched brass mesh; (b2) The enlarged
SEM images for the morphology of etched brass mesh; (c)The morphology of the modified brass
mesh with a thin SAM; (d) EDS mapping image of the modified brass mesh; (e) EDS analysis of the
modified brass mesh; (f) XPS spectrum of the modified brass mesh.

2.2. Optimazation of Surface Modification

We observed that the molar ratio of both molecules in the modified solution played an
important role for the surface wettability of the brass mesh. A series of brass meshes were
immersed in a mixed solution of MBA and NPT with different molar ratios, and the wetting
properties of the prepared films were investigated using CA measurements. As shown in
Figure 2a, when XNPT = 0.5, the rough film was superhydrophobic for neutral water, while
it was hydrophilic for basic water. When XNPT = 0.2, the rough film was superhydrophilic
for basic water, while for a neutral water droplet, the contact angle only reached about
133◦. When further decreasing or increasing the value of XNPT, the obtained films could
not create a significant change in the surface wettability. If only MBA was immersed for
modification, the resulting surface was superhydrophilic to both neutral and basic droplets.
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Meanwhile, the resulting surface only modified by NPT was superhydrophobic to both
neutral and basic droplets. Obviously, the brass mesh immersed with XNPT = 0.4 (mole
fraction of NBT in the mixed solution) exhibited the best pH responsivity from being
superhydrophobic to superhydrophilic. In comparison, on the smooth brass mesh modified
with mixed thiol (XNPT = 0.4), the contact angles (CAs) for the neutral water droplets (10 µL,
pH = 7) and the basic water droplets (10 µL, pH = 12) were only about 103◦ and 30◦ due to
the absence of chemical etching, respectively, while on the rough brass mesh substrate, an
enhanced effect was obtained, with the largest transformation for the surface wettability.
Although the smooth mesh film had a similar wettability transition between hydrophilicity
and hydrophobicity, it was unfit for unidirectional water permeation. Due to the lower
WCAs for the neutral droplets compared to the rough one, such a smooth mesh film was
not highly hydrophobic enough to avoid water permeation under a small water pressure
(even a water droplet) or vibration. Therefore, the modified rough brass mesh was selected
for the further study of controllable water permeation.
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During self-assembly, intermolecular forces, such as coordination interactions, van der
Waals’ forces, hydrogen bonds, and solvophobic effects, usually play a dominant role for
the connection of smart molecular units in a reversible way in self-assembled structures.
From the above investigation, it could be seen that the controllable water permeation was
dependent on the pH-responsive film, and such a responsive ability was attributed to
the following two reasons. One was the protonation and deprotonation of the surface
carboxylic acid groups in the different pH environments, respectively. The other was
the nanostructures on the brass mesh, which enhanced the wettability transformation.
The relative mechanism of the pH-responsive properties is illustrated in Figure 2b. In
general, the carboxyl group of the NPT molecules is deprotonated to -COO− under basic
conditions, resulting in the superhydrophilicity of the brass mesh. On the contrary, the
deprotonated -COO− is protonated back to -COOH under acidic conditions, resulting in
the hydrophobicity of the mesh. Water with different pH values can be used to trigger the
switch in surface wettability.

In order to achieve the desired transformation between the superhydrophobic and
superhydrophilic states, the mole ratio of HS-C6H4-COOH (MBA) and HS-C10H7 (NPT)
was thus set to 4/6. The as-prepared mesh films were fabricated for the investigation of
water-controllable penetration. A rough brass mesh folded into a box was placed on the top
of a small beaker and some neutral water was poured into it carefully. Figure 3a shows that
the neutral water was blocked and held in the box. When alkalescent water was poured
into the box, it penetrated the mesh and dropped down into the beaker (Figure 3b). It
appeared that unidirectional water transportation using the smart brass mesh could be
realized by simply controlling the water pH value.
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Figure 3. Illustrated images of the unidirectional water transportation. Acidic and neutral water
were blocked by the rough mesh film (a); unidirectional penetration occurred when the pH of the
water was increased to 12 (b). Water was dyed blue by methylthionine chloride.

2.3. Application of Controllable Water Permeation

In order to investigate the controllability of water permeation for the as-prepared mesh
films, some droplets with different pH values were selected for further experiment. As
shown in Figure S1, the surface was superhydrophobic when the pH value of the aqueous
solution was less than 7. Yet, the WCA sharply decreased when the pH value was more
than 11. When the pH value was greater than 12, the water could rapidly penetrate the void
of the brass mesh due to its superhydrophilic property. Furthermore, after being cleaned
with ultrapure water and dried by nitrogen blowing, the brass mesh film recovered its
superhydrophobic performance for cyclic utilization more than ten times, demonstrating
that the resultant film was stable, and the simple device was potentially suitable for practical
applications (see Figure S2).

Another approach to control water penetration was illustrated using a Janus membrane
(JM) [16–18]. Herein, a JM was constructed by the integration of the smart brass mesh
and a flexible pristine Ni foam by a tablet press under a pressure of 10 MPa. As shown in
Figure S3, the framework of the hydrophobic nickel foam was flat and smooth, and on the
surface of smart brass mesh, a layer full of countless hair-like nanoneedles embedded in
the thin film was observed. The resulting JM was integrated by a front layer of Ni foam
and a back layer of smart brass mesh, and its behavior could transform from homogeneous
hydrophobicity to asymmetric wettability with the pH change in the water droplets. For
example, unidirectional penetration occurred for a water droplet with a pH of 12 in the
liquid–air system. When a basic water droplet (pH = 12) was seated on the front layer of
the resulting “JM”, it slowly penetrated the thin and hydrophobic Ni foam. When it came
into contact with the pH-responsive layer below, the contact point of the pH-responsive
layer with the basic droplet changed from hydrophobic to highly hydrophilic, and thus
unidirectional penetration around this narrow area occurred, demonstrating that this area
had Janus characteristics in the air–liquid system. As shown in Figure S4, only basic
water droplets penetrated spontaneously from the hydrophobic to the hydrophilic side (the
positive direction), whereas when the mesh film was turned over (the reverse direction), the
water droplets with different pH (pH = 2 and 7) values were blocked, and the water droplets
(pH = 12) spread on the smart film. A similar behavior of water droplet unidirectional
transportation was observed in the liquid–liquid system, as shown in Figure S5.
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The controllable penetration of water droplets was also realized using the resulting
JM in an oil–water system, which is illustrated in Figure 4. The transportation process
was closely related to the pH value of the aqueous solution below. When the acidity of
the aqueous solution below was adjusted to pH = 2, the whole membrane was evenly
hydrophobic, which was composed of the front Ni foam layer and the back layer of brass
mesh (pH-responsive). The high hydrophobic force from both layers effectively prevented
the water droplets from permeating. Therefore, the dyed-blue water droplets (contain-
ing 0.1 mM CuSO4) could not penetrate the thick hydrophobic membrane, regardless
of whether the “JM” was positively or reversely aligned at the oil/water interface (see
Figure 4a,b). Furthermore, when the back layer (pH-responsive layer) contacted the basic
aqueous solution (pH = 12), it transformed to be highly hydrophilic. With the gradual
permeation of the blue water droplets, blue floc precipitation of Cu(OH)2 was apparently
created due to the reaction between Cu2+ and OH− in the bottom solution (see Figure 4c).
When the pH-responsive JM was reversely aligned at the oil–water interface, blockage of
the blue water droplets occurred (see Figure 4d).
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Figure 4. Directional penetration of water droplets across the resulting “JM” in oil–water systems.
(a,b) Positively and reversely aligned “JM” floating on the water solution (pH = 2) with a water
droplet seated on the integrated membrane with both hydrophobic sides. (c) Positively aligned “JM”
with a water droplet seated on the hydrophobic side creating a larger driving force for penetration
due to the superhydrophilic bottom layer. (d) Reversely aligned “JM” with a water droplet seated on
the smart side was subject to spreading without penetration.

3. Experimental Section
3.1. Reagent and Material

3-Mercaptobenzoic acid (MBA) and 2-naphthalenethiol (NPT) were bought from
Shanghai Aladdin Biochemical Co., Ltd. (Shanghai, China). Oil red (Sudan III), methylene
blue, (NH4)2S2O8, NaOH, HCl, and n-hexane were purchased from Tianjing Fine Chemical
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Co. (Tianjing, China). Brass mesh with an aperture of 300 was purchased from Dongguan
Shijia Metal Materials Co., Ltd. (Guangdong, China).

3.2. Preparation of Smart Brass Meshes

The pristine brass meshes were consequently cleaned for 5 min with 1% HCl solution
and deionized (DI) water in order to remove the native oxide on the surface. Then, they
were immersed in an aqueous solution of 2.5 M NaOH and 0.1 M (NH4)2S2O8 for more
than 30 min [19,20]. After being etched, the resulting brass meshes were washed with
DI water followed by N2 flow-drying. The obtained brass meshes became rough and
superhydrophilic due to the full form of hair-like Cu(OH)2 nanowires on their surfaces.
After immersion in the mixed solutions (5 mM) of 3-mercaptobenzoic acid (MBA) and
2-naphthalenethiol (NPT) overnight, the surface energy was reduced because of the grafted
benzene ring and naphthalene ring.

3.3. Measurement of Wetting Performance

The water contact angles (WCAs) were measured using a contact angle goniometer
(TST-200, Shen Zhen Testing Equipment Co. LTD., Shen Zhen, China). The WCAs were
measured by dropping 10 ± 0.5 µL droplets on the substrate using a micrometer syringe.
At least six measurements were performed on each brass mesh attached to a glass slide.

3.4. Characterization of the Brass Mesh

The pristine and modified brass meshes were characterized using a SEM 98 (Hitachi
Su5000, Hitachi, Japan) and EDS (Oxford Instruments Ultim Max, Oxford, UK). The surface
elements and composition of the coatings were measured by XPS (Thermo Fisher, Waltham,
MA, USA).

4. Conclusions

In this study, two controllable methods of water permeation were demonstrated.
One was carried out through an etched brass mesh modified by two kinds of responsive
molecules. The doubly transforming surface modified with the mixed SAMs of NPT
and MBA exhibited pH responsiveness from superhydrophobic to superhydrophilic. The
other was conducted by constructing a JM with hierarchical micro/nanostructures and
pH-responsive properties, which could be used as a water diode for unidirectional droplet
transportation. This work provides an alternative strategy to explore this novel smart
material and its JM for controllable water permeation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12111729/s1, Figure S1: The water contact angle (WCA)
curve with the pH change; Figure S2: Reversible transition between the superhydrophobicity and
superhydrophilicity on the rough copper mesh film (prepared with XCOOH = 0.6) could be repeated
by alternately changing the water pH; Figure S3. SEM of the integrated membrane of hydrophobic
Ni foam and smart brass mesh; Figure S4: Directional water droplet penetration across the integrated
membrane in the air—-water system. (a) The integrated membrane only allowed penetration of
alkaline water droplets (pH = 13) when it was positively aligned and (b) prevented all water droplet
(pH = 2, 7, and 13) penetration when reversely aligned; Figure S5: An “on–off” control for water
droplets with different pH (pH = 2, 7 and 13) in the oil–water system. (a) Liquid droplets were
blocked when the integrated membrane was positively aligned at the interface; (b) liquid droplets
were blocked when the membrane was negatively aligned at the interface. Light oil (n-hexane) was
dyed red by Sudan III.
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