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Abstract: For oil-in-water (O/W) Pickering emulsions, a new polymer stabilizer of butyl acrylate (BA)
grafted cellulose nanocrystals (BA-g-CNCS) has been developed. By adjusting the BA concentration,
the hydrophilic and hydrophobic surfaces of BA-g-CNCs could be systematically modified based on
the controllable interface activity. Specifically, the emulsification stability of the as-prepared stabilizer
was examined as a function of BA content, BA-g-CNCS usage, and oil type. The results showed
that the Pickering emulsion stabilized by BA-g-CNCS had a 98% volume fraction of emulsion with
long-term stability. Importantly, BA-g-CNCS could be a promising choice for polymer stabilizers
and could generate high internal phase Pickering emulsions without cross-linking when combined
with 13% BA and 1.75% BA-g-CNCS. Furthermore, it was established that BA-g-CNCs possessed self-
emulsifying quality, worked as hydrophobic coatings, and improved the mechanical properties. This
was of fundamental interest to polymer stabilizer and functional coatings, allowing for promising
applications in coating fields such as fabrics, leather, paper, controlled encapsulation, and the release
of actives in material science.

Keywords: cellulose nanocrystals; stabilizer; Pickering emulsion; coatings; cotton fabric

1. Introduction

Pickering emulsions have aroused a great deal of excitement in pharmaceuticals, food,
agrochemical, paints, cosmetics, and the crude oil recovery field due to “surfactant-free”
characteristics [1–3]. It could be further used as template for fabricating porous functional
materials [4]. Given that the urgent voices of green chemistry principles, the stabilizer
of Pickering emulsions is experiencing a paradigm, converting from solid particles to
colloidal particles. Currently, natural colloidal materials such as whey protein [5], soy
glycinin [6], kafirin [7,8], zein [9], starch [10], chitosan [11,12], lactic acid [13], casein [14,15],
and cellulose [16,17] could satisfy the present demand for eco-friendly stabilizers due to
their renewability, nontoxicity, and amphipathicity. Rod-like cellulose nanocrystals (CNCs)
exhibit good mechanical property, oxidation resistance, dispersion stability in water, and
biocompatibility, and have become a new research hotspot as a Pickering emulsion stabilizer
in recent years [18].

Due to the surface heterogeneity generated by their crystal structure, CNCs are am-
phiphilic. However, there are several hydroxyl groups on the surface of CNCs, resulting
in difficult dispersion in hydrophobic solvents and polymer media [19]. The hydrophilic
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of cellulose tends to collect moisture from the environment, lowering the material’s me-
chanical strength [20]. Consequently, it is sometimes required to adjust CNCs in order
to improve its hydrophilicity/hydrophobicity, compatibility, and reactivity in practical
applications [21]. In order to realize the above characteristics, various kinds of surface
modification methods have been applied to CNCs including esterification, etherification,
oxidation, silylation, and polymer graft polymerization [22–26]. Among them, polymer
graft polymerization is an effective way to overcome the hydrophilicity and compatibility
problems, and is used to fabricate functionalized polymer modified nanocellulose com-
posites [27–29]. Recently, most research has focused on polymer grafting nanocellulose
composites [30,31], but there have been limited reports on the whole vinyl group modified
nanocellulose as a stabilizer. Jianhua Zhou et al. [32,33] carried out reversible addition-
fragmentation chain transfer polymerization (RAFT) for the CNC-based block copolymer,
which was the sole Pickering stabilizer for Pickering emulsion polymerization. Stephanie
A. Kedzior et al. [34] used methyl methacrylate (MMA) to modify nanocellulose by in
situ polymerization using polyvinyl alcohol (PVA) as a stabilizing agent. However, the
preparation process of block copolymers is time-consuming and has low yields. Taking into
account further preventing the crystalline structure of CNCs from being damaged, great
efforts have gone into developing modified CNCs. Prior to this, γ-methacryloxypropyl
trimethoxysilane (A174) was used for CNC modification to prepare Pickering stabilizers in
our previous research. However, this stabilizer displayed inadequate long-term stability,
and the prepared CNC-based emulsion had poor film-forming flexibility by Pickering
emulsion polymerization.

Herein, BA-g-CNCs were achieved in situ graft polymerization by the ester exchange
reaction of surface hydroxyl groups between CNCs and BA, thereby resulting in enhanced
compatibility, dispersibility, and wetting properties. We studied parameters such as the
BA content, BA-g-CNC concentration, and oil type on the stability of Pickering emulsions.
Emulsion stability is described in terms of optical microscopy and tracking the volume
fraction of emulsions. The hydrophobic radical carbon–carbon double bond is crucial for
stabilizing the O/W interface of the Pickering emulsion and preparing hydrophobic coating
materials with improved mechanical performance. This study can provide more ideas and
some perspectives on developing CNC-based porous functional material applications in
the coatings field for future studies, which is of high theoretical and practical value.

2. Materials and Methods
2.1. Materials

Cellulose nanocrystals (CNCs) were purchased from the University of Maine (USA).
Dichloromethane, paraffin oil, and n-butyl acrylate (BA) was supplied by Tianjin Kemio
Chemical Reagents Co. Ltd. (Tianjin, China). N,N-Dimethylacetamide (DMAc, 99.5%),
toluene, and cyclohexane were provided by Tianjin Fuyu Chemical Co. Ltd. (Tianjin,
China). Tetrabutylammonium acetate (TBAAC, 98%) was obtained from Shanghai Macklin
Biochemical Co. Ltd. (Shanghai, China). Vegetable oil exacted from soybeans was pur-
chased at the supermarket. All chemicals were of analytical grade and used as received
without further purification. Deionized (DI) water through a water purification system was
used for the preparation of all aqueous solutions.

2.2. Synthesis of Modified Cellulose Nanocrystals

Cellulose nanocrystals (2.5 wt%, 0.2 g) and TBAAC (1 g) were immersed in a 50 mL
two-necked flask filled in 10 mL DMAc and stirred at 60 ◦C for 30 min. Subsequently, BA
in different mass ratios was simultaneously injected to the system within 30 min. After
2 h, BA-g-CNCS were formed and washed several times with DMAc centrifugation. Then,
the modified cellulose nanocrystals (BA-g-CNCs) were dispersed in DI water by solvent
replacement. The obtained BA-g-CNCs was freeze-dried and present a white powder
(Figure S1) for structure characterization and further application.
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2.3. BA-g-CNCS Stabilized for O/W Pickering Emulsions

The O/W type was confirmed by adding a droplet of the Pickering emulsion to the
water or oil phase by observing the diffusion. This system changed the BA-g-CNC dosage
and oil proportion in the aqueous phase to control the interface activity. To achieve this goal,
in a glass vial, BA-g-CNCs were dissolved into 1% (w/v) by DI water under a ultrasonic
cell pulverizer for 2 min at 30 W. Then, the colorless and transparent BA-g-CNC solutions,
as shown in Figure S2, were added dropwise to the oil phase at 0.5 oil fractions. After each
step, the mixture was shaken for 10 s. Finally, an IKA T18 homogenizer (IKA (Guangzhou)
Instrument and Equipment Co., Ltd, Guangzhou, China) was used to prepare the emulsions
at 10,000 rpm for 3 min at 30 ◦C. The final mixtures were homogenized on a BME100LX
high-shear homogenizer equipped for 3 min at 1500 rpm at 20 ◦C.

2.4. Fabrication of Reinforcing and Hydrophobic Cotton Fabric

The cotton fabrics (20 cm × 20 cm) were soaked in water at 70 ◦C. Then, A174 was
added for pretreatment. After the treatment, the treated cotton fabrics were padded with
two dips and nips (70%–80% wet pick up) in BA-g-CNC emulsions of 10 g/L. Finally, the
cotton fabrics were dried at 80 ◦C for 3 min and cured at 160 ◦C for 3 min.

2.5. Characterization

Before characterization, the samples were diluted into 0.01 wt% using deionized
water. Dynamic light scattering (DLS) was conducted on a Malvern Zetasizer Nano-
ZS90 instrument (Malvern Instruments, Worcestershire, U.K.) with 90◦ backscattering
measurements at 25 ◦C to measure the average particle size. The data were the average of
triplicates with 11 to 15 runs for each measurement.

For another test, the samples had to be purified by five centrifugation-dispersion
cycles using absolute ethyl alcohol. After drying up, the samples were ground into powder
and dried in an infrared-ray oven until their weight reached constantly. Then, KBr was
mixed with the same dose of the as-produced powders and pressed in a disk-shaped
probing sample for FTIR measurements. The chemical structure of the samples was then
determined by a Spotlight 400 FTIR spectrometer (PerkinElmer, Waltham, MA, USA) in
the spectra range from 4000 cm−1 to 400 cm−1 with a resolution of 4 cm−1 and a forward
and reverse moving mirror speed of 10 and 6.2 kHz, respectively. Thermogravimetric
analysis (TGA) and differential thermal gravity (DTG) measurements were carried out
by a thermogravimetric analyzer (METTLER TOLEDO TGA/SDTA 851e, Mettoltoldo
Technology (China) Co., Ltd, Shanghai, China) with a heating rate of 10 ◦C/min from
30 to 800 ◦C in a nitrogen atmosphere. For XRD measurements, a Japan MiniFlex600
X-ray diffractometer (Rigaku Beijing Corporation, Beijing, China) with Cu-Ka radiation
(k = 0.154 nm) was utilized for sample crystallinity.

Once Pickering emulsions were generated, the emulsion type was immediately de-
termined by dilution with oil and water: if the emulsion could be dispersed easily in the
water phase, it was categorized as O/W type, and if it could be dispersed easily in the
oil phase, it was categorized as W/O type. In the meantime, the freshly created emulsion
solution was transferred immediately to a 10 mL colorimetric cylinder. The stability of
the emulsions and the rate of dehydration were then assessed by measuring the volume
fraction of the emulsions after storage at room temperature for varying amounts of time.
The creaming/sedimentation index was computed using the formula shown below:

The creaming/sedimentation index = (Hs/Ht)× 100

where Hs is the height of the serum phase, and Ht is the total height of the formulation.
Optical microscopy was also visualized using the DM2500M digital biological micro-

scope (Leica, Wetzlar, Germany). A drop of the fresh Pickering emulsion (50% v/v) sample
was dripped onto the glass slice with a covering slide and then placed on a microscope
slide imaged at 50 or 100×magnification.
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As a coating material, the as-prepared modified cellulose nanocrystals were applied
to cotton fabrics, and their application features such as mechanical and surface hydropho-
bicity after finishing were evaluated. Before analyzing the qualities of a film, it must be
conditioned for 24 h under typical atmospheric conditions. Mechanical properties were
evaluated on an AI-3000 universal tensile testing machine (Gotech Testing Machines Inc.,
Taiwan, China). For each sample (30 cm × 5 cm), the test was carried out three times, from
which the average result was calculated.

In addition, the morphology of cotton fabrics was investigated using the SEM equip-
ment KYKY-2800B (KYKY, Beijing, China). Prior to scanning at an acceleration voltage of
5 kV, the samples were gold-sputter-coated to improve their surface conductivity. Contact
angle measurements of the untreated and treated cotton fabrics were carried out using
a SDC-100 contact angle goniometer (SinDin Precision Instruments Co. Ltd., Dongguan,
China) equipped with a dedicated CCD digital camera. A drop of distilled water (3 µL)
was placed on the fabric surface at a rate of 0.5 µL/s using a microsyringe at room tem-
perature. Images of the drop were recorded up to 10 s after the drop was set on the fabric
surface initially and three locations were tested, from which the average contact angle
was determined.

3. Results and Discussion
3.1. The Formation Mechanism of BA-g-CNCs

Because of its reactive polar molecule, unsaturated double bond, and carboxylic
acid structure, butyl acrylate is utilized to modify or graft the substrate and the obtained
copolymers or homopolymers could achieve superior weather, UV, water, and heat resis-
tance [35–37]. This study chose BA to modify CNCs using in situ graft polymerization. The
reaction structures of the BA-g-CNCs is shown in Figure 1a. By modifying CNCs, their
hydrophilicity could be lowered. The BA-g-CNCs, on one hand, possess both hydrophilicity
and hydrophobicity and can be employed to stabilize the Pickering emulsion (Figure 1b).
The interfacial stabilization of BA-g-CNCs may be used to build unique structures or func-
tional polymer composites via the Pickering emulsion polymerization technology. On the
other hand, BA-g-CNCs have excellent adhesion to hydrophobic substrates and increased
chemical compatibility with hydrophobic substrates. The interfacial action of BA-g-CNCs
for targeted functional cellulose coatings are presented in Figure 1c.

As depicted in Figure S3, the unmodified CNCs are highly agglomerated and have an
uneven particle size distribution due to their high hydrophilicity. In the TBAAC/DMAc
solvent system, the ester exchange reaction was conducted between BA and the surface
hydroxyl groups of CNCs, resulting in the production of BA-g-CNCs with a narrow distri-
bution and a particle size of 70 nm. The prepared BA-g-CNCs had hydrophobic double
bond groups. By varying the BA dosage, the hydrophobicity of BA-g-CNCs and coverage in
the Pickering emulsion droplet may be controlled, which plays a crucial role in boosting the
interfacial stability of the Pickering emulsion and the performance of the target coatings.

As shown in Figure 1b, when BA-g-CNCs were used as the Pickering stabilizer, the
obtained BA-g-CNCs were able to adsorb well at the oil/water interface, relying on van
der Waals and hydrogen bonding, forming an interfacial film with a large coverage area
and reducing the interfacial tension. Thus, the Pickering emulsion stabilized by BA-g-
CNCs had improved stability and a smaller average droplet size. When the BA-g-CNCs
were employed as enhanced mechanical property and hydrophobic coating materials, they
were dipped–rolled–dipped into A174-treated cotton fabric (Figure 1c). The treated cotton
fabric containing silicon hydroxyl groups can be condensed with adjacent silicon hydroxyl
groups while condensing the hydroxyl groups on BA-g-CNCs, resulting in anchoring
BA-g-CNCs to the surface of the cotton fabric by chemical bonds. Thus, modified CNCs
acted as reinforcing agents for transferring interfacial stress via the chemical interactions
between them and the substrates, imparting the substrates with exceptional mechanical
performance. Moreover, due to double bond groups and a rough surface, the BA-g-CNCs
coatings endowed the cotton fabric with hydrophobicity.
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3.2. The Structures of BA-g-CNCs

To elucidate the successful synthesis of BA-g-CNCs, their structures were examined
using FTIR, XRD, and TGA-DTG. As demonstrated in Figure 2a, the FTIR spectra of
CNCs and synthesized BA-g-CNCs exhibited chemically distinctive vibrations, respectively.
The typical characteristic bands of CNCs at around 3336 cm−1, 2902 cm−1, 1369 cm−1,
and 1041 cm−1 were associated with the –OH stretching, C–≥H stretching, C–H bending
vibration, and C–O stretching, which is consistent with previously published studies [38].
Comparing the FTIR spectra of CNCs, the spectra of the BA-g-CNCs obviously possessed
additional vibrations at 1609 cm−1, which were assigned to the stretching vibration of
C=C on BA. These distinctive peaks suggest that BA had been successfully grafted onto
CNCs. In addition, the crystallite structure of the CNCs and produced BA-g-CNCs was
analyzed using XRD analysis and is displayed in Figure 3b. It can be seen that CNCs
and the synthesized BA-g-CNCs had characteristic diffraction peaks at 15.4◦, 16.5◦, and
22.9◦, corresponding to the diffraction absorption peaks of the 101-crystal plane, 10ı̄-crystal
plane and 002 crystal planes, respectively. It was indicated that CNCs belong to the
typical cellulose I pattern regardless of the modification. The peak intensities of BA-g-
CNCs were higher than those of CNCs. These distinctive peaks demonstrated that the
hydrophobic alteration of CNCs by BA will not alter their crystal structure. TGA and DTG
provided further help for the effective preparation of BA-g-CNCs [39]. As demonstrated
in Figure 2c,d, as the temperature rose from 25 to 800 ◦C, the CNCs and BA-g-CNCs
exhibited different weight loss and weight loss rates. The thermal degradation process of
CNCs resulted in approximately 6.4% mass loss at temperatures below 150 ◦C, followed by
50.6% mass loss between 297 ◦C and 400 ◦C. During this process, the majority of the CNC
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structure was thermally damaged, with the greatest disintegration rate occurring at 308 ◦C.
In the literature, similar heat degradation tendencies have also been described [40]. In
contrast to the TGA–DTG curves of CNCs, the thermal degradation of BA-g-CNCs occurred
in three stages. The initial step was water evaporation prior to 120 ◦C. Subsequently,
the BA-g-CNCs decomposed in the range of 125–275 ◦C, primarily due to the thermal
degradation of the grafted butyl acrylate segment. In the third stage, the weight loss was
approximately 28.9% in the range of 275–400 ◦C, and the greatest weight loss rate occurred
around 319 ◦C, catalyzed by CNCs in BA-g-CNCs. It is intriguing that the initial thermal
disintegration of CNCs began at 295 ◦C, while BA-g-CNCs began at 125 ◦C. The lower
breakdown temperature of BA-g-CNCs may have been caused by the lower glass transition
temperature of the acrylates grafted onto the surface of the CNCs via transesterification,
hence lowering the thermal stability of the BA-g-CNCs.
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3.3. Stability and Morphology of O/W Pickering Emulsions of BA-g-CNCs as Pickering Stabilizers

The nature of colloidal particles determines the type and stability of a Pickering
emulsion [18,41]. This study primarily studied the impact of the modifier, O/W ratio, and
stabilizer concentration on the Pickering emulsion stability. According to the emulsion
height variation and optical microscope images, the degree of alteration of CNCs and the
stabilization impact of BA-g-CNCs were determined (see Figures 3–5) [42]. Figure 3 depicts
the optical microscope images, the corresponding emulsion appearance after standing for
24 h, and the volume fraction of the Pickering emulsion stabilized by BA-g-CNCs with
various BA concentrations. The optical microscope images indicated that butyl acrylate
was successful in altering the hydrophilicity and hydrophobicity of the CNC surfaces and
that the generated BA-g-CNCs had a good stabilizing effect. When the BA concentration
was less than 13%, the emulsion droplet was less homogenous and contained small oil
phase droplets that had not been emulsified. This is due to the fact that when the BA
content of the modifier is low, the surface of the BA-g-CNCs contains more –OH, the
hydrophilicity is still stronger, and the adsorption energy barrier is higher [43], so it cannot
completely form an interfacial film covering a large area in the O/W interface, resulting in
the formation of small droplets in the oil phase under the action of external forces. When
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the BA concentration exceeds 13%, the emulsion droplets will collect across a vast region
and be extruded and distorted by one another. This is due to the excessive amount of BA,
the strong hydrophobicity of BA-g-CNCs, and the rise in interfacial tension and interfacial
adsorption energy, all of which make it challenging to suppress Pickering emulsion droplet
aggregation, hence decreasing the emulsion stability. According to the volume fractions
of the emulsion after emulsification (Figure 3f), the Pickering displacement stability first
increased and then decreased with increasing BA content, which was consistent with the
appearance of the emulsion and optical microscope images of the corresponding samples
after 24 h of resting.
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Adjusting the number of BA-g-CNCs added in order to examine the effect of the
Pickering stabilizer concentration on the stability of Pickering emulsions while keeping
all of the other parameters constant. According to Figure 4a–e, when the concentration
of BA-g-CNCs was low, the emulsion droplets with a uniform size were compressed and
distorted, and oil phase droplets were evident. As the stabilizer concentration of the BA-
g-CNCs grew, the volume of emulsion delamination reduced gradually. As depicted in
Figure 4e, when the concentration of BA-g-CNCs was 1.75%, the produced emulsion was
stable, and droplets were disseminated in a continuous phase as unconnected spheres
with uniform distribution. After 24 h of standing, no delamination phenomenon was seen.
This suggests that sufficient BA-g-CNCs could thoroughly cover the oil/water interface to
prevent oil droplets from aggregating and producing a stable emulsion. Similar conclusions
were reached for the volume fractions of emulsions based on their resting stability and
optical microscope images. Within two hours, the volume fraction of the emulsion changed
significantly before remaining constant. As demonstrated in Figure 4f, as the concentration
of BA-g-CNCs increased, so did the volume fraction of the emulsion until no delamination
occurred. When the BA-g-CNC concentration was 1.75%, the resulting emulsion was more
viscous and gel-like, and it did not move when inverted, generating high internal phase
Pickering emulsions. Cross-linker agents were required to provide long-term stability
when polymer nanoparticles were utilized as stabilizers to create a high internal phase
emulsion [44], as reported. In this study, uncross-linked BA-g-CNCs could generate a
very stable Pickering emulsion with a high internal phase, which is anticipated to develop
additional porous functional materials for pharmaceutical, aesthetic, and tissue engineering
applications [4,45].

This work utilized toluene, cyclohexane, dichloromethane, paraffin oil, and viscous
edible vegetable oil to see whether BA-g-CNCs could be universally used with various oil
phases to produce stable water-in-oil high internal phase Pickering emulsions. Figure 5a–e
displays images taken by an optical microscope of various oil phase emulsions stabilized by
BA-g-CNCs. Herein, all emulsions were the O/W type. According to the micromorphology
of emulsion droplets, the emulsion droplet size was uniform and dense without voids. The
corresponding inverted appearance diagram showed that only the emulsion prepared with
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the oil phase of paraffin oil was shifted, which is related to the low viscosity of paraffin
oil itself. The high internal phase Pickering emulsion could be prepared with other oil
phases. Due to the moderate concentration of BA-g-CNCs being adsorbed at the oil/water
interface and the C=C bonds on its surface being organized in the droplet dispersion phase,
Pickering emulsions were significantly stabilized. In addition, according to the findings of
Tambe’s study, the interparticle forces were not negligible when the particle concentration
at the interface was high enough [46]. Strong intermolecular interactions between adjacent
BA-g-CNCs further stabilized the effect, resulting in a high internal phase emulsion. As
depicted in Figure 5f and Figure S4, the emulsion volume fraction never changed after
standing for 24 h. This demonstrates that BA-g-CNCs had high emulsification stability for
all oil phases.

3.4. BA-g-CNCs as Reinforcing and Hydrophobic Cotton Fabric Coatings

CNCs are commonly utilized as a reinforcing filler in composite materials due to their
exceptional strength and rigidity [47]. Unlike inorganic nanofillers, it is non-polluting,
natural, renewable, and biocompatible. In the meantime, modified CNCs showed increased
hydrophobicity, and BA could enhance the film formation and flexibility of the target
BA-g-CNC coatings. Herein, the superior BA-g-CNCs are therefore suggested to treat
cotton fabrics as reinforced and hydrophobic coatings. The morphology of the BA-g-
CNC finished cotton fabrics with varying BA concentrations was observed by SEM. As
shown in Figure 6a, the cotton fiber finished with unmodified CNCs contained clusters
of nanocellulose whiskers with an uneven distribution. This is due to hydrogen bonding
and van der Waals forces absorbing CNCs on the fiber surface. On the other hand, the
strong hydrogen bonding between unmodified CNCs could cause the CNCs to aggregate,
as shown in the basket box in Figure 6. As the BA concentration grew, the hydrophobicity
of BA-g-CNCs increased, which formed a smoother coatings under the action of condensed
hydroxyl groups between BA-g-CNCs and the fabrics, resulting in fiber adhesion, illustrated
in Figure 6b–d. With the continuous increase in the BA concentration, the hydroxyl group
on the surface of BA-g-CNCs diminished. It is difficult to form BA-g-CNC coatings on
the cotton fabric surface because of the reduced contact force, as seen in Figure 6e,f, as
shown by the red arrows. Therefore, the morphology of BA-g-CNCs on the surface of
cotton fabrics significantly impacts the mechanical property and hydrophobicity.
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To further understand the above-mentioned reinforcing and hydrophobicity, the con-
tact angle and mechanical properties were investigated. Figure 7 presents the contact
angles of cotton fabrics treated with BA-g-CNCs with varying BA concentrations. It can be
noted that the unmodified CNC finished cotton fabric was hydrophilic with 82◦. As the
concentration of BA grew, the contact angle of BA-g-CNC treated cotton fabrics increased
from 87◦ to 100◦ and then dropped. In other words, the cotton fabrics changed from initially
being hydrophilic to hydrophobic. This is because the hydrogen link between the hydroxyl
groups of BA-g-CNCs and cotton fabric gradually weakens as the degree of alteration of
CNCs rises, causing a morphology change from the coating to aggregate on the cotton
fabric surface (see Figure 6). When BA-g-CNCs formed thin films on the cotton fabric
surface, the water contact angle increased due to the hydrophobicity of BA-g-CNCs. In
contrast, when the BA content was higher than 12%, the BA-g-CNCs were excessively
modified with strong hydrophobicity. It was difficult for BA-g-CNCs to finish on a cotton
fabric. Only a small amount of BA-g-CNCs aggregated rather than the coatings on the
surface of the cotton fabric. Therefore, the water contact angle (79◦) of the finished cotton
fabric at 16% of the BA content was close to that of the original unmodified CNC finished
cotton fabric.
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As shown in Figure 8, the mechanical properties of cotton fabrics treated with BA-
g-CNCs containing varying amounts of BA were conducted. It was observed that cotton
fabrics processed by BA-g-CNCs exhibited superior mechanical properties compared to
those processed by unmodified CNCs. Meanwhile, as the BA content increased, the
mechanical performance of the fabric samples improved. The breaking tenacity was
increased from 4.30 to 5.67 MPa and the elongation at break was discovered to increase
from 21% to 24.75%. This is because CNCs have a greater specific surface area and are
more rigid, which could impart good mechanical performance to cotton fibers by forming
coatings. However, at a 15% BA content, too much BA content resulted in a decrease. In
this case, a large number of BA-g-CNC aggregates on the surface of the cotton fabric would
result in stress concentration and a decrease in mechanical performance by transferring
interfacial stress between them and the substrates. The data at the 16% BA content showed
some variation due to the uneven fabric finishing and sampling location, but it had no
effect on the overall trend. The results of the contact angle and mechanical properties were
consistent with the morphology of the cotton fabric, as depicted in Figure 6.
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4. Conclusions

Through in situ graft polymerization of CNCs with BA, BA-g-CNCs were successfully
synthesized as Pickering stabilizers and reinforcing/hydrophobic coatings. The use of BA
altered the amphiphilicity of BA-g-CNCs. Pickering emulsions stabilized by BA-g-CNCs
have an optimized droplet size distribution and excellent stability without layering when
the BA content was 13%, the BA-g-CNC dosage was 1.75%, and the O/W ratio was 6:4. The
BA-g-CNCs formed a film on the surface of the cotton fabric as a finishing agent, which
significantly improved the mechanical and hydrophobic properties. Furthermore, BA-g-
CNCs could be used to stabilize different oil phases in order to create high internal phase
Pickering emulsions. This study demonstrates a simple method for preparing modified
CNCs as stabilizers and reinforcing/hydrophobic coatings as well as a method to design
functional porous nanoparticles based on CNCs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings12101594/s1, Figure S1: Physical appearances of BA-
g-CNCs powder; Figure S2: Appearance of the front (a) and bottom(b) of 0.4% (w/v) BA-g-CNCs
solution with 13% of BA content; Figure S3: DLS of CNCs and BA-g-CNCs; Figure S4: Emulsion
volume fraction Pickering emulsions stabilized by BA-g-CNCs in different oil dispersion.
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