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Abstract: Cr12MoV has been widely used in the manufacture of stamping and drawing dies. In
the present study, an attempt was made to improve the mechanical properties of Cr12MoV by laser
cladding Ni60 alloy reinforced by WC. X-ray diffraction (XRD), scanning electron microscopy (SEM),
a microhardness tester, and a friction and wear test prototype were used to analyze the macroscopic
morphology, microstructure, and mechanical properties of the coating. The results showed that the
coating mainly was composed of Cr-Fe-Ni, γ-(Fe, Ni), Cr23C6, Cr7C3, and W2C phases. The cladding
layer presented the dendritic eutectic structure enriched Cr, Fe, and Ni. Zigzag-shaped dendrites
with thicknesses of 50~80 µm of the bonding zone ensured the strong metallurgical bonding. Due to
solid solution strengthening, dispersion hardening, and grain refinement, the hardness of the coating
reached 745 HV, which was 3.5 times that of the substrate. The wear volume of the coating was
14 × 10−3 mm3, which was 48% lower than that of the substrate (27 × 10−3 mm3). The coating had
the abrasive wear; however, the substrate had the adhesive wear besides the abrasive wear.

Keywords: laser cladding; Cr12MoV; Ni-based alloy; microstructure; mechanical properties

1. Introduction

With the development of the industry, Cr12 series cold work die steel has been widely
used in manufacturing industry due to its advantages of small deformation, high wear
resistance, and large bearing capacity after heat treatment. Among them, Cr12MoV is
the most widely used in this series [1]. Under working conditions, Cr12MoV often bears
greater impact, extrusion, and external friction, and is prone to present failure forms such
as wear and fatigue [2], which lead to potential safety hazards and great economic losses.

In order to improve the surface property of Cr12MoV, researchers have proposed
and explored a variety of surface-treatment methods [3–7]. Laser surface treatment stands
out among many surface-modification technologies because of its short processing time,
flexible operation, and high accuracy [8]. In recent years, a series of laser surface treatments
have been carried out on Cr12MoV to improve its performance [9–14].

At home and abroad, the cladding materials on Cr12MoV are mostly traditional
alloys, such as Fe-based alloys, Co-based alloys, and Ni-based alloys. Although Fe-based
alloys significantly improve the hardness and corrosion resistance, and reduce the cracking
sensitivity of steel, the excessive Fe weakens the self-passivation ability and the anti-high-
temperature oxidation properties of the coating [15,16]. Compared with Fe-based alloys,
Co-based alloys [17–20] have better high-temperature mechanical properties and corrosion
resistance. However, the higher cost of Co-based alloys has always been an obstacle that
cannot be ignored.

Ni-based alloys [21,22] have good mechanical properties such as high hardness and
strength. The hardness of pure Ni alloy, however, is insufficient, making it difficult to
meet the performance requirements of cold stamping die. In order to further improve the

Coatings 2022, 12, 1632. https://doi.org/10.3390/coatings12111632 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings12111632
https://doi.org/10.3390/coatings12111632
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings12111632
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings12111632?type=check_update&version=2


Coatings 2022, 12, 1632 2 of 15

hardness and wear resistance of Ni-based alloy coatings, some researchers have adopted
the methods of adding rare earth oxides or strengthening phases to reduce the friction
effect and increase the service life of the material. Zhang Dongni [23] studied the influence
of CeO2 on the microstructure, hardness, and wear resistance of Ni60A-Cr3C2 coating.
The results showed that after adding CeO2 powder, the microstructure was significantly
refined. When the addition amount of CeO2 was 2 wt%, the coating achieved the largest
microhardness (1107 HV).

Luo zhen et al. [24,25] added TiC and Al2O3 ceramic particles to reinforce Ni alloy.
The results showed that the composite coatings had good metallurgical bonding with the
substrate when the content of the ceramic particle was less than 15%, and TiC and Al2O3
were uniformly distributed in the solid solution, which significantly enhanced the wear
resistance of the cladding layer. Yan Hua et al. [26,27] designed a Ni35/MoS2/LaF3·CeF3
self-lubricating composite coating with a friction coefficient of 0.43 and a microhardness of
631 HV.

WC has been a research hotspot in enhancing Ni-based composite coatings owing
to its high hardness and wear resistance, as well as its good wettability when combined
with Ni. In literatures [28,29], Ni/WC composite coating was first applied as a laser-
cladding material on Cr12MoV. It was found that the Ni60 + 30% WC coating had an
optimal performance, and the wear resistance of the coating was approximately 30%
higher than that of the coating without adding WC. Nevertheless, the hardness of the
cladding layer was 67~68 HRC, only 30% higher than that of the substrate. In order to
improve the coating hardness, Shen DaChen et al. [30,31] further explored and prepared
a Ni60A +ω% WC (ω = 0, 15, 25, 35) gradient coating successfully. In this experimental
conclusion, the average microhardness (82HRC) of the 35% WC coating reached 1.7 times
that of the substrate. This indicates that different WC content has a great influence on the
coating quality, and laser process parameters play a significant role as well. Therefore, Wang
Ye [32] and Sun Wenqiang [33] et al. studied the effect of laser energy density on Ni/WC
composite coating, which provides the data reference for the Cr12MoV repair process.

Based on the abovementioned research status, there are few studies about laser
cladding Ni/WC composite coating on Cr12MoV at home and abroad, but the microstruc-
ture analysis has been not deeply carried out. Therefore, in this paper, the phase structure,
microstructure solidification process, and the existence form of unmelted WC in laser
cladding Ni/WC composite coating was studied in detail. However, the higher the content
of WC is, the higher the hardness is. Excessive hardness results in poor plasticity and
deformation defects. At the same time, excessive WC phase precipitating in the coating
leads to the production of cracks. Therefore, in this study, WC content was reduced to 10%
in order to obtain better strength and toughness. This also provides a theoretical basis for
subsequent research.

2. Materials and Methods
2.1. Materials Used

Cr12MoV was selected as the substrate material in the present research; its chemical
composition is listed in Table 1. The size of Cr12MoV is 50 mm × 30 mm × 10 mm. Prior
to laser cladding, the surface was smoothed with 400 mesh sandpaper to give the surface
some roughness and reduce laser reflectivity. The sample was then washed successively
with acetone and alcohol to remove any oil spots.

Table 1. Chemical composition of Cr12MoV.

Elements Cr C Mo V Si Mn

Mass percentage (wt%) 11.0~12.5 1.4~1.70 0.4~0.6 0.2~0.3 ≤0.4 ≤0.4
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The clad material was powdered Ni60/10% WC alloy, which was preplaced on
Cr12MoV with a thickness of 1.0 mm. The chemical compositions of Ni60 are presented in
Table 2.

Table 2. Chemical compositions of Ni60 alloy.

Elements Cr B Si C Fe Ni

Mass percentage (wt%) 14~17 2.5~4.5 3~4.5 0.6~0.9 ≤15 Bal.

2.2. Laser Machining

The experiment set a DL-2000 cross-flow CO2 laser (Shenyang Continental Laser
Complete Equipment Co., LTD, Shenyang, China) as the heat source with a maximum
power of 2 kW. Its working principle is shown in Figure 1. The prefabricated powder
method was used before laser cladding. The thickness of the powder was determined by a
slide with a size of 50 mm × 30 mm × 1 mm. The size of the middle groove of the slide is
45 mm × 25 mm × 1 mm. The powder was filled into the groove to obtain a powder with a
height of 1 mm. The optimized parameters of laser cladding were obtained by orthogonal
test as follows: laser power of 1.5 kW, scanning speed of 200 mm/min, spot diameter of
3 mm, overlap rate of 30%, and argon flow rate of 5 L/min.
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Figure 1. Principle diagram of the laser-cladding process: (a) laser processing process; (b) scanning
path.

2.3. Microstructure and Properties Analysis

TD-3500 X-ray diffraction (Dandong Tongda Technology Co., LTD, Dandong, China)
was used to analyze the coating phase in detail. The instrument was equipped with a
Ni-filtered, Cu Ka source operating at 40 kV and 30 mA. The data were collected in the
range 20◦~80◦ with a step size of 0.028 and step time of 0.3 s; the experimental time was
30 min and the scanning speed was 2◦/min.

Microstructural characterization of the coating was observed and analyzed using JSM-
7610s SEM (Shanghai Baihe Instrument Technology Co., LTD, Shanghai, China). Samples
used for SEM were etched using aqua regia solution.

Microhardness of the cross section of coatings was measured by a HXD-1000TMC/LCD
(Wuxi Metes Precision Technology Co., LTD, Wuxi, China) Vickers tester with a test load
of 200 g and loading time of 15 s. Sample surfaces were smoothed and polished with
1200 mesh sandpaper and tested for microhardness at 3 points per cross section. The
samples with 10 mm × 10 mm × 5 mm were cut from the as-received Cr12MoV and laser
cladding samples for wear studies, and ground on 800 grit size emery paper to obtain
the same surface finish. The measurement of wear resistance was performed by MGW-02



Coatings 2022, 12, 1632 4 of 15

(Jinan Yihua Tribology Testing Technology Co., LTD, Jinan, China) wear testers with 5 mm
diameter steel ball bearings; the hardness of the steel ball was HRC58, and the test temper-
ature and relative humidity were 25 ± 1 ◦C and 60%, respectively. The testing parameters
were load of 5 N, frequency of 10 Hz, sliding time of 20 min, and reciprocal sliding distance
of 3 mm. Figure 2 shows the schematic diagram of the friction-wear test.
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Figure 2. Schematic diagram of the friction and wear experiment.

Figure 3 displays the calculation principle of wear volume. In Figure 3, the circle
with radius R is the section along the diameter of the grinding ball, LAB is the width of the
grinding mark, 2θ is the central angle corresponding to the width of the grinding mark, S1
is the area of the sector, S2 is the area of the triangle contained in the sector, and S3 is the
area of the grinding mark section. The first step is to solve the central half, angle theta θ:

θ = arcsin(LAB/2R) (1)

then find the sector area S1 corresponding to arc AB:

S1 = 2θπR2/2π = θR2 (2)

and find the area S2 of ∆OAB:

S2 =
1
2

LAB·R· cos θ (3)

From the above, the wear mark section area S3 is obtained:

S3 = S1 − S2 (4)

Finally, the wear volume V is obtained:

V = S3 × LAB (5)
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3. Results and Discussion
3.1. Macromophology of the Coating

The coating macromophology with power of 1.5 kW, scanning speed of 200 mm/min
is shown in Figure 4. It can be seen that the coating appears to be a dense arrangement of
fish scales, orderly, smooth, and continuous, with no obvious pores, cracks, or other defects.

Coatings 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 4. Macromophology of the coating. 

3.2. Microstructure Analysis of the Coating 
3.2.1. XRD Analysis of the Coating 

The XRD analysis result of the coating is shown in Figure 5. The coating is mainly 
composed of Cr–Fe–Ni, γ-(Fe, Ni), Cr23C6, Cr7C3, and W2C phases. Under the action of 
high temperature of laser cladding, WC firstly decomposed to form W2C in situ. Then, 
the precipitated C and other alloying elements formed a variety of carbides, such as 
Cr23C6 and Cr7C3. These hard phases play a dispersively strengthened role in the coating. 
Finally, γ-(Fe, Ni) solid solution was formed by the solution of Fe into γ-Ni, and γ-(Fe, 
Ni) solid solution formed a complex Cr–Fe–Ni phase with Cr. The combined action of 
solid-solution strengthening and the carbide hard phase obviously improved the micro-
hardness and wear resistance of Cr12MoV, and reduced the probability of scrap due to 
friction and wear in the process of using the die. 

Figure 4. Macromophology of the coating.



Coatings 2022, 12, 1632 6 of 15

3.2. Microstructure Analysis of the Coating
3.2.1. XRD Analysis of the Coating

The XRD analysis result of the coating is shown in Figure 5. The coating is mainly
composed of Cr–Fe–Ni, γ-(Fe, Ni), Cr23C6, Cr7C3, and W2C phases. Under the action of
high temperature of laser cladding, WC firstly decomposed to form W2C in situ. Then, the
precipitated C and other alloying elements formed a variety of carbides, such as Cr23C6
and Cr7C3. These hard phases play a dispersively strengthened role in the coating. Finally,
γ-(Fe, Ni) solid solution was formed by the solution of Fe into γ-Ni, and γ-(Fe, Ni) solid
solution formed a complex Cr–Fe–Ni phase with Cr. The combined action of solid-solution
strengthening and the carbide hard phase obviously improved the microhardness and wear
resistance of Cr12MoV, and reduced the probability of scrap due to friction and wear in the
process of using the die.
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3.2.2. Analysis of Microstructure of the Coating

Figure 6 shows the microstructure of the coating. From Figure 6a, it can be seen that the
coating was mainly composed of the cladding layer, bonding zone, and substrate. It is clear
that the interface between the cladding layer and substrate presented good metallurgical
bonding without obvious defects such as holes and cracks. Figure 6b shows the line scan
result of the coating. It can be observed that Fe, Ni, Cr, and W had an obvious mutual
diffusion in the bonding zone, which ensures the bonding strength of the coating and
the substrate.

The magnified microstructure of the cladding layer is shown in Figure 6c, which
indicates a dendrite structure. EDS analysis was carried out on the dendrite (1, 3 points)
and the inter-dendrite (2, 4 points) respectively. The results are listed in Table 3. It can
be seen that the dendrite was mainly rich in Cr, Fe, Ni, and C. Compared with “2” and
“4” points, there were more Cr elements at points “1” and “3”. This is because during
the cooling and solidification process, Cr precipitates from inter-dendrite to dendrite.
At the same time, Cr and C generate new carbides. Combined with the XRD results, it
can be inferred that the dendrite is a eutectic structure formed by Cr7C3 and Cr–Fe–Ni.
Furthermore, a large amount of Ni was found in the inter-dendrite, which shows that the
inter-dendrite was γ-(Fe, Ni) solid solution. The results are consistent with the analysis
results in Figure 5.
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Table 3. EDS results of different positions in the cladding layer (at%).

Position C V Cr Fe Ni Mo W

1 20.37 0.28 41.60 19.76 17.05 0.00 0.93
2 24.83 0.07 7.06 19.41 47.45 0.00 1.18
3 31.11 0.05 32.82 13.34 21.68 0.00 1.01
4 23.75 0.04 8.91 19.48 46.72 0.00 1.10

3.2.3. Analysis of Dendrite Change with the Increasing of the Layer Depth

Figure 7a–c show the dendrites of the top, middle, and bottom parts of the coating
respectively. It is obvious that with the increasing of the coating depth, the dendrite became
gradually coarser. Because laser cladding is a process of rapid heating and solidification, the
temperature gradient (G) gradually decreased and the cooling rate gradually increased from
the bottom to the upper part of the molten pool, which led to the dendrite becoming finer.
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Figure 7. The dendrite morphology of the coating from top to bottom: (a) dendrite morphology in the
top of the coating (Yellow arrows indicate particles at the top of the coating); (b) dendrite morphology
in the middle of the coating; (c) dendrite morphology in the bottom of the coating.

Moreover, it can be observed from Figure 7a that there are many particles on the top
of the coating (indicated by the yellow arrows). EDS results showed that the content of C
(45.27%) was relatively high in the particles (Table 4). According to the solidification theory
of metals, carbide in the molten pool underwent the following reactions [34]:

L + WC →W2C (6)

L + (Cr, Fe)2C → (Cr, Fe)7C3, (7)

L + (Cr, Fe)C → (Cr, Fe)23C6 (8)

Table 4. Elemental composition of surface particles (at%).

Element B C Si Cr Fe Ni W

mass percentage 0.00 45.27 0.09 25.69 28.89 0.00 0.06

Together with the results of XRD analysis, it can be deduced that the particles are
composed of interstitial compounds such as Cr23C6.
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3.2.4. Analysis of Bulk Hard Phase in the Bottom of the Coating

Figure 8 exhibits the bulk hard phase in the bottom of the coating. The bulk phases
dispersively distributed at the bottom of the molten pool (referred to in the box in Figure 8a,
and the magnified morphology is shown in Figure 8b). It is obvious that the bulk phase
was closely embedded in the dendrite, and white granular material was distributed on its
surface. In order to further determine the phase composition, surface scanning analysis
was carried out. The results are shown in Figure 9.
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It is deduced that the bulk phase is unmelted WC from Figure 9. During the solidifica-
tion process of the molten pool, unmelted WC was distributed at the bottom of the molten
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pool owing to its large density, which provides the core of non-uniform nucleation. There-
fore, the nickel-based eutectic structure takes it as the core for epitaxial growth (Figure 8b),
and the hardness test showed that the hardness of bulk WC was 1293 HV. The dispersion
distribution of a hard phase with high hardness at the interface can significantly improve
the interface strength.

3.2.5. Analysis of Zigzag Microstructure of the Binding Zone

Figure 10 shows the microstructure of the binding zone. The dense interface structure
indicates that the coating formed good metallurgical bonding with the substrate. This is
because the substrate surface was polished by coarse sandpaper before laser cladding in
order to increase the bonding strength, and the surface of the substrate is uneven, which led
to the inconsistency of the depth of the molten pool. After solidification, the zigzag-shaped
dendrite grew along the vertical interface direction with the thickness range of 50~80 µm.
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3.3. Properties Analysis of the Coating
3.3.1. Analysis of the Hardness of the Coating

The microhardness curve of the coating is shown in Figure 11. The average hardness
of the coating (515 HV) was 59% higher than that of the substrate (212 HV). There exists the
presence of supersaturated Cr, Fe, and C in the solid solution formed by the solidification
of the coating. These elements play a role in solid solution strengthening. The hard
phases formed by C and Cr, Fe, and W play a diffusion-hardening role. In addition, grain
refinement in the coating also improves the hardness.

On most of the surface of the coating, the microhardness was relatively stable in
550 HV. Microhardness at the secondary surface reached the maximum value of 745 HV
(0.3 mm from the coating surface), which is about 3.5 times that of the substrate. This
is because in the process of laser cladding, the surface elements are burned, resulting in
the hard phase content being lower than that of the secondary surface. Additionally, the
impurities in the molten pool rose during the cooling and solidification process. It created
a loose coating on the surface, which reduced the hardness of the coating surface.
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3.3.2. Analysis of the Wear Resistance of the Coating

Figure 12 shows the friction coefficient curves of the coating and substrate. The friction
coefficient of the coating and substrate was 0.08 and 0.12, respectively. The average friction
coefficient of the coating was 33% lower than that of the substrate during the period of
0–20 min. This is because Ni60 alloy has good self-lubrication, and in the friction and wear
process it has good friction reduction compared with the substrate.
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Figure 12. The friction coefficient curves of the coating and the substrate: (a) the coating; (b) Cr12MoV
substrate.

Figure 13 shows the wear morphology of the substrate. It can be seen that the wear
surface of the substrate was rough and had obvious furrows and debris, which indicates
that the wear mechanism was adhesive wear and abrasive wear.
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In the sliding wear process, the hardness of the substrate was far less than that of
GCr15. With the increase of sliding time, the GCr15 ball was repeatedly chipped on the
surface of the substrate, so a lot of debris fell off from the substrate. Those falling debris
were not excluded in time, and were rolled into a lamellar structure under the action of
loading force. EDS analysis (Table 5) showed that lamellar debris contained a large amount
of Fe and O; therefore, it can be concluded that the sliding process was accompanied by the
occurrence of an oxidation phenomenon.

Table 5. EDS results of lamellar debris in the substrate (at%).

Element O Si Cr Fe Mo

At% 22.00 0.88 9.02 67.93 0.18

The coating only had the abrasive wear shown in Figure 14. The wear surface of the
coating was relatively flat, and there was no obvious plastic deformation. Because of the
high hardness, the coating effectively resisted the plastic deformation.

Through calculation, the wear volume of the coating was found to be 14 × 10−3 mm3,
and the wear volume of the substrate was 27× 10−3 mm3. The wear resistance of the coating
is increased to 48% compared with the substrate. Under the abrasive wear mechanism,
the wear resistance of the material is directly proportional to its hardness. Moreover, the
coating had significantly higher hardness than the substrate, so the coating exhibited lower
wear volume and higher wear resistance.
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4. Conclusions

(1) In this study, an attempt was made to improve the mechanical properties of Cr12MoV
by laser cladding Ni60 alloy reinforced by WC. The results showed that the hardness
and wear resistance of the coating were significantly improved compared with that of
the substrate. The details are as follows:

(2) The phases of the coating are composed of Cr–Fe–Ni, γ-(Fe, Ni), Cr23C6, Cr7C3, and
W2C. The microstructure of the coating layer is dendrite. The supercooling degree
from the bottom to the top of the molten pool gradually increased, resulting in the
dendrite morphology changing from coarse to fine.

(3) The zigzag microstructure of the bonding zone ensured the metallurgical bonding
strength. The undisolved WC diffusive distributed in the bottom of the coating,
which significantly improved the interfacial bond strength. In addition, WC particles
were tightly embedded in Ni dendrites, which reduced the cracking sensitivity of the
coating. There were no cracks, holes, or other defects in the interface between the
cladding layer and substrate.

(4) The average hardness of the coating was 59% higher than that of the substrate under
the combined effects of solution strengthening, diffusion hardening, and fine grain
strengthening. Because Ni60 alloy has good self-lubricity, the friction coefficient of
coating was 33% lower than that of the substrate. The wear mechanism of the coating
was mainly abrasive wear, and the wear mechanism of the substrate was adhesive
wear and abrasive wear. Under the abrasive wear mechanism, the wear resistance
of the material was proportional to the hardness, so the coating had a high wear
resistance. Compared with the substrate, the wear volume of the coating was reduced
by 48%.
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