
����������
�������

Citation: Ballester, M.; García, M.;

Márquez, A.P.; Blanco, E.; Fernández,

S.M.; Minkov, D.; Katsaggelos, A.K.;

Cossairt, O.; Willomitzer, F.; Márquez,

E. Application of the Holomorphic

Tauc-Lorentz-Urbach Function to

Extract the Optical Constants of

Amorphous Semiconductor Thin

Films. Coatings 2022, 12, 1549.

https://doi.org/10.3390/

coatings12101549

Academic Editor: Alexandre Botas

Received: 19 September 2022

Accepted: 4 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Application of the Holomorphic Tauc-Lorentz-Urbach Function
to Extract the Optical Constants of Amorphous Semiconductor
Thin Films
Manuel Ballester 1, Marcos García 2, Almudena P. Márquez 3 , Eduardo Blanco 2 , Susana M. Fernández 4 ,
Dorian Minkov 5, Aggelos K. Katsaggelos 6, Oliver Cossairt 1,6, Florian Willomitzer 7 and Emilio Márquez 2,*

1 Department of Computer Sciences, Northwestern University, 633 Clark St, Evanston, IL 60208, USA
2 Department of Condensed-Matter Physics, Faculty of Science, University of Cadiz, 11510 Puerto Real, Spain
3 Department of Mathematics, College of Engineering, University of Cadiz, 11510 Puerto Real, Spain
4 Photovoltaic Solar Energy Unit, Energy Department, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain
5 College of Energy and Electronics, Technical University of Sofia, 2140 Botevgrad, Bulgaria
6 Electrical and Computer Engineering Department, Northwestern University, Evanston, IL 60208, USA
7 Wyant College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
* Correspondence: emilio.marquez@uca.es

Abstract: The Tauc–Lorentz–Urbach (TLU) dispersion model allows us to build a dielectric function
from only a few parameters. However, this dielectric function is non-analytic and presents some math-
ematical drawbacks. As a consequence of this issue, the model becomes inaccurate. In the present
work, we will adopt a procedure to conveniently transform the TLU model into a self-consistent dis-
persion model. The transformation involves the integration of the original TLU imaginary dielectric
function ε2 by using a Lorentzian-type function of semi-width, Γ. This novel model is analytic and
obeys the other necessary mathematical requirements of the optical constants of solid-state materials.
The main difference with the non-analytic TLU model occurs at values of the photon energy near or
lower than that of the bandgap energy (within the Urbach absorption region). In particular, this new
model allows us to reliably extend the optical characterization of amorphous-semiconductor thin
films within the limit to zero photon energy. To the best of our knowledge, this is the first time that
the analytic TLU model has been successfully used to accurately determine the optical constants of
unhydrogenated a-Si films using only their normal-incidence transmission spectra.

Keywords: amorphous semiconductors; dielectric function; optical properties; Tauc–Lorentz model;
Tauc–Lorentz–Urbach model; thin-film characterization

1. Introduction

The fundamental optical constants of solid-state materials are two mathematical func-
tions that quantify the interaction of matter with the electromagnetic field of light waves.
Despite their misleading name, the so-called optical ‘constants’ vary over the electromag-
netic spectrum, and hence, they must be found at each vacuum wavelength/photon energy.
It is essential to accurately calculate the dispersive optical constants of a solid-state material
in order to consider it for diverse applications. These include the device design and charac-
terization and the fabrication-process control of optical thin-film coatings. Furthermore,
they play an essential role in the vast field of the semiconductor-device industry.

On the other hand, to gain insight into the the optical properties of thin layers and
bulk materials knowledge regarding a pair of dimensionless frequency-dependent optical
constants is required. These can be either the refractive index, n, and extinction coefficient,
k, or the real and imaginary parts of the complex dielectric constant, ε1 and ε2, respec-
tively. The optical properties of certain groups of solid materials in nature possess similar
characteristic features, and permit simple optical models to give an account of their two
dispersive optical constants over a particular spectral range. These dispersion models
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depend only upon very few parameters to be evaluated for each specific material. Optical
models facilitate the optical-constant determination since it only requires a limited number
of free parameters. This idea is of utmost importance for the aim of the present work, as
will be shown.

The optical parameters must meet some requirements if we desire to reproduce the
dispersive optical constants of solid-state materials. Combining these optical constants,
we can form a full complex function, namely n + ik or ε1 + iε2. This complex function is
susceptible to being imposed upon with such requirements. Consequently, the ‘causality’
in the response of solid materials to an external electric field is connected with the fact
that the two components of the complex dielectric function are Hilbert transforms of each
other, that is, the well-known Kramers–Kronig (KK) bidirectional relations. It has also been
established that the dispersive optical constants are the limit on the real axis of a complex
analytic function. Therefore, this function is infinitely differentiable in a neighborhood of
each point in the upper complex half-plane, C+. The latter fundamental property implies
extending the spectral variable photon energy, E, which is initially a real number, to the
complex number z = E + iΓ ∈ C+, being Γ a positive real number. An application of
extending photon energies to C+, i.e., to complex photon energies, represents a novel
procedure to transform non-analytic optical models into analytic or holomorphic [1,2].
It consists of carrying out the convolution of such a non-analytic original model with a
Lorentzian-type function, which results in a spectral smoothening of the optical constants.
We will return to this procedure later.

Various dispersion models have been proposed over the years for the group of semi-
conductor materials in order to parameterize their optical constants. These include the
models of Forouhi and Bloomer [3], Campi and Coriasso [4], Tauc–Lorentz [5–8] (TL),
Cody–Lorentz–Urbach [9], and Tauc–Lorentz–Urbach [10] (TLU). In the TL model, the
imaginary part of the complex dielectric constant, ε2, becomes zero below the bandgap,
whereas the experimental evidence shows otherwise. Semiconductors are materials that
experience an exponential decrease in their absorption coefficient, α(= 4πk/λ), below the
bandgap. It is called either the Urbach–Martienssen tail or simply the Urbach tail.

The TLU model was developed by Foldyna et al. [10] in order to include the Urbach
band-tail to the TL model proposed by Jellison and Modine [7]. Nevertheless, this modified
TLU model continues with the inappropriate use of piecewise functions. Therefore, the lack
of analyticity in the TL model is still present in the TLU model. The lack of analyticity in
an optical function, results in the fact that it does not have the quality to account for the
optical properties of solid material, thus giving rise to inaccuracies.

In the present paper, we focus on the non-analytic TLU (NTLU) model proposed by
Foldyna et al. [10], a popular model often found in the literature. Moreover, two recent
papers [1,2] have put forward the procedure mentioned above, which transforms the optical
constant into analytic or holomorphic and self-consistent models. This procedure suggested
by Rodríguez de Marcos and Larruquert [1,2] employs the dispersion and/or the absorption
term, belonging to the non-analytic model, as a ‘weight function’ of (E′ − E− iΓ)−1-type
functions, and they are integrated over the complete spectral domain. Notably, Rodríguez
de Marcos and Larruquert used their procedure in order to transform the non-analytic TLU
model by Foldyna et al. into an analytic TLU (ATLU) model.

The primary goal of the present work is to use the analytic TLU model in order to
extract the optical constants of amorphous semiconductors. To the best of our knowledge,
this is the first time this approach has been utilized. What had been done so far [1] was
to fit this analytic model to the experimental data belonging to Si3N4. They are available
in Palik’s Handbook of Optical Constants of Solids [11] and were presented by Philipp.
In this work, we will determine the optical properties and the geometrical parameters,
such as the average thickness and thickness variation (see the illustration regarding the
wedge-shaped geometry of a thin film in Figure 1a), and of thin films of non-hydrogenated
amorphous silicon (a-Si). The films were grown by radio-frequency magnetron-sputtering
(RFMS) deposition onto transparent glass substrates at room temperature and 325 °C.
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Figure 1. (a) A schematic illustration of the wedge-shaped geometry of a thin layer. (b) Raman
spectra of four a-Si specimens deposited at 25 °C [12,13]. (c) Grazing-incidence XRD diagram and
(d) micro-XRD pattern of an a-Si thin-film sample, grown at a temperature of 25 °C. In the micro-XRD
diagram of this particular sample, several pronounced diffraction peaks can be noticed, which can be
undoubtedly attributed to SiO2 peaks (surface native oxide). The two diffraction peaks, (400) and
(331), observed exclusively in this particular specimen, can correspond to crystalline planes of silicon
indicative of a possible ordered nano-structure (nano-crystalline nature), embedded in the whole and
absolutely dominant amorphous matrix (it has been considered negligible from the viewpoint of the
assumed optical model) [14,15].

The reason behind choosing this particular material for a case study was that a-Si is
of fundamental interest as an archetypal tetrahedral covalent amorphous network and a
significant technological material for thin-film electronics [16,17]. In addition, the chosen
pure a-Si is an excellent model amorphous semiconductor material that can be prepared
reproducibly by multiple methods [18]. It should be added that new density-modulated
multilayer a-Si thin-film anodes have been recently developed, which can be employed as
a robust, high-capacity electrode for Li-ion batteries [19]. Their results have shown that
these a-Si films can provide a very high Coulombic efficiency of up to 99% and a reversible
specific capacity as high as≈1700 mAhg−1 after 50 cycles. These promising results can lead
to a-Si thin-film anode materials with superior capacity and mechanical stability compared
to conventional Si anodes.

2. Materials and Methods

The unhydrogenated a-Si thin layers were grown onto reasonably transparent glass
(Corning Eagle XG® and 3-mm-thick Borofloat® 33) substrates using a commercial single-
chamber magnetron-sputtering MV System, with a vertically adjustable cathode operated
by RF power. The target–substrate distance was set to an appropriate value of 6.1 cm. The
3-inch diameter p-Si target (Si) was manufactured by Lesker Company (St Leonards-on-Sea,
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East Sussex, UK), with a purity of 99.999%. It had an electrical resistivity of 0.005–0.020 Ωcm
and a mass density of 2.32 g/cm3.

A K-type reference thermocouple carried out the measurement of the glass substrate
temperature. Before loading the glass substrates into the deposition chamber, they were
carefully cleaned via ultrasonic baths, rinsed next in deionized water, and dried finally
by blown nitrogen. Before the sputtering-deposition process, the base pressure inside the
chamber was approximately 3× 10−4 Pa. The a-Si thin films under study were prepared
by employing two different RF powers, 525 and 450 W, associated with the deposition
temperatures of room temperature and 325 °C, respectively. The Ar-working-gas pressure
was between 0.7 and 4.5 Pa, corresponding to an Ar-gas flux between 17 and 70 sccm.
We carefully selected these particular growth conditions in order to achieve the highest
possible film-deposition rate permitted by the sputtering system used in this investigation.
We also looked to produce a-Si thin layers, as clearly predicted by the Thornton model [20].

The structural properties and morphology of RF-sputtered a-Si thin films were ex-
amined via Raman spectroscopy, X-ray diffraction (XRD), and atomic force microscopy.
Micro-X-ray diffraction also allowed us to perform a more profound structural and mor-
phological analysis in order to gain more valuable information about the microstructural
nature of the present sputtered a-Si layers. The Raman spectra were measured by using a
Micro-Raman LabRam HR Evolution (Tulln, Austria) with a 633 nm He-Ne laser excitation
source. The Raman spectra belonging to four representative a-Si samples, deposited at
room temperature, are displayed in Figure 1b. The average value of the Raman shift of the
TO peak, wTO, is approximately 464 cm−1.

XRD diagrams were collected by employing a PANalytical X’Pert Pro diffractometer,
operating in a θ − 2θ configuration with a CuKα radiation (45 kV–40 mA), within the
angular range of 20° < 2θ < 80°. Phase identification was carried out by comparison with
the Inorganic Crystal Structure Database. The grazing-incidence X-ray diffraction pattern
of an a-Si thin-film specimen grown at temperature of 25°C, is shown in Figure 1c. In this
figure, the corresponding first-sharp-diffraction peak can be clearly noticed. Furthermore, the
micro-XRD diagram of the same particular sample, exhibiting a few pronounced diffraction
peaks, which can be unambiguously linked to SiO2 peaks, i.e., the surface native oxide, is
presented in Figure 1d.

The surface morphology was examined by using a standard AFM Multimode Nanoscope
III-A SPM from Veeco-Digital Instruments (Cambridgeshire, UK) operating in tapping
mode. The surface roughness was quantified by the root-mean-square deviation of the
AFM-measured height from the mean data phase in the 5× 5 µm2 and 1× 1 µm2 images,
respectively. The measured value of the surface roughness parameter Rq,AFM, for all the
studied a-Si samples are listed later in the article. The values of the root-mean-square
roughness obtained from the AFM images are in the range 0.60–2.62 nm. We consider that
the present samples will give the true bulk dielectric function of a-Si. Furthermore, this is
because they have nearly flat sample surface, as has been clearly demonstrated by ex situ
AFM microscopy.

Finally, the normal-incidence transmittance spectra of the as-deposited a-Si thin-layer
samples were measured at room temperature by using a Perkin-Elmer Lambda-1050 and an
Agilent Cary 5000, UV/Visible/NIR double-beam spectrophotometer (Waltham, MA, USA).
The geometrical and optical parameters were accurately calculated from these specific
spectrophotometric data, as explained below. The optically determined layer thickness was
systematically cross-checked by scanning electron microscopy (SEM: FEI Nova NanoSEM
450). The layer thickness was also independently measured for some of our a-Si specimens,
with a Veeco Dektak 150 mechanical surface profiler.
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3. Transforming the NTLU Model to the ATLU Model

For many semiconductors and dielectrics, the absorption coefficient α = 4πk/λ
decreases exponentially below the optical gap, Eg, obeying the Urbach rule:

α(E) = α0 exp
(

E− Efocus
Eu

)
, (1)

where α0 and Efocus define the Urbach focus, and Eu representing the exponential steepness,
is called the Urbach energy.

Foldyna et al. [10] completed the TL model by including the Urbach band-tail. Their
new model, referred to as the TLU model, is given as a piecewise function with two parts
for ε2:

ε2,NTLU
(
E; Amp, E0, Eg, Cbr, Ec

)
=


Au

E
exp

(
E
Eu

)
at E ≤ Ec,(

E− Eg
)2 AmpE0Cbr

E
((

E2 − E2
0
)2

+ C2
brE2

) at E > Ec,
(2)

where Ec is the connection energy between the two parts. In order to guarantee the
continuity of ε2 and its first derivative, the parameters Au and Eu must be:

Au =
AmpE0Cbr(Ec − Eg)2exp(−Ec/Eu)

E4
c + (C2

br − 2E2
0)E2

c + E4
0

, (3)

Eu =

(
Ec − Eg

)(
C2

brE2
c + (E2

0 − E2
c )

2)
2[
(
E4

0 − E4
c
)
+ EcEg

(
C2

br − 2(E2
0 − E2

c )
)
]
. (4)

In the formula describing the ‘Urbach rule’, the absorption coefficient α, depends expo-
nentially on the photon energy. However, Foldyna et al. [10] show this dependence of α on
photon energy by expression of ε2, considering the fact that n can be reasonably assumed to
be a constant over the Urbach-band-tail fitting range. This is expressed mathematically by:

ε2(E ≤ Ec) = 2n(E)k(E) ≈ 2nUrbachk(E) =
nUrbachhcα(E)

2πE

=
nUrbachhcα0

2πE
exp

(
E
Eu

)
exp

(
−Efocus

Eu

)
=

Au

E
exp

(
E
Eu

)
,

(5)

where h represents Planck’s constant and c the speed of light in vacuum.
The TLU model presents all the drawbacks of the TL model [7], except that ε2 does not

become zero for photon energies lower than Eg in the TLU model. The disadvantages of
the TLU model are the following: (i) the model is not analytic at E = Ec; (ii) ε2 is not an odd
function in the exponential part (corresponding to the Urbach tail); (iii) we can derive ε1
by the KK integration, but it needs the addition of an extra parameter; (iv) the TLU model
diverges at zero photon energy due to the term E in the denominator.

In order to overcome all these drawbacks, we now make use of the integral transforma-
tion proposed by Larruquert and Rodriguez de Marcos [1,2], which has the following form:

ε̃Analitic(E) = 1 +
1
π

∫
R

ε2,Corrected(E′)
E′ − E− iΓ

dE′. (6)

Equation (6) uses the imaginary part of the piecewise (corrected) complex dielectric
constant, ε2,Corrected, in order to find the analytic complex dielectric constant, ε̃Analitic.
However, before applying Equation (6), we next present a new, corrected weight function
to be inserted in the previous integral transformation, Equation (6). The expression of the



Coatings 2022, 12, 1549 6 of 20

improved non-analytic TLU model suggested by Rodríguez de Marcos and Larruquert is
as follows:

ε2,CTLU
(
E; Amp, E0, Eg, Cbr, Ec

)
=


AuE exp

(
E
Eu

)
at E ≤ Ec,(

E− Eg
)2 AmpE0Cbr

E
((

E2 − E2
0
)2

+ C2
brE2

) at E > Ec.
(7)

It has to be pointed out that this expression is certainly similar to the TLU model
proposed by Foldyna et al. [10]. However, according to the uncorrected TLU model, in
the limit when E → 0, the function ε2 diverges; on the contrary, in the improved TLU
piecewise function, ε2 more reasonably approaches zero, as the photon energy approaches
zero. On the other hand, for values of the photon energy near the optical gap, Eg, the
exponential term plays a very dominant role. Lastly, it must be noted that the two Urbach-
tail parameters, Au and Eu, respectively, are chosen in such a fashion that the continuity of
the new weight function and its corresponding first derivative are both guaranteed [1,2] at
the particular value of the photon energy, E = Ec, which are now expressed as follows:

Au =
AmpE0Cbr(Ec − Eg)2 exp(−Ec/Eu)

E2
c [E4

c + (C2
br − 2E2

0)E2
c + E4

0 ]
, (8)

Eu =
Ec(Ec − Eg)

(
C2

brE2
c + (E2

0 − E2
c )

2)
2[Eg(E4

0 + 3E4
c ) + E2

c (2Eg − Ec)(C2
br − 2E2

0)− 2E5
c ]

. (9)

The non-analytic TLU model in Equation (7) is next transformed into an analytic
model. Therefore, we will perform the integration of the (E′ − E− iΓ)−1-type functions,
considering the Urbach-tail term of Equation (7) in its spectral range, below Ec, and the TL
term of Equation (7) for photon-energy values above Ec. The new analytic TLU model is
found by the sum of the two already mentioned contributions:

ε̃ATLU(E) = ε̃AU(E; Amp, E0, Eg, Cbr, Γ, Ec) + ε̃ATL(E; Amp, E0, Eg, Cbr, Γ, Ec). (10)

The parameter Ec must be included in the list of the ATLU free fitting parameters.
Thus, this new analytic model contains six free parameters to be fixed, the same number
as Foldyna’s model. The left-hand side of Equation (10) is found from Equation (6) and is
given by:

ε̃AU(E; Amp, E0, Eg, Cbr, Γ, Ec) = 1 +
1
π

∫
R

ε2,CU(E′)
E′ − E− iΓ

dE′ (11)

=
Au

π

{
Ecomplex exp

(Ecomplex

Eu

)[
Ei
(Ec − Ecomplex

Eu

)
− Ei

(−Ecomplex

Eu

)]
+ Ecomplex exp

(−Ecomplex

Eu

)[
Ei
(Ecomplex

Eu

)
− Ei

(Ec + Ecomplex

Eu

)]
+ 2Euexp

(
Ec

Eu

)
− 2Eu

}
,

with the complex photon energy expressed as:

Ecomplex = E + iΓ, (12)

and where the sign of ε2,CU corresponding to Equation (7) was significantly reversed for
negative photon-energy values to transform it into the necessary odd function. In the
term ε̃AU, Equation (11), Ei(z) stands for the exponential integral, a special function on the
complex plane, whose expression is given by:

Ei(z) = −

∫
[−z,+∞)

e−t

t
dt =

∫
(−∞,z]

et

t
dt. (13)
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The function Ei(z) is included in the Python general-purpose programming language.
Furthermore, its specific function name is ‘scipy.special.expi’.

The other contribution on the right-hand side of Equation (10) is given by the expression:

ε̃ATL(E; Amp, E0, Eg, Cbr, Γ, Ec) = 1 +
1
π

∫
R

ε2,CTL(E′)
E′ − E− iΓ

dE′ = 1 +
AmpE0Cbr

π

×
[
Fun(Ecomplex, δ, δ∗) + Fun(δ, δ∗, Ecomplex) + Fun(δ∗, Ecomplex, δ)

]
,

(14)

where the newly introduced function, ‘Fun’, is written as:

Fun(α, β, γ) =
(Eg + α)2 log(Ec + α)− (Eg − α)2 log(Ec − α)

α(α2 − β2)(α2 − γ2)
, (15)

and the two parameters δ and δ∗ appearing in Equation (14), are given by the respective
expressions:

δ =

√
E2

0 −
(

Cbr
2

)2
− i

Cbr
2

, (16)

and

δ∗ =

√
E2

0 −
(

Cbr
2

)2
+ i

Cbr
2

. (17)

In the case of the previous analytic TLU model, we can extract the complex refractive
index, Ñ = n+ ik, directly from Equation (10) considering the essential relationship ε̃ = Ñ2.
From this fundamental equation are derived the following relations:

ε1 = n2 − k2,

ε2 = 2nk,
(18)

or alternatively,

n =

√
1
2

(√
ε2

1 + ε2
2 + ε1

)
,

k =

√
1
2

(√
ε2

1 + ε2
2 − ε1

)
.

(19)

Thus, we can fit the free parameters of the ATLU model to the collected experimental data.

4. Fitting the Universal Transmission Formula to the As-Measured Spectrum

The universal optical-transmission formulae for normal-incidence, T∆d(λ), employed
in this investigation, is a new equation recently published by some of the authors of this
work [21–23]. This transmission expression is also valid for highly non-uniform (strongly
wedge-shaped) thin layers deposited onto thick transparent glass substrates, and it is
as follows:

T∆d(λ; n(λ), k(λ), s(λ), d̄, ∆d)

=

A
[(

tan−1
(

C
D

)
− tan−1

(
B
D

))
+ π(Nc,2 − Nc,1)

]
D(ψ2 − ψ1)

xave,

(20)

where xave = exp(−αd̄), α = 4πk/λ, ψ1 = 4πn(d̄ − ∆d)/λ, ψ2 = 4πn(d̄ + ∆d)/λ and,
additionally, the rest of the parameters used in the expression of transmission are the following:



Coatings 2022, 12, 1549 8 of 20

A = 32(n2 + k2)s,

B = xave(F + E(G + H xave))tan(ψ1/2),

C = xave(F + E(G + H xave))tan(ψ2/2),

D =
√

E2 − x2
ave(F2 + G2 − 2EH − H2 x2

ave),

E =
(
(n + 1)2 + k2

)(
(n + 1)

(
n + s2

)
+ k2

)
,

F = 2k
(

2(n2 + k2 − s2) + (n2 + k2 − 1)(s2 + 1)
)

,

G = 2
(
(n2 + k2 − 1)(n2 + k2 − s2)− 2k2(s2 + 1)

)(
(n− 1)(n− s2) + k2

)
,

H = (n− 1)2 + k2.

(21)

Finally, the mathematical expressions for the two proposed correcting integers, Nc,1
and Nc,2, respectively, are the following:

Nc,1 = round(ψ1/2π), (22)

and
Nc,2 = round(ψ2/2π). (23)

The new function, ‘round’, does round off its arguments to its closest exact integers.
The novel universal expression for the transmission, Equation (20), is a continuous function
employed to carry out the comprehensive optical characterization of a wide variety of
thin films of amorphous semiconductors with excellent accuracy. We can successfully
eliminate the current limiting value of the non-uniformity or wedging geometrical pa-
rameter, ∆dmax = λ/4n(λ) (see details in [23,24]). Therefore, we can now calculate the
optical constants of strongly wedge-shaped layers. Thus, introducing the new two angular
correcting parameters, Nc,1 and Nc,2, respectively, in the proposed universal formula for
the normal-incidence transmission of a real thin layer is crucial to eliminating the previous
constraint, ∆d < ∆dmax.

Normal-incidence transmission is, as already mentioned, a function of d̄, ∆d, n(λ) and
α(λ). In addition, we have initially calculated the values of the refractive index of the glass
substrate alone, s(λ), where the RFMS-Si layer was deposited. When we adopt the analytic
ATLU model in the present study, the theoretical normal-incidence transmission formula,
Equation (20), will depend upon eight free model parameters: d̄, ∆d, Amp, E0, Cbr, Γ,
and Ec. In the following section, we will accurately calculate those eight free parameters
by direct computer fitting of the above expression for T∆d(λ) to the experimental trans-
mission spectrum, with the help of a devised ad hoc comprehensive computer program
called OCISPY.

This program uses the so-called inverse synthesis method (or reverse engineering) [25,26],
as an alternative to the Swanepoel transmission-envelope procedure, which exclusively
employs the Fabry–Pérot (FP) interference fringes. Our approach has the clear advantage
of being able to apply it to very thin layers with average thicknesses below 100 nm. In
that particular case, the number of FP interference fringes is relatively low or practically
non-existent.

To illustrate the dispersion-model-fitting method, we have analyzed a thin film of
hydrogen-free a-Si in-depth that presents a large number of FP fringes in the whole mea-
sured spectral range, with the values of λ > 700 nm. It must be emphasized that there
is a weak optical absorption in the measured spectral range. This non-negligible absorp-
tion is the universal characteristic feature of the absorption spectra near the band edges,
found in both crystalline and non-crystalline semiconductors. As previously mentioned,
the Urbach–Martienssen exponential absorption edge models the absorption in that region.
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The absorption coefficient, α, verifies the general Urbach rule expressed in Equation (1)
near the band edges when the optical-induced electrons transit from the valance band up
to conduction-energy-band tails.

5. OCISPY (Optical Characterization by Inverse Synthesis): Python-Coded Computer
Program for Determining the Optical Properties of Amorphous Semiconductor Films
by Employing Multiple Dispersion Models

We built a Python-based computer program named OCISPY in order to perform the
accurate and comprehensive optical characterization of both uniform and non-uniform
amorphous semiconductor thin layers. As previously indicated, it belongs to the category
of reverse-synthesis approach. A very simplified flowchart of its algorithm is shown in
Figure 2. This program permits the very fast fitting of a model-simulated normal-incidence
transmittance spectrum to the as-measured transmittance spectrum of the amorphous
semiconducting layer under study by fitting eight free model parameters. Two of them
correspond to the geometrical parameters, namely, the average film thickness and, very
interestingly, the wedging parameter, d̄ and ∆d, respectively. Furthermore, the remaining
six fitting parameters belong obviously to the adopted analytic TLU model.

OCISPY

Read files

Approximation step to find 
the parameter vector, 

𝜽!""#$%

Refining step to find the 
parameter vector,

𝜽#&'()&*

Display figure: 𝑛(𝜆) and 
𝑘(𝜆)

Store table with the 
found parameter 
vector, 𝜽#&'()&*

Display figure: 
𝝐 𝐸 , 𝝐′(𝐸) and 𝝐′′(𝐸)

Display figure: Fitting 
curves showing the FoM

- Specimen 
transmittance

- Substrate 
transmittance

Fitting the parameter vector, 𝜽, corresponding to the 
ATLU and NATLU models by using the normal-incidence 

transmission spectrum of real amorphous-
semiconductor films

Figure 2. A very simplified flowchart corresponding to the optimization algorithm for the compre-
hensive optical characterization of amorphous-semiconductor thin layers. This specific algorithm is
implemented in the Python-based computer program, OCISPY, presented and employed in this work.
θ stands for the parameter vector introduced in the program. It very accurately solves the problem
of extracting the optical properties, together with the average layer thickness, d̄, and the wedging
parameter, ∆d, of non-crystalline-semiconductor thin films.

The fundamental idea behind the computer program OCISPY in order to accurately
calculate all the free fitting parameters is to minimize the chosen figure-of-merit (FoM) or
cost function:

FoM = 100× RMSE = 100×

√
∑N

i=1(Ti,meas − Ti,simu)
2

Nexp
, (24)

where Nexp stands for the total number of experimentally measured values of transmittance,
Ti,meas denotes each particular as-measured transmittance value, and Ti,simu stands for each
respective simulated transmittance value. These transmittance values correspond to all
those measured wavelengths for which the glass substrate is quasi-transparent. The FoM
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function measures the root-mean-square error (RMSE) in percentage, corresponding to the
existing differences between the experimental and generated transmission values. It must
be added that a two-step optimization algorithm carries out the fitting process. The first
step corresponds to an approximation phase, using a global optimization method (random
search). In the second step, we refine the results by using and comparing the results
from the quasi-Newton algorithm and the heuristic algorithm devised by Nelder-Mead
(downhill or simplex algorithm).

6. Extracting the Optical Constants n and k by Employing the Original NTLU and the
Novel ATLU Dispersion Model

We have employed the proposed optical-characterization method based on the NTLU
(original) and ATLU (new) optical-dispersion models. The eight free-fitting parameters
d̄, ∆d, Amp, E0, Eg, Cbr, Γ, and Ec, were accurately calculated along with their correspond-
ing low values of the figure of merit (FoM). Figure 3 shows the experimental (open scatters)
and the simulated fit (solid curves) of the normal-incidence transmission spectra for seven
selected representative H-free RFMS-a-Si thin samples, which were grown either at room
temperature or at 325 °C.
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Figure 3. Two examples of the typical normal-incidence transmission spectrum of an approximately
1.1-µm-thick amorphous Si thin film that have been sputtered on a transparent glass substrate, held
at a temperature of (a) 25 °C and (b) 325 °C, during the sputtering deposition process. Furthermore,
the NATLU- and ATLU-generated transmission spectra of the previous two a-Si specimens, are also
displayed. The relative difference between the experimental and simulated transmittance curves is
also displayed in this figure for the two representative a-Si samples.

We summarize in Table 1 the best-fit parameters, along with the Urbach energy and
amplitude, Eu and Au, respectively, for both dispersion models. A first point to remark
on is that the fitted average film thicknesses, d̄, are very close to the experimental values
measured by the cross-sectional SEM micrographs (see Table 1 for the values of dSEM),
which partially validates the two considered TLU dispersion methods. On the other hand,
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the Eg values are closely comparable to those of a-Si reported in [20], further supporting
the use of both TLU models to a certain extent. Although FoM values are reasonable for
both models, one can recognize that the FoM is significantly lower for the ATLU model.
This finding suggests that the spectra simulated with the ATLU model are closer to the
ground-truth real transmittance curves, consistent with the analytical investigation of the
novel ATLU model. In real non-simulated spectra, it is complicated to establish a threshold
FoM number for good fits, as it not only depends on the model but also on the spectrum
noise and the experiment’s accuracy. We use the FoM values to compare the models rather
than as an absolute measure of their performance.

Table 1. Values of all the ATLU model parameters for RFMS-a-Si thin layers, each prepared with a
different Ar-gas pressure. In the sample identification (ID) code, the first adopted three numbers
indicate the deposition temperature in degrees Celsius, whereas the next two numbers show the
Ar-working pressure during the deposition in the particularly chosen unit decipascal. In addition, the
values of the adopted cost or merit function, FoM, for those a-Si samples under study are presented.
The values of the Urbach energy and amplitude, Eu and Au, respectively, obtained from the previous
ATLU-model parameters, are also listed in the table. On the other hand, the value of the geometrical
parameter d̄ (≡ d for these a-Si samples), is also indicated. The best-fit values for ∆d are not shown
in the table, since they are practically zero in all the roughly 1.1-µm-thick-specimens investigated;
only layers with thickness about or less than 800 nm exhibited a fitted value of ∆d > 0. Moreover,
the experimentally determined values of the surface roughness parameter, Rq,AFM, for the seven a-Si
specimens are also presented. In addition, the film thickness, dSEM, measured from the cross-sectional
SEM micrographs corresponding to the present a-Si specimens under study, are also listed.

Sample ID Model FoM d̄ (nm) Rq,AFM
(nm)

Amp
(eV) E0 (eV) Eg (eV) Cbr

(eV) ε1(∞)/Γ (eV) Ec (eV) Au (eV±1)
Eu

(meV)
Si#02544 NTLU 0.555 1122 1.84 100 3.73 1.22 2.44 1.00 (fixed) 1.75 1.3 × 10−3 239

dSEM=1142 nm ATLU 0.482 1118 1.84 105 3.66 1.27 2.35 0.0074 1.85 4.0 × 10−3 355
Si#02532 NTLU 0.667 1179 1.73 110 3.59 1.19 2.14 1.00 (fixed) 1.70 1.2 × 10−3 230

dSEM=1205 nm ATLU 0.576 1174 1.73 112 3.53 1.22 1.93 0.0046 1.81 4.9 × 10−3 352
Si#02511 NTLU 1.073 1364 1.66 121 3.52 1.11 1.95 1.00 (fixed) 1.60 1.2 × 10−3 217

dSEM=1380 nm ATLU 0.818 1360 1.66 113 3.46 1.09 1.52 ≈0 (*) 1.68 7.3 × 10−3 356
Si#32540 NTLU 1.267 1053 2.62 141 3.47 1.45 1.53 1.00 (fixed) 2.13 1.7 × 10−3 267

dSEM=1070 nm ATLU 0.764 1063 2.62 166 3.45 1.49 2.38 0.0353 1.79 8.9 × 10−6 167
Si#32527 NTLU 1.226 1035 1.70 303 3.01 1.75 2.39 1.00 (fixed) 2.25 8.0 × 10−4 234

dSEM=1072 nm ATLU 0.904 1044 1.70 321 2.89 1.64 3.62 0.0230 1.93 2.8 × 10−5 183
Si#32516 NTLU 1.535 1042 1.30 278 3.05 1.73 2.06 1.00 (fixed) 2.24 5.8 × 10−4 226

dSEM=1065 nm ATLU 0.724 1057 1.30 226 3.23 1.53 2.98 0.0236 1.76 5.9 × 10−7 130
Si#32507 NTLU 1.153 1197 0.60 250 3.17 1.75 1.65 1.00 (fixed) 2.44 2.3 × 10−3 270

dSEM=1247 nm ATLU 0.823 1206 0.60 171 3.43 1.44 2.04 0.0335 1.78 3.7 × 10−5 187

* The best-fit value of Γ in this particular case is extremely close to zero.

We will then commence analyzing both the NTLU- and ATLU-fitted results. First of
all, the variation range of the amplitude parameter, Amp, for the particular case of the three
a-Si samples under analysis, grown at the temperature of 25 °C, and corresponding to the
adoption of the ATLU model, was found to range from 105 to 113 eV, increasing with the
decrease in Ar-gas pressure. With the adoption of the NTLU model, the values of Amp
were also found to increase from 100 to 121 eV, again as the Ar-working pressure decreases
(see Table 1). In the specific case of the four a-Si specimens deposited at a temperature of
325 °C, it was found with both the analytic and non-analytic TLU models, that there is no
clear trend of Amp, as the Ar pressure decreases. What is certainly true is that their values
of the parameter Amp are much lower than those obtained for the a-Si samples grown on
unheated glass substrates. This is the direct result of the a-Si material being less dense, as
will be reconsidered later in the paper.

On the other hand, the optical-band-gap parameter, Eg, was found to be in the variation
ranges from 1.22 to 1.11 eV for a-Si layers grown at room temperature, following the NTLU
model, and from 1.27 to 1.09 eV according to the ATLU model, in both cases, as the Ar
pressure decreases. The samples deposited at 325 °C, show a value of Eg, calculated from
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the NTLU model, excessively large around 1.75 eV, a typical value of hydrogenated a-Si
films, whereas the values of the parameter Eg determined by using the ATLU model are
lower than those obtained by its corresponding non-analytic model, yet higher than those
obtained with the same ATLU dielectric function, but for the three samples grown at 25 °C.
The concrete value of Eg when adopting the ATLU model fluctuates around 1.50 eV, for the
values of the samples deposited at 325 °C

In addition, the offset parameter, ε1(∞), has been held conveniently fixed to one in the
specific case of the NTLU-model according to Foldyna et al. [10]. In contrast, the different
values of the broadening parameter, Γ, for the new ATLU model are listed in Table 1.
Furthermore, the Urbach energy and amplitude, Eu and Au, respectively, determined from
the parameters of both models, are also shown in Table 1. It must be emphasized that the
bandgap parameters Eg of our as-deposited a-Si layers increase with higher deposition
temperature for both dispersion models. However, the band tail Eu displays decreases
with higher deposition temperature in the case of the new ATLU model, while it practically
shows no change with deposition temperature in the NTLU model. According to the ATLU
model’s results, the a-Si structure is more ordered at the higher deposition temperature of
325 °C. This behavior with increasing deposition temperature has frequently been reported
in the literature, which would partially validate the new ATLU approach and certainly
reject the original NTLU model.

It must be borne in mind that following Tanaka [27], all the data concerned with
the Urbach rule reported so far reveal the existence of a minimal Urbach energy of ap-
proximately 50 meV, in non-metallic disordered materials. This energy can be connected
with an intrinsic density fluctuation, which is inherent to nano-scale, medium-range non-
crystalline structures. Other disordered structures, such as a defective structure, tend to
very strongly increase the Urbach energy, as in the case of hydrogen-less a-Si. On the other
hand, O’Leary [28,29] had previously pointed out that the Urbach parameter, Eu, is a clear
indicator of the amount of intermediate-range order, in such a way that: the greater the
topological order, the lower the value of Eu. O’Leary reported the value of the Urbach
energy of 229 meV associated with a-Si grown by molecular beam epitaxy. This value of
the Eu parameter lies between the value of 85 meV belonging to the plasma-deposited a-Si
and that associated with the sputter-deposited a-Si of 247 meV, the greatest of the three
previous different a-Si materials.

Moreover, the lack of sensitivity to the Urbach energy Eu to the deposition temperature
by the NTLU model is certainly unexpected and unacceptable, as mentioned before, since
they conflict with the trend of the other free-fitting parameters. Therefore, it seems more
reasonable to adopt the new ATLU dielectric function as an optical dispersion model. The
best-fit values of Eu computed by the more reasonable ATLU function of around 354 meV
and 167 meV for our a-Si samples, for the deposition temperatures of 25 °C and 325 °C,
respectively, are undoubtedly consistent with the three aforementioned reported values.
The specific value of 354 meV for a deposition temperature of 25 °C is notably the largest
among all of them, thus corresponding to the largest nano-scale, structural disorder of all
the unhydrogenated a-Si materials previously considered. Furthermore, given the whole
set of results, it is plausible to infer that growth temperature is the dominant factor in
influencing all optical parameters. In this fashion, the values of the Urbach energy, Eu,
of the a-Si layers grown at 325 °C are about half of the those a-Si films sputtered at room
temperature. It means that the topological disorder existing in the atomic structure of the
present films deposited at higher temperature is, indeed, much less than that found on
those layers coated upon unheated glass substrates.This clearly agrees with the fact that
the fitted values of bandgap parameter Eg are found to be smaller for the a-Si samples
sputtered at room temperature. The parameter Eg is also usually considered a measure of
the amount of intermediate-range order, in this way, greater topologycal order corresponds
to larger Eg [28,29]. We, thus, fully demonstrate the consistency and accuracy of the novel
optical characterization method based on the ATLU dispersion model compared to the
original NTLU model.



Coatings 2022, 12, 1549 13 of 20

We plot the calculated optical constants (n(λ), k(λ)) versus wavelength in Figure 4. It
must be stressed that for most of the wavelength range, it is verified that dn/dλ < 0. This
is the case for ‘normal’ optical dispersion. However, near the intense electronic absorption
band, the derivative of n is reversed, i.e., dn/dλ > 0. This expression corresponds to the
so-called ‘anomalous’ (i.e., abnormal) dispersion region. Furthermore, note that as the
wavelength continues decreasing, n approaches the unity from values of n less than the
unity. That is, it is again verified that dn/dλ < 0. It has to be noted that from the KK
dispersion relations, the behavior of the refractive index must be necessarily interrelated
to the existing electronic absorption band of the present RFMS-a-Si thin films, clearly
observed by the behavior of the extinction coefficient, k (see Figure 4). In other words, it
is ensured in this fashion that the complex refractive index, n + ik, adopts a physically
plausible shape, i.e., light absorption causes the referred effect of anomalous dispersion
(absorption ‘bumps’/peaks in k produce ‘wiggles’ in n), and, significantly, the larger the
area-under-the-curve of the bump, the stronger the effect that takes place on the curve of
the real refractive index, n.
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Figure 4. Refractive index, n, and extinction coefficient, k, versus wavelength, for a-Si thin layers
(specimens (a) Si#02544 and (b) Si#32540), obtained by inverse synthesis, with the help of the
holomorphic ATLU function adopted in this work. In addition, the values of n and k found by
employing the model-free Swanepoel envelope technique are also shown for comparison in this figure.

Continuing with the analysis of the present results, the real and imaginary parts of the
complex dielectric constant, ε1 and ε2, respectively, as a function of the photon energy, are
displayed in Figure 5 for some representative a-Si specimens.

It should be noted that the broad peak of ε2, whose maximum value is denoted as,
ε2,max, is related to the splitting of the bonding and antibonding electronic states. This
peak is located in the case of the specimen Si#02544 at a photon energy, E(ε2,max), of
approximately 3.68 eV, extremely close to the obtained value of the ATLU parameter,
E0, of 3.66 eV. This single smeared peak of the imaginary part of the dielectric function
is typically found in tetrahedrally bounded non-crystalline semiconductors [20], as in
elemental semiconductor materials such as Si and Ge.
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Figure 5. Photon-energy dependence of the real and imaginary parts of the complex dielectric
constant of two a-Si thin-film samples: (a) Si#02544 and (b) Si#32540. Shown also in this figure, the
first and second derivative of ε1 and ε2 (c–f), demonstrating that they are certainly twice differentiable,
as should be the case considering that the ATLU dielectric function is complex analytic.

We see in Figure 5 that the amorphous material shows the highest value, ε2,max, which
corresponds to that found for a dense hydrogen-free fully a-Si in self-implanted amorphous
silicon. The greatest value ε2,max = 26.6 corresponds to the specific hydrogen-less a-Si mate-
rial reported by Adachi and Mori [30,31], found at the photon energy E(ε2,max) = 3.45 eV.
We have taken these concrete values as a reliable reference to compare with our results, and
we have found the values of the two dielectric-constant parameters ε2,max and E(ε2,max)
of 27.4 and 3.50 eV, respectively, undoubtedly very consistent with those values reported
by Adachi and Mori for the specific case of the densest a-Si (see Table 2). Furthermore,
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the smaller values of the height of the ε2 peak for the rest of our RFMS-a-Si specimens
can be reasonably accounted for by the smaller mass density, associated with the voided
structure [20,32–34] of the studied RFMS-a-Si thin films. Finally, also presented in Figure 5,
the first and second derivative of ε1 and ε2, unambiguously demonstrating that the com-
plex dielectric function, ε1 + iε2, is twice differentiable, as it must be expected taking into
account that such a ATLU function is holomorphic, (that is, infinitely differentiable).

Table 2. The obtained values for three dielectric-constant parameters ε1(0), ε2,max, and E(ε2,max) (see
Figure 5), for the seven a-Si specimens under analysis, are all listed in this table. The fitted values
have been found by adopting the holomorphic ATLU function.

Parameter Si#02544 Si#02532 Si#02511 Si#32540 Si#32527 Si#32516 Si#32507
ε1(0) 9.69 11.1 13.1 11.5 12.9 12.8 12.9
ε2,max 18.9 24.7 34.7 (*) 21.9 18.7 21.3 27.4

E(ε2,max) (eV) 3.68 3.54 3.45 3.55 3.44 3.45 3.50
(*) We consider that this value of ε2,max is certainly overestimated (it could even be considered unphysical) compared
with the best-fit reported values obtained from the literature. Furthermore, it is mathematically well explained by
the extremely low obtained value of broadening parameter, Γ.

7. The Alternate Swanepoel Technique: Model-Free Determination of n and α, for
Uniform Thin Films on Transparent Substrates

Our unhydrogenated a-Si thin-film samples present a reasonable uniform thickness (it
has been found that ∆d ≈ 0 for all the samples investigated). Therefore, the normal-incidence
transmission spectrum obtained from a spectrophotometer shows many FP interference
fringes (see Figure 6). One useful and popular method that makes use of these interferences
fringes to determine the optical properties of the material is the so-called model-free Swanepoel
method [24,32,35–38], which is based on an earlier work by Manifacier et al. [39].

We should calculate the refractive index of the substrate before extracting the optical
properties of the uniform thin films. For a glass substrate with negligible absorption, that is,
k ≤ 0.1 and α ≤ 10−2 cm−1, in the range of operating wavelengths, the refractive index s is:

s =
1
Ts

+

√
1

T2
s
− 1, (25)

where Ts is the transmission of the bare substrate. With this refractive index s already
known, the next step is constructing the two top and bottom envelopes around the FP
interference fringes in the transmission spectrum, as indicated in Figure 6.

Following the Swanepoel method, the refractive index of the uniform film, n, in the
weakly absorbing spectral region where the absorption coefficient, α, is α ≈ 0, is determined
by using the very accurate closed-form expression [35]:

n =

√√√√2s
T+ − T−

T+T−
+

s2 + 1
2

+

√(
2s

T+ − T−
T+T−

+
s2 + 1

2

)2

− s2, (26)

where T+ and T− are, respectively, the envelope-curve values at the wavelengths at which
the upper- and lower-envelope curves and the transmission spectrum are tangential, as
displayed in Figure 6. The first approximate values of the refractive index of the thin-film
material, ncrude’s, were calculated by using Equation (26), at the particular wavelengths
corresponding to the tangency points. If n1 and n2 are the refractive indices at two adjacent
top-envelope (or bottom-envelope) tangential points at the wavelength λ1 and λ2, respec-
tively, then by employing the basic equation for the appearance of interference fringes in
the normal-incidence optical transmission spectra of parallel-faced layers (in this particular
layer geometry its thickness is just called, d),

2n(λtan)d = mλtan, (27)
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where m is the interference order number. The first value of the film thickness, dcrude, is
next determined by the following expression:

dcrude =
λ1λ2

2(λ1n2 − λ2n1)
. (28)

As a result of the thin-film absorption, the tangent points λtan from Equation (27)
are not exactly the maxima and minima of the transmission spectrum, but are instead
corrected at nearby particular tangent locations [24]. A list of values of dcrude is obtained by
employing Equation (28) for each pair of consecutive top-envelope (or bottom-envelope)
tangential points. We can then calculate the average thickness value, d̄crude, from that list.
Next, we use these first values for the average thickness and refractive index to approximate
the (non-exact) interference order numbers, m0’s, from Equation (27). A theoretical value
m is an exact integer for an upper tangency point and an exact half-integer for a lower
tangency point. In addition, we find more accurate values of the thin-film thickness, dacc’s,
by rounding-off to the nearest exact integer and half-integer values of the order number,
m. With this set of exact order numbers and with an accurate average thickness d̄acc, a
new set of improved final values of the thin-layer refractive index, nacc’s, are calculated.
It must also be pointed out that the values of some FP-interferences order numbers are
displayed below in the paper, in order to enrich the proposed comprehensive analysis of
the normal-incidence transmission spectra.
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Figure 6. Application of the Swanepoel technique as elaborated in the text: Using the as-measured
normal-incidence transmission spectra of (a) Si#02544 and (b) Si#32540 a-Si thin-film samples, and
that of the finite glass substrate alone. The two constructed, top- and bottom-transmission envelopes,
are also displayed for the two a-Si specimens. Moreover, some exact values of the interference order,
m, are indicated in this figure in order to illustrate the model-free Swanepoel technique.

Lastly, the absorption coefficient, α, belonging to the thin-layer material can now be
determined by using the expression xuni = e−αduni , where xuni is the absorbance associated
in this case with a constant (uniform) layer thickness, duni (≡ d̄acc), and it is expressed by
the following equation:

xuni =
M+ −

√
M2

+ − (n2 − 1)3
(n2 − s4)

(n− 1)3(n− s2)
, (29)

where

M+ =
8n2s
T+

+
(

n2 − 1
)
(n2 − s2). (30)

We have used the top-envelope curve, T+, with Equation (29), in order to more
accurately obtain the values of α over the spectral regions of weak and medium absorption.

Figure 6 displays the typical room-temperature-measured, unshrunk transmission
spectra for two representative, as-deposited a-Si samples, as a function of vacuum wave-
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length. A key observation from this figure is the existence of a clear Fabry–Perot interference
fringe pattern in the transmittance spectra. The breadth of the FP interference fringes of
the transmission spectrum for the Si#32540 sample is greater than that of the spectrum
for Si#02544 sample. This is a direct result of the higher values of the refractive index
for the Si#32540 thin layer. It is obeyed that the greater the amplitude of the interference
fringe pattern of the transmission spectrum, the greater the difference of the refractive
index between the weakly absorbing semiconductor film material and the transparent glass
substrate, n− s.

In Table 3, are indicated all the steps followed in order to carry out the whole optical
characterizations of the two representative RFMS-a-Si samples, deposited with the particu-
lar values of the average deposition rate of 1.24 nm/s for the sample Si#02544, and 1.17 nm/s
for the specimen Si#32540. By starting up from the normal-incidence transmittance spectra
again displayed in Figure 6, and by rigorously using the complete algorithm proposed by
Swanepoel step-by-step, Table 3 was finally created.

Table 3. Optical and geometrical characterizations method for the two representative samples,
Si#02544 and Si#32540, grown by using the highest Ar working-gas pressures of 4.4 and 4.0 Pa,
respectively. Values of the optical and geometrical parameters, λtan,Ts, s, T+, T−, ncrude, dcrude, m0, m,
dacc, α, and k, calculated from their respective normal-incidence transmittance spectra, by employing
to that end the Swanepoel transmission-envelope approach. The meaning of all the symbols are fully
explained in the text. The values of T+ and T− in bold character refer to the actual ‘measured’ value
of transmission, while the other one belongs to the calculated envelope.

Si#02544
λtan (nm) Ts s T+ T− ncrude dcrude (nm) m0 m dacc (nm) nacc x α (×103 cm−1) k

2020 0.9210 1.509 0.8896 0.4395 3.162 N.A. 3.50 3.5 1118 3.161 0.976 0.213 0.003
1776 0.9204 1.511 0.8731 0.4331 3.177 N.A. 4.01 4.0 1118 3.176 0.964 0.325 0.005
1588 0.9205 1.511 0.8511 0.4244 3.194 1121 4.50 4.5 1119 3.195 0.948 0.481 0.006
1436 0.9177 1.523 0.8188 0.4153 3.213 1114 5.01 5.0 1117 3.210 0.924 0.703 0.008
1316 0.9192 1.516 0.7819 0.4008 3.234 1120 5.50 5.5 1119 3.236 0.895 0.997 0.010
1216 0.9186 1.519 0.7332 0.3844 3.257 1134 6.00 6.0 1120 3.262 0.856 1.395 0.014
1128 0.9181 1.521 0.6709 0.3632 3.283 1103 6.52 6.5 1117 3.278 0.803 1.958 0.018
1056 0.9177 1.522 0.6003 0.3383 3.311 1094 7.02 7.0 1116 3.305 0.742 2.675 0.023
996 0.9170 1.526 0.5240 0.3100 3.340 1130 7.51 7.5 1118 3.339 0.671 3.566 0.029
944 0.9163 1.529 0.4432 0.2777 3.370 1150 7.99 8.0 1120 3.376 0.592 4.692 0.035
896 0.9157 1.531 0.3572 0.2393 3.404 1121 8.51 8.5 1119 3.405 0.500 6.206 0.044
856 0.9171 1.525 0.2794 0.1998 3.438 1120 8.99 9.0 1120 3.444 0.410 7.980 0.054
820 0.9165 1.527 0.2079 0.1595 3.474 1144 9.49 9.5 1121 3.483 0.320 10.192 0.067
784 0.9165 1.528 0.1400 0.1156 3.516 1068 10.04 10.0 1115 3.505 0.226 13.308 0.083

d̄crude = 1120 nm; σcrude = 24 nm (2.2%); d̄acc = 1118 nm; σacc = 2 nm (0.2%)
Si#32540
λtan (nm) Ts s T+ T− ncrude dcrude (nm) m0 m dacc (nm) nacc x α (×103 cm−1) k

2084 0.9231 1.500 0.8748 0.3799 3.464 N.A. 3.52 3.5 1053 3.462 0.966 0.328 0.005
1832 0.9297 1.472 0.8650 0.3699 3.478 N.A. 4.02 4.0 1053 3.479 0.955 0.436 0.006
1636 0.9286 1.476 0.8458 0.3647 3.495 1055 4.52 4.5 1053 3.495 0.942 0.565 0.007
1480 0.9259 1.488 0.8224 0.3597 3.513 1052 5.03 5.0 1053 3.513 0.927 0.719 0.009
1352 0.9250 1.492 0.7970 0.3525 3.534 1046 5.54 5.5 1052 3.530 0.909 0.906 0.010
1248 0.9238 1.497 0.7679 0.3444 3.557 1050 6.04 6.0 1053 3.555 0.888 1.126 0.011
1160 0.9230 1.500 0.7344 0.3347 3.582 1055 6.54 6.5 1052 3.579 0.863 1.396 0.013
1084 0.9222 1.504 0.6945 0.3232 3.610 1041 7.05 7.0 1051 3.602 0.833 1.740 0.015
1020 0.9218 1.505 0.6488 0.3098 3.641 1039 7.56 7.5 1051 3.631 0.796 2.165 0.018
968 0.9217 1.506 0.5993 0.2949 3.671 1082 8.03 8.0 1055 3.676 0.756 2.661 0.021
920 0.9220 1.504 0.5395 0.2762 3.706 1089 8.53 8.5 1055 3.712 0.703 3.340 0.025
876 0.9221 1.504 0.4686 0.2532 3.745 1036 9.05 9.0 1053 3.743 0.637 4.281 0.030
840 0.9239 1.497 0.3969 0.2274 3.784 1049 9.54 9.5 1054 3.788 0.566 5.412 0.036
808 0.9241 1.496 0.3221 0.1986 3.826 1089 10.03 10.0 1056 3.836 0.484 6.881 0.044
776 0.9245 1.494 0.2395 0.1620 3.875 1024 10.57 10.5 1051 3.868 0.384 9.0929 0.056
752 0.9251 1.491 0.1761 0.1292 3.919 1050 11.03 11.0 1056 3.927 0.299 11.452 0.069
728 0.9260 1.487 0.1161 0.0931 3.968 1093 11.54 11.5 1055 3.974 0.210 14.824 0.086

d̄crude = 1059 nm; σcrude = 23 nm; (2.2%) d̄acc = 1053 nm; σacc = 2 nm (0.2%)

N.A.: Not applicable.
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8. Concluding Remarks

We have devised a new procedure to generate an analytic complex dielectric function
from a non-analytic dispersion model. We can write the transformation as an integral form
that aims to smooth the chosen optical function by convolving with a Lorentzian-type
function. This function has a half-width broadening parameter Γ that we can fit to be as
small as necessary without ever reaching a zero energy value.

The transforming procedure has been applied to the original well-known NTLU
dispersion model described by a piecewise mathematical function. This particular approach
involves a change in the functionality around the specific value of the energy gap, Eg. We
have also carried out a relevant modification in the expression for the Urbach-band-tail part
of the TLU model, in order to avoid the existing divergence at zero-photon energy of the
NTLU model. The ‘analyticized’ TLU model was adopted in order to accurately calculate
the optical properties of RFMS-a-Si thin layers, grown at both room temperature and 325 °C,
by only employing the normal-incidence UV/visible/NIR transmission spectra of the
specimens, and the inverse-synthesis approach in order to extract the optical constants.

Last but not least, it ought to be noted that the fitted values of the bandgap parameter
corresponding to the NTLU function are either smaller or larger than those for the novel
ATLU function, depending upon the deposition temperature employed as displayed in
Table 1. In addition, the calculated values of the Urbach energy parameter corresponding to
the NTLU function are not significantly influenced by the deposition temperature in all the
cases studied. On the contrary, it has been found by choosing the holomorphic dielectric
function that the parameter Eu notably decreases as the deposition temperature increases.

The lack of analyticity in the original NTLU function, and its associated intrinsic
inaccuracy (in contrast with the holomorphic ATLU function), gives rise to the lack of
agreement between the best-fit values of the two analyzed TLU parameters, Eg and Eu,
respectively, belonging to the two different optical functions. In conclusion, it is worth
noting that all the presented findings represent a step forward in improving the quality of
the optical-and-geometrical characterizations of the amorphous semiconductor thin films,
by exclusively using their normal-incidence spectral transmittance.
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