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Abstract: The bactericidal effects of nanomaterials play an essential role in cytoplasmic leakage,
leading to bacterial cell death. In this study, silver nanoparticles (AgNPs) were synthesized using a
fungal extract of Aspergillus fumigatus (A. fumigatus). The physicochemical properties of the bare and
myco-synthesized AgNPs (MS-AgNPs) were examined by X-ray diffraction (XRD), Fourier transform
infrared (FT-IR) spectroscopy, ultraviolet–visible (UV–vis) spectroscopy, scanning electron microscopy
(SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM).
XRD revealed the crystalline structure of the prepared NPs. The FTIR spectrum of the MS-AgNPs
revealed the presence of the stretching vibrations of hydroxyl (−OH) and carbonyl groups (C=O).
The UV results showed absorption from 450 nm to 590 nm, confirming the synthesis of the AgNPs.
SEM and TEM showed rough cubic shapes (spheres), 20–60 nm in size, while EDX confirmed the
presence of 60% Ag in the sample. The MS-AgNPs revealed the highest antibacterial activity against
Staphylococcus aureus, with a zone of inhibition of 18.21 ± 2.1 mm, followed by Shigella dysenteriae and
Salmonella typhi. The bimetallic-AgNPs played a vital role in cell membrane damage and the release
of cellular contents, specifically nucleic acids and proteins. These results suggest that MS-AgNPs
have promising antimicrobial capabilities and might be beneficial for an extensive array of biological
applications.

Keywords: antibacterial; bimetallic; cell membrane; cellular contents; nanomaterials; myco-synthesized
AgNPs
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1. Introduction

The microbial resistance of pathogenic microorganisms against antibiotics has high-
lighted the need for replacements (such as metallic nanoparticles) to overcome this is-
sue [1,2]. Therefore, the development of novel operational antimicrobials becomes indis-
pensable. Metal nanoparticles have numerous exclusive physicochemical characteristics
that are remarkably different and beneficial compared to the bulk material, making them
potent candidates in biomedical applications [3,4]. Among them, Ag is a naturally occur-
ring valuable metal, renowned for its resilient bactericidal activity that makes it a suitable
candidate for developing bactericidal materials against pathogenic microbes [5–7]. Ag can
attack multiple sites of the microbes; hence, microbes must develop a set of mutations
to counterbalance themselves [8,9]. This quality of Ag makes it virtually impossible for
pathogens to develop resistance against pathogenic bacteria and fungi [10]. Moreover, the
AgNPs capped with the therapeutic metabolites of plants, algae, endophytic bacteria, and
fungi interact with the bacterial cell membrane, causing the leakage of proteins and cellular
content, ultimately leading to bacterial cell death [11,12].

The manufacture of NPs from biological resources, such as plant extracts, fungal
metabolites, and bacterial filtrates, further improves the applications of NPs [13–16]. Living
organisms maintain distinctive auspicious characteristics to engineer nanomaterials with
pre-determined applications [17,18]. MS-AgNPs are innovative and more suitable for large-
scale industrial manufacturing because of their substantial growing speed, modest culturing
techniques, huge secretion quantity of extracellular enzymes, enhanced capability of better
survival with nanoparticles (ensure protein coating), and outstanding cohesion with a
nanoparticle-rich environment [19,20]. Microorganisms, such as yeast, endophytic bacterial
strains, and fungal strains, possessing medicinal metabolites serve as micro-factories for
the biogenic synthesis of nanoparticles [21–23]. The fungal metabolites, polymers, and
polypeptides facilitate the binding and reduction of metal salts to NPs. Previous studies
showed that metal nanoparticles, including gold, silver, iron, platinum, zinc, and cobalt,
can be manufactured with fungi and its metabolites due to their mycelia and secondary
metabolites, representing an enormous surface area for communication [24–26]. The biosyn-
thesized NPs functionalized with organic metabolites, such as carboxylate and amines
groups, aid in the bioconjugation of NPs on inert supports for heterogeneous biological ac-
tivities [27,28]. Therefore, utilizing endophytic fungi is an easy and cost-effective approach
for transforming metal salts into metal nanoparticles.

Previous studies reported the biosynthesis of AgNPs with the Aspergillus family, in-
cluding A. terreus, A. fumigatus, A.oryzae, A.niger, A.flavus, A. clavatus, and A. conicus [29–31].
These fungal strains possess efficient mechanisms for secreting extracellular enzymes,
which help in the synthesis process by reducing the enzymes extracellularly or intracellu-
larly [32,33]. Among these, A. fumigatus showed the remarkable capability of manufacturing
AgNPs by reducing enzymes in a short time [34,35]. A. fumigatus is an endophytic fungus
that can induce noninfectious cohesion with healthy plants [36,37]. The fungal-mediated
synthesis and antibacterial potential of AgNPs have been reported in numerous stud-
ies [38,39]. On the other hand, this study assesses the catalytic potential of A. fumigatus
in manufacturing AgNPs, as well as their bactericidal effect. In this study, a facile and
eco-friendly method was developed to synthesize AgNPs by mediating A. fumigatus. The
roles of A. fumigatus and the physiochemical properties of the MS-AgNPs were examined
by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–
visible (UV–vis) spectroscopy, scanning electron microscopy (SEM), energy dispersive
X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). In addition, the
role of MS-AgNPs in bacterial cell membrane damage and the release of cellular contents,
specifically nucleic acids and proteins, were evaluated. The results revealed changes in the
bacterial cell membrane surface after treatment with the NPs due to the release of cellular
contents, which leads to bacterial membrane damage and cell death.
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2. Materials and Methods
2.1. Chemical Reagents

Sodium chloride (NaCl), tryptone, ethanol (CH3CH2OH), silver nitrate (AgNO3),
agar-agar, Mueller–Hinton agar, potassium dihydrogen phosphate (KH2PO4), Magnesium
sulfate heptahydrate (MgSO4 · 7H2O), ammonium sulfate (NH4)2SO4, glucose, acetone
(C3H6O), and potato dextrose agar media (PDA) were purchased from Sigma–Aldrich
(Burlington, VT, USA). A. fumigatus was obtained from Quaid-i-Azam University, Islam-
abad, Pakistan. Milli-Q water was used in all experiments.

2.2. Extracellular Mycogenic AgNPs Synthesis

The fungus was cultivated on fresh PDA media to obtain a pure culture. The fresh
culture of A. fumigatus was cultured in an Erlenmeyer flask possessing 100 mL of potato
dextrose broth (PDB) at 32 ◦C with shaking on an orbital shaker for 4 days at 100 rpm to
collect the biomass. A sterile plastic sieve was used to collect the fungal biomass. The
mycelium was washed with sterile distilled water to remove the remnants and debris. The
mycelium was mixed with 200 mL ultrapure water and stirred for 48 h at 30 ◦C. The culture
was filtered through Whatman paper, and the filtrate was used for the myco-synthesis of
nanoparticles. Subsequently, the supernatant was mixed with 50 mL of a 1 mM AgNO3
suspension and stirred in the dark at 30 ◦C with 50 mL of cell filtrate for 48 h to prepare the
AgNPs [9]. The reaction mixture was centrifuged at 12,000 rpm at 4 ◦C. The supernatant was
removed while the pellet containing nanoparticles was washed three times with distilled
water. The prepared nanoparticles were oven dried to remove the water and stored for
further use. The bare AgNPs were synthesized using the following chemical reduction
method [40]. Briefly, 50 mL of a 1 × 10−3 M AgNO3 solution in double distilled water
was heated on a hot plate. Subsequently, 5 mL (1%) of trisodium was added dropwise.
The solution was mixed with a magnetic stirrer at 80 rpm and heated until the solution
color changed to dark brown. The solution was centrifuged at 12,000 rpm to remove the
supernatant, and the pellet was dried and calcined for further use.

2.3. UV-vis absorbance spectroscopy

The color change in the biosynthesized AgNPs was observed visually, while the
synthesis was confirmed using a UV-vis spectrophotometer (Dynamical Limited, Sydney,
Australia) at 1 nm resolution between 200 to 800 nm with 1856 nm/min scanning speed.

2.4. Assessment of the XRD Pattern

The XRD patterns were obtained on a PAN analytical X’pert PRO X-ray diffractometer
(JEOL, Tokyo, Japan) in the range of 20–80◦ 2θ with a current of 40 mA fixed at 45 kV.
The sample was processed with a drop coating of myogenic AgNPs suspension on a glass
substrate. The average crystal size was measured using Scherrer’s equation (D = K ň/βcos
θ), where D shows the size of the Ag NPs; λ indicates the wavelength (1.540); β is the full
width at half maximum of the diffraction peak (FWHM); K is the Scherrer’s constant; and θ

is the Bragg’s angle.

2.5. SEM, EDX, and TEM Analysis

The morphology and composition of MS-AgNPs impregnated in A. fumigatus extract
and bare AgNPs were examined by SEM (Model, JSM5910, JEOL, Tokyo, Japan) associated
with EDX (JSM5910, JEOL, Tokyo, Japan). Sample preparation was performed using the re-
ported protocol [11]. Twenty-four hours after adding AgNO3, the SEM slides were prepared
from a smear of the AgNPs. The sample was then coated with a thin gold–palladium layer
to make it conductive. SEM was set at an accelerating voltage of 20 kV upon gold coating
for 4 min. The samples were visualized by SEM at the CRL (Central Resource Laboratory,
Model, JSM5910, JEOL, Tokyo, Japan) University of Peshawar, Pakistan. Polaroid P/N 665
film was used to obtain the micrographs.
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An EDX spectrometer was used to determine the elemental composition of the samples.
The particle structure and particle size distribution were evaluated by TEM (Model, JEM-
2100, JEOL, Tokyo, Japan).

2.6. Antimicrobial Activity of Silver Nanoparticles

The MS-AgNPs impregnated in the A. fumigatus extract were analyzed for their an-
tibacterial activity using a well diffusion assay, and the optical density of the liquid broth
was measured to examine bacterial growth.

2.6.1. Agar Well Diffusion Method

The standard agar well diffusion method was used to assess the antibacterial assay of
the prepared AgNPs solution. The purified cultures of the selected pathogenic bacterial
strains (S. aureus, S. dysenteriae, and S. typhi) were re-cultured using nutrient agar plates for
24 h at 32 ± 2 ◦C. The prepared agar plates were streaked with the pure pathogenic bacterial
strains at 104 colony-forming units (CFU/mL) separately using aseptic cotton swabs. The
5 mm diameter wells were made with a cork borer inside the gel. After solidification of
the agar, 10 µL saline solution of bacterial strain was infused on a nutrient agar plates in
each well. Subsequently, a micropipette was used to load 30 µL of the MS-AgNPs (3 mM
concentration). The same amount of the chemically synthesized NPs (bare AgNPs) was
also used to compare the results. In addition, an antibiotic (ampicillin, 3 mM concentration)
was used as a positive control, while distilled water of the same volume was used as a
negative control [41]. All plates were incubated at 37 ◦C for 16 h to check the inhibition
zones. The test was conducted in triplicate, and the inhibition zones were recorded using a
scale.

2.6.2. Growth Curve Assay

The antibacterial potential of the liquid medium was assessed by evaluating the
growth inhibition of selected pathogenic bacteria (S. aureus, S. dysenteriae, and S. typhi)
by measuring the optical density (OD) using a UV–visible spectrophotometer (Agilent-
9453, Wilmington, NC, USA) after 8, 16 and 24 h. Microbe-free liquid broth was prepared
according to standard procedures and kept for cooling under a sterile environment in a
laminar flow. Liquid broth (15 mL) was poured into each test tube separately. Later, 50 µL
prepared bacterial cultures with 3 mM MS-AgNPs were added. Bare-AgNPs were used for
comparison. AAn antibiotic (ampicillin) was applied as a positive control, whereas distilled
water was used as the negative control. Pathogenic bacterial strains including S. aureus,
S. dysenteriae, and S. typhi were inoculated in three different test tubes. These test tubes
were then covered with cotton plugs and incubated in Mueller–Hinton liquid medium
(broth) at 37 ◦C overnight. After different time intervals (8, 16, and 24 h) the absorbance
was measured using a UV spectrophotometer.

2.7. Bacterial Cell Surface Potential

The cell membrane integrity was analyzed before and after treatment with the bare
and MS-AgNPs by recording the cell surface charge utilizing a zeta potential analyzer. The
bacterial cells were centrifuged at 12,000 rpm for 10 min to harvest bacterial cells from the
supernatant. The bacterial cells were resuspended in phosphate-buffered saline (PBS) of
0.06 molar (M) concentration and 7.4 pH, to treat the NPs. The cells (1 × 106) were treated
with MS-AgNPs, bare AgNPs, and an antibiotic (ampicillin), and MS-AgNPs in the absence
of bacterial cell was used as control. The same concentration (3mM) was used for all the
treatments (MS-AgNPs, bare AgNPs, and ampicillin). The treated cells were incubated in a
shaker incubator at 38 ◦C for 4 h at 150 rpm. The zeta potential values of the treated and
control samples were measured using a zeta potential analyzer at 280 nm.
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2.8. Cell Constituents Release

The potential of the MS-AgNPs was determined by analyzing the cell constituents
discharged in the media. The cells were treated with bare and MS-AgNPs, antibiotic
(ampicillin), and control (distilled water). The cells were stored at 38 ◦C for 4 h. The
incubated cells were isolated by centrifugation for 10 min at 12,000. The cell constituent
release was determined by measuring the absorbance of the supernatant at 260 nm.

3. Results
3.1. Myco-synthesis of AgNPs

The myco-synthesis of AgNPs impregnated in A. fumigatus extract was performed,
and its antibacterial potential against pathogenic bacteria was assessed. Hence, the selected
fungal strain showed excellent ability for the biosynthesis of AgNPs. The co-precipitate
method was used to prepare the impregnated nano-sized AgNPs in the fungal extract of A.
fumigatus and approved by the color change within the reaction mixture. The light brown
filtrate of A. fumigatus was incubated with the nano-sized Ag particle, and this mixture
changed into a brownish color when the reaction was complete (Figure 1), in the case of
MS-AgNPs. The bare AgNPs showed a light brownish appearance. Similar results are also
reported by [41].
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Figure 1. Visual appearance of MS-AgNPs and bare AgNPs; (A) fungal filtrate, (B) MS-AgNPs, and
(C) bare AgNPs.

3.2. Characterization of the Myco-synthesized Silver Nanoparticles (AgNPs)
3.2.1. XRD

XRD was used to examine the crystallinity of the MS-AgNPs and bare AgNPs. The
prepared AgNPs were crystalline. The XRD patterns of the MS-AgNPs revealed six charac-
teristic peaks at 34.3◦, 36.2◦, 39.4◦, 48.1◦, 52.5◦, and 78.4◦ 2θ, which were assigned to the
(210), (311), (220), (111), (420), and (110) planes, respectively (Figure 2, black spectrum).
XRD revealed the face-centered cubic (fcc) structure of Ag, which is in accordance with the
powder diffraction standards (JCPDS) card no. 89-3722, revealing the lattice parameter α =
3.07 Å. The unknown peaks observed in the black spectrum of the MS-AgNPs (represented
by asterisks) may be due to the presence of organic metabolites of the fungal extract [42].
The XRD pattern of both bare AgNPs and MS-AgNPs showed that Ag is the major element
of the composite. By contrast, the bare AgNPs showed the same XRD peaks, with little
deviation. The bare AgNPs revealed six peaks at 18.1◦, 28.4◦, 31.6◦, 39.7◦, 41.7◦, and 49.1◦

2θ, which were assigned to the (121), (111), (412), (333), (210), and (114) planes, respectively
(Figure 2, red spectrum). The peaks for the bare-AgNPs are in agreement with JCPDS file
no. 42-0783, with a lattice parameter of 2.08 Å. The mean crystallite sizes of the MS-AgNPs
and bare AgNPs were 39 nm and 41 nm, suggesting that the prepared NPs are suitable for
antimicrobial applications in different fields [4,43]. The variations resulting in the diffrac-
tion pattern of XRD are due to synthesis methods, as bare AgNPs are prepared through
chemical synthesis, while MS-AgNPs are prepared with the help of fungus strains.
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Figure 2. XRD pattern of the MS-AgNPs (black spectra) and bare AgNPs (red spectra). The * represent
unkonown peaks in the black spectrum.

3.2.2. FTIR

The presence of the functional groups on the surface of the MS-AgNPs was confirmed
by FTIR spectroscopy. The FTIR spectrum of the MS-AgNPs revealed bands at 3423.76 cm−1

and 3316.35 cm−1 analogous to the hydroxyl (–OH) stretch coupled with a carbonyl group
(C=O). The absorbances at 3018.90 cm−1 and 2365.62 cm−1 were attributed to the C–H and
N–H stretching, respectively. The peaks at 1730.79 cm−1 and 1630.51 cm−1 confirmed the
presence of the NH2 stretching vibration of a carbonyl and the C=C stretching of alkenes,
respectively. A sharp peak at 1394.28 cm−1 showed C-N stretching. By contrast, the peaks
at 997.98 cm−1 and 913.42 cm−1 were reciprocal to the alcohol OH band and CO carboxylic
anions, respectively. In addition, the peak observed at 529.36 cm−1 was attributed to the
C–N nitrile groups (Figure 3, black lines). By contrast, the bare AgNPs did not show peaks
at 3423.76 cm−1 and 3316.35 cm−1, demonstrating the absence of the hydroxyl (-OH) stretch
and carbonyl group (C=O), respectively (Figure 3, red lines). An additional absorbance in
the bare AgNPs at 1245.62 cm−1 indicated the presence of –NH stretching modes (Figure 3,
red lines). The spectrum of the bare AgNPs revealed a pattern similar to MS-AgNPs,
indicating that both NPs had been synthesized.
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3.2.3. UV–Vis Spectroscopy

The synthesis of AgNPs was confirmed by measuring the absorbance scan at the
wavelength range of 200–800 nm. UV–vis spectroscopy of both MS-AgNPs and bare
AgNPs revealed a broad absorbance band from 455 nm to 534 nm, which indicate the
presence of Ag+ ions in the sample (Figure 4, red and black spectra) [44]. The appearance of
a additional peaks at 506 and 535 nm may correspond to the presence of fungal metabolites
(Figure 4, black spectrum) [45]. These results indicate the successful synthesis and the
presence of fungal metabolites on AgNPs, which are consistent with earlier reports on the
AgNPs [44,45].
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3.2.4. SEM Analysis

In discovering antimicrobial resources, it is essential to determine the morphology
of MS-AgNPs and their efficacy against microbes using high-resolution microscopic tech-
niques [46]. SEM showed NPs, with a cubic structure and a mean size ranging from 65 to
85 nm (Figure 5B). By contrast, bare AgNPs also showed a spherical structure, with a mean
size ranging from 50–80 nm (Figure 5A). EDX analysis of both bare and MS-AgNPs showed
the presence of more than 40% Ag and more than 25% oxygen. The presence of oxygen
might have resulted from the AgNO3 solution. MS-AgNPs groups of Na and Cl were also
found, which might have resulted from fungal metabolites. Generally, the Ag-NPs revealed
strong absorption peaks, which are similar to those found in previous studies [9,11]. Earlier
reports showed that the existence of oxygen plays a vital role in enhancing the antimicrobial
potential of AgNPs [38].

3.2.5. TEM Analysis

The TEM images of MS-AgNPs synthesized with the help of A. fumigatus filtrate
showed that the NPs were roughly spherical (Figure 6A,B), with a particle size distribution
in the range of 20–60 nm with an average size of 30 ± 6.05 nm at a magnification of ×50 nm
(Figure 6C,D). The NPs synthesized with the fungal extract revealed a polydispersed-like
shape that might be due to the increased surface area (Figure 6A).
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3.3. Antibacterial Activity

The antibacterial potential of MS-AgNPs was estimated using the agar well diffusion
method to measure the zone of inhibition, and the bactericidal efficiency in liquid broth
was examined from the optical density.
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3.3.1. Agar Well Diffusion Method

The antibacterial potential of the MS-AgNPs and chemically synthesized bare AgNPs
was evaluated against S. aureus, S. dysenteriae, and S. typhi. The results were presented as a
zone of inhibition (Figure 7 and Table 1). The MS-AgNPs contain significant antibacterial
potential against S. aureus, with a zone of inhibition of 18.21 ± 2.1 mm (Table 1). The
MS-AgNPs were also active against S. dysenteriae and S. typhi, with a zone of inhibition
of 16.18 ± 1.3 and 14.41 ± 1.7 mm, respectively. However, the bare AgNPs showed a
smaller zone of inhibition (13.73 ± 1.4, 14.84 ± 1.8, and 13.25 ± 1.9 mm) against S. aureus, S.
dysenteriae, and S. typhi, respectively (Table 1). Moreover, the antibiotic (ampicillin, 3 mM)
as a positive control and distilled water as a negative control showed significantly smaller
inhibition zones, suggesting that the MS-AgNPs have strong antibacterial potential.
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Table 1. Zone of inhibition of MS-AgNPs, bare AgNPs, antibiotics, and control against pathogenic
bacteria.

Treatments (3 mM)
Concentration

S. aureus S. dysenteriae S. typhi

Zone Inhibition
Value (mm)

Zone Inhibition
Value (mm)

Zone Inhibition
Value (mm)

MS Ag-NPs 18.21 ± 2.1 a 16.18 ± 1.3 b 14.41 ± 1.7c

Bare Ag-NPs 13.73 ± 1.4 b 14.84 ± 1.8 c 13.25 ± 1.9ab

Ampicillin 7.31 ± 2.1 c 7.80 ± 1.4 d 5.51 ± 1.3ac

Control 3.12 ± 1.4 d 1.15 ± 1.3 e 1.10 ± 1.4e

Different letters indicate significant differences at p < 0.05 by one-way ANOVA. The values are the mean ± SD of
assessments performed in triplicate.

3.3.2. Optical Density Estimations

The optical density of the MS-AgNPs determined the death rate of the bacteria in the
liquid broth at different time intervals (8, 16, and 24 h.). These results showed that MS-
AgNPs actively inhibited bacterial growth of all strains at different time intervals (Figure 8).
The bare AgNPs also revealed inhibition of bacterial growth, but the inhibition was slightly
lower compared to that of MS-AgNPs. Maximum bacterial growth was observed in the
control, followed by the antibiotic. In addition, these results also showed that the MS-
AgNPs are more effective against the Gram-positive strain, which is in accordance with
previous studies [47,48]. Moreover, the growth of bacterial strains increased slightly after
24 h due to cell division because at the initial stages, such as 8 h (Figure 8A) and 16 h
(Figure 8B), bacterial cell division had not reached the optimum. Therefore, the inhibition
up to 24 h (Figure 8C) was estimated by UV spectrophotometer.
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Figure 8. Optical density of the MS-AgNPs determined the growth of the bacteria in liquid broth at
different time intervals (8, 16, 24 h). (A) Representative growth of the bacteria in liquid broth at 8 h,
(B) representative growth of the bacteria in liquid broth at 16 h, and (C) representative growth of the
bacteria in liquid broth at 24 h. Note: *** shows significant difference at p < 0.05, ** shows significant
difference at p < 0.01, and * shows significant difference at p < 0.005.

3.4. MS-AgNP’s Effect on Bacterial Membrane

The zeta potentials of the S. aureus, S. dysenteriae, and S. typhi were measured to
examine the effect of the MS-AgNPs on the membrane surface of the bacteria. Our results
showed that untreated cells of S. aureus, S. dysenteriae, and S. typhi revealed a zeta potential
of −37, −33, and −29 mV, indicating a strong negative surface potential (Figure 9). The
negative potential of the cells was decreased when treated with MS-AgNPs and revealed
3.6, 3.8, and 3.1 mV against S. aureus, S. dysenteriae, and S. typhi, respectively. Bare AgNPs
also decreased the negative potential of the bacterial membrane by −3.5, −4.3, and −3.1 mV
against S. aureus, S. dysenteriae, and S. typhi, respectively, whereas the control consisting of
only distilled water, MS-AgNPs, bare AgNPs, and the antibiotic only revealed significant
difference with treated bacterial cells. However, the negative zeta potential of the MS-
AgNPs was very low as compared to other treatments, indicating that NPs exhibit the
potential to affect the degradation of the membrane surface.
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damage caused by MS-AgNPs, Bare AgNPs, antibiotics, and control (untreated bacterial cells).
Control in each treatment without bacterial cells. Control (only distilled water), control (Only MS Ag-
NPs), control (only bare Ag-NPs) and control (only antibiotic). Note: *** shows significant difference
at p < 0.05, ** shows significant difference at p < 0.01, and * shows significant difference at p < 0.005.
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3.5. Analysis of Cell Constituents Release

The release of cell constituents was determined to confirm the membrane damage
caused by MS-AgNPs. Membrane damage resulted in the release of cellular contents, such
as nucleic acids and proteins, which were analyzed by the absorbance at 260 (Table 2)
and 280 nm (Table 3). The bacterial cells treated with the MS-AgNPs and the bare AgNPs
showed a significant difference compared to the antibiotic (ampicillin) and the control
(Tables 2 and 3).

Table 2. OD at 260 nm of the cell constituent (nucleic acids) release from the selected bacterial strains
upon treatment with MS-AgNPs, bare AgNPs, antibiotic, and control.

Bacterial
Strains

MS-AgNPs
(OD260 nm)

Bare AgNPs
(OD260 nm)

Antibiotic
(OD260 nm)

Control
(OD260 nm)

S. aureus 0.26 a 0.22 b 0.14 c 0.006 d

S. dysenteriae 0.21 a 0.16 b 0.15 c 0.008 d

S. typhi 0.18 a 0.17 b 0.17 c 0.005 d

Different letters indicate significant differences at p < 0.05, determined by one-way ANOVA, within the same
rows. The values are the mean of triplicate experiments.

Table 3. OD at 280 nm of the cell constituent (periplasmic proteins) release from the selected bacterial
strains upon treatment with MS-AgNPs, bare AgNPs, antibiotic, and control.

Bacterial strains MS-AgNPs
(OD260 nm)

Bare AgNPs
(OD260 nm)

Antibiotic
(OD260 nm)

Control
(OD260 nm)

S. aureus 0.32 a 0.21 b 0.11 c 0.003 d

S. dysenteriae 0.27 a 0.19 b 0.10 c 0.006 d

S. typhi 0.29 a 0.18 b 0.12 c 0.004 d

Different letters indicate significant differences at p < 0.05 by one-way ANOVA within the same rows. The values
are the mean of triplicate experiments.

4. Discussion

Green chemistry and the manufacture of nanomaterials through biological resources
is a fundamental approach to amalgamating nanotechnology and microbial biotechnol-
ogy [13,49,50]. The catalytic potential of the microbes provides extraordinary opportunities
to synthesize nanomaterials [51]. In this study, MS-Ag-NPs were synthesized for antimicro-
bial and biological applications. Ag-NPs exhibited color changes because of the excitation
of surface plasmon vibration within the particles. The literature also supported the same
method of biological synthesis of nano-sized Ag particles with diverse fungal strains [41,52].
Time is a major factor in completing the reaction. In the current study, 72 h were suffi-
cient for incubation in the dark to obtain the desired results [42]. Moreover, varying the
AgNO3 concentration and reaction duration allowed for variations in color intensity be-
cause the MS-AgNPs showed dependent behavior on both factors throughout the synthetic
procedures. The mechanism might involve electrostatic interactions between the ions of
the Ag and the fungal macromolecules (peptides and proteins) released from the fungal
extract. The precise mechanism regarding the interaction of biological compounds and
Ag is not well understood. Aspergillus is the most extensively considered genus for the
biogenic synthesis of nanoparticles with different metal oxides. Literature studies regarding
A. fumigatus have explained that synthetic events of mycogenic Ag nanoparticles occur
extracellularly [43]. An additional benefit of using fungus for this purpose is that fungal
peptides and proteins, with the help of oxidoreductases and quinones, serve as metal
scavengers during the detoxification procedures [44,45]. Similarly, an optimized incubation
temperature (37 ◦C) plays a vital role in obtaining a huge AgNPs yield to maintain the
lifeline of microbes. These findings showed that a higher AgNO3 concentration (3 mM)
is the optimum for MS-AgNPs. Moreover, the myco-synthesis of NPs is the latest and
most stimulating area of research to overcome the need for antibacterial agents against
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resistant bacterial strains. The broad peaks and intensity of the diffraction band indicate
that the particles are crystalline and possess a smaller particle size. The obtained spectrum
confirmed that the synthesized NPs are pure and possess a crystalline nature. The results
confirmed that fungal metabolites played a significant role in the crystallization and nucle-
ation of the particles [53]. The appearance of organic functional groups in the FTIR spectra
confirmed the role of fungal metabolites in reducing the particle growth of MS-AgNPs.
In addition, the presence of organic functional groups played a role in the synthesis of
crystal size in MS-AgNPs. The existence of NH2 and OH groups constrained the nuclear
growth of Ag+, which assembled and reduced the core size NPs. These results proved
that MS-AgNPs exhibit various organic functional groups that strengthen the efficiency
of the MS-AgNPs in two ways: (i) the presence of an organic functional group helped to
synthesize AgNPs that can be used in biological activities, and (ii) the fungal extract pro-
vides a surface for the AgNPs coated with biomolecules, which will facilitate the killing of
pathogenic microorganisms. In UV analysis, the change in the color of the suspension from
pale yellow to dark brown indicates the presence of Ag+ ions in the solution. The maximum
absorbance potential of the MS-AgNPs may be the result of the ionization of metabolites
and organic compounds from the fungal extract. SEM images showed electrostatic interac-
tions among the synthesized nanomaterial. The electrostatic interactions on the exterior
surface of the NPs sheets might lead to the agglomeration of the AgNPs. On the other hand,
the documented findings are in accordance with previously available research data [34].
The bacterium-killing capability of MS-AgNPs depends mainly on their spherical shape
(morphology), which plays a vital role in synthetic pathways for its adsorption leading
toward death [26]. The large surface area will facilitate the antimicrobial potential of the
prepared AgNPs. Previous studies also showed the spherical shape of the AgNPs prepared
with fungal extracts [17,21]. The difference in the antibacterial activity against different
strains may be due to variations in the cell wall composition between Gram-positive and
Gram-negative bacteria [54]. The cell walls of Gram-negative S. dysenteriae and S. typhi
are surrounded by an outer lipopolysaccharide membrane that hinders particle attraction
and penetration into the cells due to electrostatic repulsion between the NPs and bacterial
strains [55]. Overall, the antibacterial potential of the MS-AgNPs was the highest compared
to the other treatments [42]. MS-AgNPs could also penetrate the cellular components and
damage the DNA, making it a suitable candidate for biomedicine in pharmaceutics to
overcome the resistance of microbes against antibiotics [56]. The mechanism of MS-AgNPs
involves AgNPs liberating ions, which counter with sulfur-containing amino acids (thiol
group) distributed on the exterior surface of the microbes. These amino acids are beneficial
for the transportation of food materials through the microbial cell membrane. The presence
of MS-AgNPs decreases the transportation of food across the membrane, which is entirely
dependent on its permeability. In addition, it deactivates the protein, which finally caused
the expiration of bacterial life [11]. The inhibition of bacterial cell division involves the
effects of AgNPs on the synthesis of the bacterial cell membrane. Another reason for the
inhibition of bacterial cell division is due to the prohibition of protein synthesis, damaging
the DNA and metabolic pathways, leading to bacterial cell death [11,42]. The bacterial
cell death is also due to hyperosmotic stress and imbalanced permeability resulting from
the AgNPs. These results showed that the MS-AgNPs possess the highest antibacterial
potential against resistant bacterial strains. The maximum effect of the MS-AgNPs on
the surface of the bacterial membrane may be attributed to the electrostatic interaction of
the MS-AgNPs and the bacterial cell surface. These results agree with previous studies
showing surface damage of the bacterial membrane with an NP treatment [9,47]. These
results suggest that changes in the surface potential values after treatment with NPs may
be due to the release of cellular contents, which leads to bacterial membrane damage [29].
Therefore, it is necessary to evaluate the effect of the synthesized MS-AgNPs on the re-
lease of the cellular contents. The MS-AgNPs showed the maximum effect on S. aureus,
which also suggests that the prepared NPs significantly influence the bacterial growth of
Gram-positive bacteria. Moreover, the MS-AgNPs also influenced the cellular contents
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of S. dysenteriae and S. typhi. The improved activity of the MS-AgNPs can be assigned to
interactions of the NPs with the bacterial cell surface [11,35].

5. Conclusions

The findings of this study recommended that crystalline and stable nanomaterials
can be manufactured through the application of fungal strains. Our study showed that
the MS-AgNPs and the bare AgNPs represent the face-centered cubic structure of AgNPs.
The fungal metabolites (hydroxyl stretch coupled with carbonyl group) resulting from
a fungal extract played a key role in reducing and stabilizing the NPs. The MS-AgNPs
exhibit the potential to inhibit bacterial growth by damaging the cell membrane, causing the
release of cellular contents. Our study suggests that changes in the bacterial cell membrane
surface occur after treatment with the NPs due to the release of cellular contents, which
leads to bacterial membrane damage and cell death. The antibacterial potential of the MS-
AgNPs was significantly increased by the presence of functional groups from A. fumigatus.
Therefore, it is recommended that applications of microbes in the synthesis process of NPs
can facilitate the synthesis of NPs effective for the inhibition of various pathogenic bacterial
strains.
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