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Abstract: Cation-disordered rock-salt cathode material is a promising material for next-generation
lithium-ion batteries due to their extra-high capacities. However, the drawbacks of large first-cycle
irreversible capacity loss, severe capacity decay, and lower discharge voltage have undoubtedly
hindered their application in commercial systems. In this study, cation doping (Mo4+) and atomic
layer deposition (ALD) techniques were used to synthetically modify the Li1.2Ti0.4Mn0.4O2 (LTMO)
material to improve the cycling stability. First, the optimal Mo-doped sample (Mo01) with the best
electrochemical performance among the different doping amounts was selected for further study.
Second, the selected sample was subsequently coated with an Al2O3 layer by the ALD technique to
further optimize its electrochemical performance. Results show that the LTMMO/24Al2O3 sample,
under optimal conditions, could obtain a specific discharge capacity of up to 228.4 mAh g−1 after
30 cycles, which is much higher than that of the unmodified LTMO cathode material. Our work
has provided a new possible solution to address some of the capacity fading issues related to the
cation-disordered rock-salt cathode materials.

Keywords: lithium-ion batteries; cathode; cation-disordered; rock-salt; Li-excess

1. Introduction

At present, the design and development of cathode materials with high specific ca-
pacities and good cycling stability have become increasingly important in the research of
lithium-ion batteries [1–3]. In this case, cation-disordered rock-salt materials have received
a great deal of attention due to their extra-high specific capacities. However, these kinds of
materials suffer from some disadvantages, including poor cyclability and lower discharge
voltage, which limit their further applications [4–7]. In order to solve the above prob-
lems, much work has been carried out by many researchers. Strategies such as elemental
doping, heating treatment, voltage window adjustment, and the ALD coating of inert
oxides have been used successively to improve the electrochemical performances of cation-
disordered rock-salt cathode materials, and satisfactory results have been obtained [8,9].
Currently, most materials are modified in only one aspect. Kazda et al. [10] introduced
cations (Mo4+) to improve the initial discharge capacity and high-temperature-cycling
capacity of LiMox+yNi0.5−xMn1.5−yO4 cathodes. The results of thermal analysis showed
that Mo doping slightly improved the stability of the LiNi0.5Mn1.5O4 crystalline structure,
thus improving the stability during high-voltage electrochemical cycles. Liu et al. [11]
synthesized and studied a series of Fe3+-doped Li1.2Mn0.6-x/2Ni0.2-x/2FexO2, and showed
that suitable Fe doping could significantly improve the cyclic stability and multiplicity of
the material. Zhao’s group [12] investigated the electrochemical effects of cation (Sn4+)
doping on Li1.2Ni0.2Mn0.8O2, and showed that Sn doping could improve the first-cycle
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discharge specific capacity, rate performance, and capacity retention of the material for
long-term cycles. In addition, the ALD coating of inert oxides was also used to enhance
the electrochemical performances of cathode materials. Huang et al. [13] clad an ultrathin
Al2O3 film on the surface of Li1.2Ti0.4Mn0.4O2 pore-like particles with the help of the ALD
technique. The results showed that the coated material had a higher first-cycle coulombic
efficiency and improved cycling stability. Xiao’s team [14] used the ALD technique to coat a
protective layer of AlPO4 on the surface of Li1.2Mn0.54Co0.13Ni0.13O2 to combat electrolyte
erosion, which improved the first-period coulombic efficiency and thermal stability of the
material. Meanwhile, Zhao et al. [15–18] coated the surfaces of different cathode materials
with a metal oxide protective layer with the help of ALD technology, which effectively
prevented the electrolyte from eroding the cathode materials and significantly improved
the cycling stability of these cathode materials.

In this study, a comprehensive modification strategy was designed to modify Li1.2Ti0.4Mn0.4O2
materials, both with cationic (Mo4+) doping and by coating the materials with Al2O3 film by
the ALD technique. Since the ionic radii of Mo4+ are relatively close to those of Mn3+, Ti4+,
and Li+, it is theoretically possible to achieve cation doping and keep the primary structure
of the raw material unchanged. The experimental results showed that the introduction
of Mo ion did not change the structure of the Li1.2Ti0.4Mn0.4O2 material. Meanwhile,
a suitable amount of Mo doping could improve the cyclic stability of LTMO. After that, we
coated the optimal Mo-doped sample (Mo01) with an Al2O3 layer by the ALD technique
to obtain the ultimate specimen under the best experimental conditions, and compared
it with the original LTMO cathode material. The results showed that the final sample
LTMMO/24Al2O3 under optimal conditions could obtain a specific discharge capacity of
up to 228.4 mAh g−1 after 30 cycles, with a capacity retention of 82.5%, which is much
higher than that of the unmodified LTMO, with a capacity retention rate of only 14.7%.

2. Experimental
2.1. Preparation of Materials

Li1.2−xTi0.4Mn0.4−xMoxO2 (LTMMO) cathode materials with different Mo doping
levels were synthesized using precursors of Li2CO3 (99%, Alfa Aesar, Ward Hill, MA, USA),
Mn2O3 (98%, Alfa Aesar), TiO2 (99%, Sigma-Aldrich, St. Louis, MO, USA), and MoO2 (98%,
Alfa Aesar), by conventional solid-phase reactions. The precursors were thoroughly mixed
by ball-milling for 4 h and pressed into a pellet. Then, the pellet was sintered at 900 ◦C for
12 h in argon. The obtained material was denoted as LTMMO. Depending on the amount
of Mo doping (x), we named the LTMMO samples as Mo00 (LTMO), Mo005, Mo01, and
Mo015, corresponding to x = 0, 0.005, 0.010, and 0.015, respectively.

Al2O3 coating was achieved using an Ensure Nanotech ALD system (Atomic layer
deposition, LabNano-9100, (Ensure, Beijing, China) [19]. During the ALD process, the as-
prepared LTMMO sample was placed in a homemade sample holder, and then the holder
was placed in the reaction chamber. The chamber was heated to 200 ◦C and evacuated to
1.0 mbar. Nitrogen with a flow rate of 20 sccm was used as the carrying and purge gas.
Al(CH3)3 and water were employed as aluminum and oxygen precursors, respectively. In
a typical ALD cycle, the pulse times of Al(CH3)3 and water were both controlled at 0.02 s.
Between each pulse of Al(CH3)3 and water, nitrogen was purged into the chamber for
8 s. For comparison, Al2O3 layers with 16, 24, and 40 ALD cycles were chosen to coat the
LTMMO sample. The obtained samples were denoted as LTMMO/nAl2O3, where n stands
for the number of ALD cycles.

2.2. Characterization of Materials

Crystal structures of the samples were analyzed by a powder X-ray diffractometer
(XRD, D8 Advance, Bruker, Karlsruhe, Germany). Scanning electron microscope (SEM,
SU 8010, Hitachi, Tokyo, Japan) and high-resolution transmission electron microscope
(HRTEM, F 20, FEI, Eindhoven, Netherland) examinations were performed to explore the
morphologies of the samples. X-ray photoelectron spectroscopy (XPS, ESCALab 250Xi,
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Thermo Scientific, Waltham, MA, USA) with monochromatic Al K-α radiation was con-
ducted to study the element surface states of the samples.

2.3. Electrochemical Experiments

To fabricate an electrode, different Al2O3-coated LTMMO samples and Ketjen black
were mixed by ball-milling at 150 rpm for 4 h. The mixture was then manually mixed
with polytetrafluoroethylene (PTFE) and rolled into a thin film. The weight ratio of
LTMMO/nAl2O3, Ketjen black, and PTFE was 70:20:10. The surface mass density of
each electrode film was approximately 4.4 mg cm−2. The cell assembly process was similar
to our previous study [20]. A two-electrode wagelok cell was used to test the electrochemi-
cal performances of the Al2O3-coated LTMMO thin films. Lithium foil was used as both
the working electrode and the counter electrode. The separator was a borosilicate glass
fiber membrane (Whatman, Buckinghamshire, UK). The electrolyte was a 1 M solution of
LiPF6 dissolved in ethylene carbonate (EC) and dimethyl carbonate (DMC) with a volume
ratio of 1:1. All cells were cycled on a LANHE CT2001A system (LAND, Wuhan, China)
at room temperature. The potential range was between 1.5 and 4.8 V, and the current
density was 10 mA g−1. The electrochemical impedance spectroscopy (EIS) measurements
were performed on Gamry Reference 3000 equipment (Gamry, Warminster, PA, USA).
Cyclic voltammetry (CV) was carried out within 1.5–4.8 V on a CHI760E electrochemical
workstation (CH Instruments, Shanghai, China) with a scanning rate of 0.5 mV s−1.

3. Results and Discussion

Figure 1a shows the crystal structures of the synthesized LTMMO samples after they
were ball-milled with Ketjen black (KB), and the XRD peaks of all samples match well with
the characteristic peaks of the cation-disordered rock-salt structure. Figure 1b shows the
XRD patterns of different LTMMO/nAl2O3 samples. As can be seen, all the diffraction
peaks of LTMMO correspond to the characteristic diffraction peaks of the cation-disordered
rock-salt structure [21]. This result indicates that the ALD coating did not change the
structure of LTMMO samples. Besides, no Al2O3 diffraction peaks were detected in the
LTMMO/nAl2O3 samples, and the reason may be that the amount of coated Al2O3 was too
small or the coated Al2O3 was amorphous.
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Figure 1. (a) XRD patterns of different LTMMO mixed with KB ball-milled samples; (b) XRD patterns
of LTMMO (Mo01) coated with different thicknesses of Al2O3.

The morphologies of the above samples are shown in Figure 2. From Figure 2a, it
can be seen that the undoped Mo sample (Mo00) agglomerated into micro-nanoparticles
with small primary particles of less than 100 nm. The morphologies of the Mo-doped
samples were almost unchanged, as shown in Figure 2 b–d. It is known that a smaller
particle size facilitates the diffusion of lithium ions and electrons, which may lead to better
electrochemical properties. The elemental compositions of the Mo00 sample and Mo01
sample were analyzed by an energy-dispersive spectrometer, as shown in Figure 2e. Only
three elements, Mn, Ti, and O, were detected in the Mo00 sample. In contrast, the EDS
spectrum of the Mo01 sample shows the characteristic peaks of Mo in addition to those of
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Mn, Ti, and O, indicating the presence of Mo in the Mo01 sample. At the same time, the
elemental distribution of the Mo01 sample was further analyzed by elemental mapping
experiments. Ti, Mn, O, and Mo elements were uniformly distributed in the Mo01 sample,
which affirms that Mo was indeed present in the Mo01 sample. At the same time, SEM
images of the Mo-doped Mo01 sample without and with ALD coating are shown in Figure 3.
As can be seen in Figure 3a, the morphology of the Mo01 sample was similar to that of
the Mo00 sample. After the ALD coating with Al2O3, the morphologies and sizes of the
samples remained almost unchanged, as shown in 3 b, c, and d. Due to the small sizes of
the coated Al2O3 particles and the thinness of the Al2O3 layer (with a thickness of only a
few nanometers), the changes in the morphology of the Mo01 before and after coating could
not be clearly observed by SEM. The differences in the elemental composition of the two
samples before and after coating are shown in Figure 3e. From the spectrum it is obvious
that only four elements, Mn, Mo, Ti, and O, were detected in the original LTMMO sample.
In contrast, the EDS spectrum of LTMMO/24Al2O3 shows the characteristic peaks of the
Al element, affirming the existence of Al in the coated sample. The elemental mapping
results shown in Figure 3f demonstrate the homogenous dispersion of Ti, Mn, Mo, O, and
Al elements in the LTMMO/24Al2O3 sample.
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Figure 3. SEM images of Al2O3-coated LTMMO samples with different thicknesses: (a) LTMMO;
(b) LTMMO/8Al2O3; (c) LTMMO/24Al2O3; (d) LTMMO/40Al2O3; (e) EDS elemental distribution
of LTMMO/24Al2O3 samples with EDS spectra of LTMMO and LTMMO/24Al2O3.; (f) Elemental
mapping area; Elemental mapping of Ti (g), Mn (h), Mo (i), Al (j), and O (k).
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Figure 4a shows the cycling performances of the LTMMO samples with different Mo
doping contents. It can be seen that the first discharge capacity of the Mo00 sample was
280.6 mAh g−1 at x = 0. After 30 cycles, the capacity decayed to 41.2 mAh g−1 with a
capacity retention of only 14.6%. At x = 0.005, the first discharge capacity of sample Mo005
was 278.5 mAh g−1, and it decayed to 81.4 mAh g−1 after 30 cycles, with a capacity retention
of approximately 29.2%. It is worth mentioning that when x increased to 0.01, the first
discharge capacity of sample Mo01 was 291.2 mAh g−1. After 30 charge/discharge cycles,
its discharge capacity was 131.8 mAh g−1, with a capacity retention of 45.2%. However,
the electrochemical performance of sample Mo015 deteriorated significantly by increasing
the value of x. After 30 cycles, the discharge capacity was only 69.03 mAh g−1, with
a capacity retention of 25.3%. It can be intuitively deduced that doping with Mo can
stabilize the structure of LTMMO material to some extent. In order to further enhance the
electrochemical properties of the LTMMO material, we used the ALD technique to clad a
thin film of Al2O3 onto the surface of the preferable LTMMO particles (Mo01), which was
superior to the other LTMMO samples, to protect the LTMMO material from the erosion of
the electrolyte during the charge/discharge cycles.
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The electrochemical properties of LTMMO/nAl2O3 samples were also investigated.
Figure 4b shows the cycling stabilities of the uncoated and Al2O3-coated LTMMO (Mo01)
samples at a current density of 10 mA g−1. Interestingly, the discharge capacities of all sam-
ples tended to increase gradually in the first few cycles and decreased gradually, which may
have been due to the activation process of the materials in the first few cycles. A similar
experimental phenomenon has been reported in the literature for other cathode materi-
als [22]. The initial discharge capacity of the original LTMO (Mo00) was 280.3 mAh g−1,
and after 30 cycles the specific capacity decayed rapidly to 154.5 mAh g−1, with a capacity
retention of approximately 55.1%. When the number of ALD coating cycles of Al2O3 was
eight, the first discharge capacity of sample LTMMO/8Al2O3 was 283.7 mAh g−1, and after
30 charge/discharge cycles, the discharge capacity was only 193.6 mAh g−1, with a capacity
retention of 68.2%. It is worth mentioning that after increasing the number of ALD cycles
of Al2O3, the first discharge capacity of LTMMO/24Al2O3 was 277.0 mAh g−1, and after
30 charge/discharge cycles the discharge capacity was still as high as 228.4 mAh g−1 with a
capacity retention rate of 82.5%—55% higher than that of uncoated LTMMO. However, with
an increasing number of ALD cycles of Al2O3, the discharge capacity of LTMMO/40Al2O3
decreased to only 204.5 mAh g−1 after 30 cycles, with a capacity retention of approxi-
mately 75.7%. The excessively thick insulating Al2O3 cladding layer hindered lithium-ion
transportation and reduced the electrochemical performance of the material. By combin-
ing the above results, it can be concluded that in order to achieve the best performance,
the optimum Mo doping amount (x) is 0.01, and the optimum number of ALD cycles of
Al2O3 is 24. In the following part, the sample obtained under this condition is named
LTMMO/24Al2O3.
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In order to directly observe the Al2O3 layer on the surface of the LTMMO particles, the
differences between the microstructures of the original LTMMO and the LTMMO/24Al2O3
samples were characterized and analyzed by high-resolution transmission electron mi-
croscopy (HR-TEM), and the results are shown in Figure 5b. Clear lattice fringes can be
seen in both the bulk phase and the surface region of the LTMMO material (Figure 5a). In
contrast, the LTMMO/24Al2O3 particles still had obvious lattice fringes in the bulk phase,
but the morphology of the surface had changed significantly. A dense, amorphous layer
with a thickness of about 2–3 nm was clearly observed in the surface region (Figure 5b).
Based on the above results, we infer that the layer might be the Al2O3 cladding layer.
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XPS was used to analyze the chemical compositions of samples LTMO, LTMMO
(Mo01), and LTMMO/24Al2O3, as well as the chemical valence states of the elements.
All spectra were calibrated with an exotic C1s peak (284.6 eV). Figure 6a shows the full
elemental XPS spectra of the three samples, from which it can be seen that the three samples
contained characteristic peaks of Ti, Mn, and O elements. A closer look at the full spectra
of the three samples, from the partial enlargement (inset of Figure 6a), revealed that the LT-
MMO (Mo01) sample had the characteristic peaks of Mo, and the LTMMO/24Al2O3 sample
had not only the peaks of Mo but also the characteristic peaks of Al, while the original LTMO
sample contained characteristic peaks of neither Mo nor Al. The XPS binding energies of
Ti 2p3/2 and Ti 2p1/2 were located at 457.9 eV and 463.7 eV (Figure 6b), corresponding to
Ti4+ ions in other Ti-based compounds [23]. The peaks located at 641.4 eV and 653.3 eV
(Figure 6c) in the Mn 2p XPS spectra of LTMO, LTMMO (Mo01), and LTMMO/24Al2O3
samples were the characteristic peaks of 2p3/2 and 2p1/2 of Mn3+ [24,25]. In addition, the
peak located at 642.8 eV corresponded to the characteristic peak of Mn4+ 2p3/2 [26,27]. The
Mn4+ in the samples may have been due to the partial oxidation of Mn3+ on the sample
surface. Figure 6d shows the Mo 3d XPS patterns of the three samples, and it is obvious that
no peaks of Mo appear in the XPS pattern of the LTMO sample. In contrast, the peaks of the
LTMMO (Mo01) and LTMMO/24Al2O3 samples located at 232.6 eV corresponded to the
characteristic peaks of 3d3/2 of Mo4+, respectively [28–30]. As for the Mo6+ in the samples,
it could have come from the oxidation of Mo4+ on the sample surface [31]. Figure 6e shows
that the XPS spectrum of O 1s consisted of two parts, where the peak at 529.1 eV corre-
sponds to the binding energy of M-O where (M: Mn, Ti, and Mo), while the peak at 531.1 eV
corresponds to the binding energy of the CO3

2− anion group and Al-O. No Al peak appears
in the XPS spectrum of the LTMMO (Mo01) sample, while the XPS spectrum of Al 2p3/2
at 74.9 eV of the LTMMO/24Al2O3 sample could be observed in the LTMMO/24Al2O3
spectrum [32]. Based on the above results, the chemical composition of the surface coating
layer of the LTMMO/24Al2O3 sample was probably Al2O3, which indicates that an Al2O3
layer was successfully coated on the surface of the LTMMO particles by the ALD technique.
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A comprehensive comparison of the electrochemical properties of the LTMMO/24Al2O3
sample with LTMMO (Mo01) and the original sample LTMO is presented below. Figure 7
shows the charge/discharge curves and coulombic efficiencies for three samples at a cur-
rent density of 10 mA g−1. The first 30 turns of the charge/discharge curve (plotted
every five cycles) and the charge/discharge cycles after 30 cycles are plotted. As shown
in Figure 7 a–c, the first charge/discharge curves of all samples have the same shape,
and none of them indicate a 4.5 V charging voltage plateau, indicating that the LTMMO
(Mo01) and LTMMO/24Al2O3 samples still maintained the cation-disordered rock-salt
structure and the charge/discharge curves remained unchanged. After 30 cycles, the
discharge voltage plateau of LTMO was significantly lower than that of LTMMO (Mo01)
and LTMO/24Al2O3 samples, and its discharge capacity was also much lower than that
of the other two samples, as shown in Figure 7. It can be deduced that the coating of
Al2O3 might have improved the discharge voltage plateau and the specific capacity of the
material after long cycles. As shown in Figure 7d, the first discharge capacity of LTMO was
286.3 mAh g−1, and it decayed rapidly to 41.5 mAh g−1 after 30 charge/discharge cycles,
with a capacity retention of only 14.7%. The discharge specific capacity of LTMMO (Mo01)
was 291.6 mAh g−1 in the first cycle. After 30 charge/discharge cycles, it had a discharge
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capacity of 131.8 mAh g−1, with a capacity retention of 45.3%. The first discharge specific
capacity of LTMMO/24Al2O3 was 277.0 mAh g−1, while after 30 cycles, the sample could
still deliver a discharge capacity as high as 228.4 mAh g−1 with a capacity retention of
82.5%. It was reported that capacity fading might come from the mild irreversible phase
transformation of LTMO and slight decomposition of the electrolyte at high voltages (4.8 V).
Our results suggest that Mo doping and further coating of a proper thickness of the Al2O3
layer by the ALD technique may reduce the impacts of the above two deficiencies.
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Figure 8 shows the cyclic voltammetry curves of the LTMO, LTMMO (Mo01), and
LTMMO/24Al2O3 samples for the first three cycles. During the anodic oxidation process,
the LTMO sample had two anodic oxidation peaks (Figure 8a), one of which was located
at ~3.99 V, corresponding to the Mn3+ to Mn4+ oxidation reaction [33]. Another anodic
oxidation peak at ~4.71 V corresponded to the oxidation reaction of O2− (oxygen loss from
the crystal structure and oxidation of O2− to form O2

2− or O2); similar results are often
seen in the CV curves of layered lithium-excess cathode materials [34]. However, this
anodic oxidation peak at 4.71 V disappeared in the second and third cycles, indicating
poor reversibility of the oxidation reaction of O2− in the LTMO samples. In the cathodic
reduction process, the reduction peak located at about 2.81 V corresponded to the Mn4+

to Mn3+ reduction reaction [35]. It is clear from Figure 8a that this reduction peak clearly
shifted toward a lower potential in the subsequent cycles, suggesting that the reduced
manganese ion may have had a chemical valence lower than +3. The CV curve of LTMMO
(Figure 8b) had two distinct differences compared to that of LTMO. The most obvious
difference was that the anodic oxide peak located at ~4.51 V in the first cycle was still
present in the subsequent second and third cycles, indicating that the loss of lattice oxygen
in the LTMMO material was more moderate than in LTMO. Additionally, the cathodic
reduction peak located at about 3.08 V did not shift as distinctly in the second and third
cycles as LTMO, indicating that the valence state of Mn ion in LTMMO remained at +3
after reduction. Figure 8c shows that the CV curves of LTMMO/24Al2O3 had several
significant differences compared to LTMO and Mo01. Firstly, the anodic oxidation peak
corresponding to the oxidation reaction of O2− was still clearly visible after three cycles,
indicating that the loss of lattice oxygen in the LTMMO/24Al2O3 sample was significantly
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suppressed and the reversibility of the redox reaction of O2− greatly increased. Secondly,
the cathodic reduction peak seemed more stable than the other two samples, indicating
that the LTMMO/24Al2O3 sample had a higher structural stability during the charging and
discharging cycles. The magnitude of the potential difference between the anodic oxidation
peak and the cathodic reduction peak in the first CV curve was closely related to the high
reversibility of the electrode material [36]. Comparing the CV curves, it is clear that the
potential difference of LTMMO/24Al2O3 (0.69 V) was much smaller than that of LTMO
(1.25 V), indicating that LTMMO/24Al2O3 had a higher reversibility.
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To further investigate the intrinsic reasons for the effects of doped cationic Mo and
Al2O3 coating on the electrochemical properties of LTMO materials, the electrochemical
impedances of three samples in the de-lithiated state were investigated. The Nyquist curves
for the LTMO sample were simulated by the equivalent circuit diagram shown in the inset
in Figure 9a. While the curves of the latter two samples present a depressed semicircle
from high- to middle-frequencies and a sloping line in the low-frequency region, they
can be simulated by the equivalent circuit diagram shown in the inset in Figure 9c. In
the equivalent circuit diagram, R1 represents the ohmic resistance, and the semicircle in
the mid-low frequency region represents the charge-transfer response and consists of the
charge-transfer resistance (R2) and the CPE1 connected in parallel with it. The diagonal
line represents the Warburg impedance (W1). The fitted impedance parameters of the
electrodes are displayed in Table 1. It can be seen that the charge-transfer resistance of
the LTMO (Mo01) electrode was small (291.0 Ω) before cycling, and increased to 384.2 Ω
and 3762 Ω for one and five cycles, respectively. However, the LTMO electrode showed
larger charge-transfer resistances of 423.5 Ω (before cycling), 963.8 Ω (one cycle), and
34547 Ω (five cycles), respectively. Taken together, the above comparison clearly shows
that Mo doping inhibited, to some extent, the complex side reactions with electrolytes on
the surface of the LTMO (Mo01) electrode. While complex side reactions may occur on
the surface of the LTMO electrode, these reaction products may hinder the ion transfer
process, leading to poor cycling performance. In addition, the doping of Mo may promote
charge transfer and moderate the increasing tendency of the charge-transfer resistance of
the electrode to some extent. Meanwhile, the suitable thickness of the Al2O3 layer ensured
the stable charge transfer and structural integrity of the anode electrode, resulting in good
cycling performance. Due to the protective effect of the Al2O3 cladding layer, the tendency
of increasing charge-transfer resistance was mitigated to some extent. Therefore, after
suitable Mo doping and Al2O3 coating modification, the final product LTMMO/24Al2O3
had significantly improved electrochemical properties and cycle stability in comparison to
the original unmodified LTMO material.

Table 1. Fitted impedance parameters of the electrodes.

Samples R2 R3

Battery State
OCV

(Ω)

1st
4.8V
(Ω)

5th
4.8V
(Ω)

OCV

(Ω)

1st
4.8V
(Ω)

5th
4.8V
(Ω)
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Table 1. Cont.

Samples R2 R3

LTMO 423.5 963.8 34547 - - -
LTMO (Mo01) - - - 291.0 384.2 3762

LTMMO/24Al2O3 - - - 330.1 209.3 920.6
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4. Conclusions

The electrochemical properties of LTMO were significantly improved by a combined
method of cation doping (Mo4+) and ALD coating of Al2O3. The significantly improved
electrochemical performance of the LTMMO/24Al2O3 samples can be attributed to the
suppression of the gradually increasing charge-transfer resistance and the improved struc-
tural stability of the modified material. The integrated modifications of cation-doping and
coating with inert oxides by the ALD technique provide a promising guideline to enhance
the electrochemical performance of cation-disordered rock-salt cathode materials.
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