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Abstract: Pavement surface texture evaluation is mainly analyzed based on elevation data in pre-
vious research, and attention also need to be paid to wavelength information. Furthermore, a
well-established relationship model between surface texture and skid resistance for real road sections
still needs further investigation to help provide useful information on appropriate maintenance time
considering skid resistance attenuation. In this research, the macro-texture of asphalt pavement was
evaluated from different aspects, including elevation, wavelength information, and geometry, and
the relationship models between the macro-texture and skid resistance (at both low and high speeds)
were established and compared using the multiple linear regression (MLR) and back propagation
(BP) neural network to recommend a suitable one. In order to achieve this, this study monitored
anti-skidding performance and the macro-texture of six road sections for 18 months. Firstly, the
Dynamic Friction Coefficient (DFC) test and core drilling were conducted on site at three different
service times. Additionally, a laboratory accelerated loading test was carried out on specimens
prepared by similar material composition to one of the road sections, and the British Pendulum
Number (BPN) was tested after different passes of loading. Secondly, 3D laser scanning was carried
out on core samples from road sections and laboratory specimens after different passes of loading.
The correlation degree between macro-texture indexes and anti-skidding performance was analyzed
with the grey correlation entropy analysis method. Finally, the relationship models between the
anti-skidding performance at high and low speeds and macro-texture were established based on the
MLR and BP neural network. The results indicate that the macro-texture indexes calculated based on
elevation data to characterize vertical irregularities have a good correlation with the skid resistance
despite the different service times and pavement types. Compared with the BP neural network model,
the MLR model has low correlation and noticeable error. The relationship model between F60 (DFC
at the speed of 60 km/h) and macro-texture could be well established by the BP neural network. In
addition, the relationship between F20, BPN, and pavement surface macro-texture is poor, making it
impossible to establish a model with good correlation. Generally, it is recommended to use the BP
neural network to establish the relationship model between macro-texture and skid resistance.

Keywords: road engineering; anti-skidding performance; macro-texture evaluation indexes; 3D
laser scanning; on-site coring; accelerated loading; relationship model; back propagation (BP) neural
network; multiple linear regression
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1. Introduction

Previous studies [1–3] have shown that pavements generally have good anti-skidding
performance at the early stage after construction, yet with the increase of service time,
the skid resistance performance demonstrates varying degrees of decline, even to the
extent of failing to meet the requirements of safe driving. Surface texture is a vital factor
affecting pavement skid resistance [4,5]. To be more specific, it is generally believed that
the anti-skidding performance of vehicles at low speeds is mainly determined by pavement
micro-texture, whereas its counterpart at high speeds tends to be significantly influenced
by pavement macro-texture [6–8]. Therefore, pavement surface texture could be used
to effectively represent pavement anti-skidding performance [9]. In addition, the anti-
skidding performance is mainly derived from energy dissipation produced by the cutting
effect of surface fluctuations on the tires, which could be expressed by pavement surface
macro-texture [10]. Field tests show a rapid decrease of the pavement skid resistance
performance within the first two years after construction, before the decline grows stable.
It should also be noted that there exists a minor increase before the rapid decrease due to
asphalt wear, which can be difficult to observe. An effective relationship model between
the pavement macro-texture and skid resistance performance cannot be well established
due to many influencing factors of the anti-skidding performance, long service time, and
lack of a suitable simulation method of driving conditions, etc. Therefore, it is necessary to
carry out a long-term tracking of actual road sections to observe anti-skidding performance
and surface macro-texture. In particular, high-precision test methods should be employed
to accurately characterize the pavement macro-texture and to establish the relationship
model between the pavement macro-texture and anti-skidding performance by various
reasonable means. Then, a more accurate pavement anti-skidding performance model
based on surface texture could be built, which could provide highway authorities with
useful decision-making information on appropriate maintenance time with the help of
high-precision texture measurement devices.

In recent years, scholars around the globe have investigated the attenuation law of
pavement anti-skidding performance. In terms of laboratory simulation by accelerated
loading devices, some scholars initially used the Wheel Tracking Tester to simulate the
effect of vehicle loads on pavement. However, the obtained wheel track size appears to be
too small to meet test requirements of skid resistance. Presently, most laboratory simulation
devices are accelerated loading equipment or self-developed accelerated abrasion machines,
which boast the advantages of higher efficiency and the ability to impose loads that are
more consistent with actual loads [11–13], whereas skid resistance attenuation in the
laboratory is not consistent with that on road sections, which is far from the needs of
pavement maintenance. With regards to anti-skidding attenuation, some have proposed
prediction models, such as the asymptotic model, exponential model, logarithmic model,
and Penn State model, and verified their effectiveness by testing the Dynamic Friction
Coefficient (DFC), British Pendulum Number (BPN), or texture depth [14,15]. In this
case, the measured skid resistance may differ from that predicted by the models when
the environmental change or maintenance of the actual pavement appears. It is more
convenient and flexible in practical use to establish a prediction model from the surface
texture that can be measured when necessary.

In terms of the relationship between the macro-texture and skid resistance perfor-
mance, studies have demonstrated that the correlation between the anti-skidding perfor-
mance and traditional macro-texture evaluation indexes, such as Mean Profile Depth (MPD)
and Mean Texture Depth (MTD), remain to be discussed. However, in recent years, great
progress has been made in the following aspects, namely, the data acquisition of the macro-
and micro-texture of pavement surface by high-precision and non-contact measurement
methods, as well as their application in the investigation of the surface texture evolution
and pavement anti-skidding performance prediction [16–20]. This contributes to the fast
acquisition and precise characterization of surface texture. Much research focuses on the
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surface evaluation from aspects of elevation data [9,10], and more attention should also be
paid to the texture wavelength.

When establishing the relationship model between pavement surface texture and skid
resistance, various methods can be used. Correlation analysis has always been employed in
previous research [21,22], whereas only the correlation degree can be obtained in this way
and quantitative prediction cannot be achieved. Research has also been conducted using
the multiple linear regression (MLR) method to develop a model between anti-skidding
performance and pavement surface texture [23,24]. In fact, it is still unknown whether the
relationship between them is linear and nonlinear information may be lost when MLR is
used. In recent years, nonlinear methods have been employed to explore the relationship
model between pavement surface texture and skid resistance. The back propagation (BP)
neural network has been demonstrated to exhibit excellent ability in predicting nonlinear
and complicated models, so it has been utilized in many aspects in pavement engineering,
such as pavement design and performance prediction [8,25,26]. Hence, the BP neural
network can be attempted to establish a relationship model between pavement surface
texture and skid resistance.

In summary, the current laboratory simulation of vehicle loads on pavement surface
mainly depends on the Wheel Tracking Tester, accelerated loading facilities, Wehner/Schulz
polishing, self-developed equipment, etc. Yet, it has to be noted that laboratory simulation
by accelerated abrasion/polish devices could only simulate the number of axle load actions
by equivalent conversion. However, environmental factors, such as temperature, humidity,
rain, and snow, cannot be completely recreated, making it difficult to establish a prediction
model that fits the actual roads. Nowadays, the commonly used relationship model
between skid resistance and macro-texture mainly relies on the traditional texture depth
evaluation indexes, MTD and MPD, and other statistical indexes, and further research is
still pending on in-depth characterization of pavement surface texture, especially from
the view of wavelength, and the model establishment of its relationship with pavement
anti-skidding performance.

This research aims to evaluate the surface macro-texture from aspects of both eleva-
tion data and wavelength based on 3D laser scanning technology, and to establish the
relationship model between surface texture and skid resistance measured on real road
sections and in the laboratory using MLR and BP neural network methods, and, finally,
to recommend a suitable relationship model. Based on this, a more accurate pavement
anti-skidding performance prediction model based on surface texture can be built, which
could provide highway authorities and engineers with useful decision-making information
on appropriate maintenance time by measuring surface texture when necessary.

In order to achieve the objective of this research, firstly, six road sections with different
grades and surface types in Beijing were selected to conduct performance tracking for
one and a half years. Their skid resistance was tested by DFT at three different service
times, and core sampling was conducted on site after each DFT test. Secondly, in order to
compare the relationship model between macro-texture and anti-skidding performance
measured on site and in the laboratory, the Yangyan Road section was selected to carry out
the laboratory accelerated loading test by the one-third-scale Model Mobile Load Simulator
(MMLS3). Thirdly, 3D laser texture scanning technology was utilized to obtain surface
information of the drilled core samples and laboratory specimens, and to rebuild the digital
model, which was employed to calculate the macro-texture indexes from different aspects
by importing into MATLAB software. Finally, the correlation degree of each macro-texture
index and skid resistance performance was calculated, based on which, the relationship
model between macro-texture and skid resistance at both low speeds and high speeds was
established with two different methods, namely, multiple linear regression (MLR) and back
propagation (BP) neural networks. The feasibility of evaluating pavement skid resistance
performance from the aspect of macro-texture were explored. The flowchart of this research
is shown in Figure 1.
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Figure 1. Flowchart of this study.

2. Experimental Equipment and Test Methodology
2.1. Basic Information of Road Sections and Determination of Measurement Locations

Six actual roads with different surface types and grades in Beijing were chosen to
carry out long-term tracking of skid resistance and macro-texture. Their construction
was finished in the same period around October 2019. The detailed test procedure and
precautions are illustrated in Sections 2.2 and 2.3. The basic information of the six road
sections tested, which was obtained from their construction company, are listed in Table 1,
and their mixture gradations are shown in Table 2.
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Table 1. Main information of the six actual tested roads.

Road Name Luanchi (LC) Shuinan (SN) Yangyan (YY) Xiyuan (XY) Shunping Side (SP) Shidan (SD)

Mixture type WAC-16C AC-16C AC-13 RAC-13 RAC-13C UTWC
Void (%) 5.4 4.8 4.5 4.6 4.3 13.8

Aggregate type Limestone Limestone Limestone Limestone Limestone Basalt
Grade Secondary Secondary Arterial Secondary Arterial Arterial

Note: WAC-16C denotes Warm Asphalt Concrete with nominal maximum aggregate size of 16.0 mm and coarse
gradation; and the naming rule is applied to other similar abbreviations; RAC denotes Recycled Asphalt Concrete;
UTWC denotes Ultra-Thin Wearing Course.

Table 2. Gradation compositions of asphalt mixtures of the six roads tested.

Sieve Size (mm)
Percentage Passing through Different Sieve Size (%)

LC-WAC-16C SN-AC-16C YY-AC-13 XY-RAC-13 SP-RAC-13C SD-UTWC

19 100 100 - - - -
16 96 96.9 100 100 100 -

13.2 83.9 84 95.4 99.4 97.1 100
9.5 72.4 69.6 74.3 76.2 76.7 90
4.75 44.8 45.5 44.2 50.3 52.7 30
2.36 28.2 29.5 29.2 30.6 36.4 26.5
1.18 16.7 19.9 21.3 23.7 24.8 17
0.6 12.6 13.4 14.9 15.9 16.9 12
0.3 8.3 10.4 11.1 10.1 12.2 9
0.15 5.7 8 7.7 7.3 8 7.5

0.075 4.9 5.5 5.5 6 4.8 5.5

Each test location of skid resistance was a relatively flat and uniform surface without
rutting, potholes, and bumps. According to the specification, JTG 3450-2019 [27], test
locations for the DFT test were randomly selected, and they were distributed on the two
wheel tracks of the outside traffic lanes in two driving directions. As shown in Figure 2,
Lane 1 is a passing lane, whereas Lane 2 and Lane 3 are traffic lanes, and Lane 3 is the
outside traffic lane where skid resistance was measured on site on the two wheel tracks
(indicated by blue lines). This indicated that skid resistance was tested at test locations
marked by red and black triangles. Core samples were taken on the outside wheel track
(the track a little farther from the road centerline) of the outside traffic lane, as marked by
the black triangle. During the one and a half years of performance tracking, the DFT test
and core sampling were conducted for three times, with a total of at least 26 test locations
each time.

2.2. Macro-Texture Test
2.2.1. 3D Laser Scanning Equipment

The 3D laser texture scanning equipment used, as shown in Figure 3, was a Hexagon
Metrology Rommer six-axis articulated measuring arm and a Hexagon Probe Laser 20.8
(HP-L-20.8) high-efficiency external laser scanning head. The specific parameters of the
scanning equipment are a scanning distance of 180 ± 40 mm, a minimum pitch of 0.013 mm,
a shape error of 9 µm, and a dispersion value of 36 µm. The HP-L-20.8 can offer excellent
performance even on complex surfaces. It is fully integrated with the six-axis articulated
measuring arm, with no requirement for additional cables due to a feature pack. The
laser power can be adapted automatically in real time according to the surface color or
reflectivity.
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Figure 3. 3D laser scanning equipment.

2.2.2. Test Procedure of the 3D Laser Scanning

The 3D laser scanning device was utilized to acquire the texture data of core samples
from the six roads and laboratory specimens after different passes of loading in the ac-
celerated loading test conducted with the one-third-scale Model Mobile Load Simulator
(MMLS3). When conducting texture scanning, the disordered point mode and a sample
spacing of 0.05 mm were selected. In order to acquire the 3D topography of the pavement
surface clearly, especially with regards to deep voids on the pavement surface, each speci-
men/sample was scanned back and forth from different angles and directions, along three
diameters, with an angle of 60◦ on the surface and two directions spatially, including the
normal direction and a 45-degree angle with the normal direction. By doing so, complete
point cloud data (over 20 million) of the pavement surface were obtained. After removing
point cloud data from the edge part of the specimens to eliminate its effects on subsequent
texture index calculation, a 3D model of pavement texture was reconstructed using Geo-
matic Wrap software. To fully reflect the surface topography of samples while avoiding
extreme calculation, 15 surface profiles were taken from each sample at an equal space
of 4 mm, and the profiles were converted into continuous points in order to acquire the
coordinates of each point. In the meantime, inclination and offset suppression were carried
out on the obtained profiles by subtracting a least-squares fit from the profile to calculate
texture indexes. A schematic diagram of profile error elimination is shown in Figure 4a,c.
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2.3. Anti-Skidding Performance Test

The anti-skidding performance test is classified into on-site tests on roads and labora-
tory tests on the specimens. DFT was employed to test the Dynamic Friction Coefficient
(DFC) of road sections at different vehicle speeds on site considering its features of being
highly automated and having stable test results. During the DFT test process, the DFC at
different speeds could be recorded at an interval of 1 km/h within a range of 0–80 km/h.
The DFC at the speed of 20 km/h, which is named F20, is commonly used to represent skid
resistance at low speeds [28], and the DFC at the speed of 60 km/h, named F60, is generally
regarded as the representative value of anti-skidding performance at high speeds [29].
In this research, the measurement locations for the DFT test were randomly selected on
the two wheel tracks of the outside traffic lanes in two driving directions on each actual
road, according to Appendix A in the Chinese specification [27]. They were marked in
order to ensure that the same tests could be carried out as close as possible to the initial
measurement locations during the long-term performance observation. Core samples were
drilled at the same locations where DFT was conducted, which were utilized to obtain
surface texture information by the laser scanning equipment. The core samples obtained
were cylinders with a dimension of 101.6 mm in diameter and a height of the thickness of
the surface layer. Both the skid resistance measurement and core drilling were carried out
three times, corresponding to three different service times, in November 2019, September
2020, and December 2020, respectively.

Laboratory accelerated loading was conducted using MMLS3. The specimens em-
ployed were fabricated with the same materials as that of the Yangyan Road section to
ensure the test results in the laboratory and on the real road would be comparable after
the same passes of loading. Specimens were fabricated using the gyratory compaction,
which is more consistent with the compaction effects on real roads. Since the limited wear
width of laboratory specimens in the accelerated loading test is insufficient for the DFT test,
considering the sliding length during the standard British Pendulum Number (BPN) test,
BPN was utilized to represent the skid resistance of laboratory gyratory specimens with
a diameter of 150 mm in the MMLS3 test [7]. Since BPN could only reflect anti-skidding
performance at the speed of 10 km/h [29], it is generally regarded as an evaluation index
of anti-skidding performance at low speeds. Therefore, the two evaluation indexes of skid
resistance at low speeds, F20 obtained on site and BPN tested in the MMLS3 test, were
compared.

2.4. Grey Correlation Analysis

Being a vital part of Grey System Theory, the grey correlation analysis method has
been widely used thanks to its low requirement for sample size and straightforward calcu-
lation [30]. Based on the traditional grey correlation analysis method, the grey correlation
entropy analysis method improves defects in the grey correlation tendency governed by
local points and information loss caused by the mean normalization. It can also determine
the influence of each factor sequence on the overall correlation. Generally, the important
factors corresponding to correlation degree are higher than 70%, relatively important factors
lie between 50% and 70%, and the rest can be considered as unimportant factors [31].
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2.5. BP Neural Network Model

Waikato Environment for Knowledge Analysis (WEKA) is a commonly used data
mining and machine learning software, which has a complete set of learning algorithms,
data processing tools, and evaluation methods [32]. The BP neural network is a multi-layer
feed-forward neural network. Its transfer function of neurons is a nonlinear function, in
which the information flows from the input layer to the output layer. Its learning process is
mainly divided into two stages. The first stage is to input known samples and calculate
the output results of neurons in the next layer through the network architecture and the
weight and threshold of the last iteration. In the second stage, the weight and threshold are
corrected based on the errors obtained by the backward calculation according to the last
layer, and a reliable model is completed by repeating the aforementioned two steps until
convergence [33]. Using WEKA software, a BP neural network model could be established
and verified easily. The BP neural network boasts the ability to conduct precise prediction
in case of nonlinear problems. Therefore, in order to find a better prediction model, the BP
neural network was utilized to establish the relationship model between pavement surface
texture and skid resistance, which was compared with that by MLR.

3. Pavement Macro-Texture Indexes

In order to characterize the macro-texture characteristics of the pavement surface
accurately, the distribution of macro-texture was described from aspects of the elevation,
wavelength, and geometry. The vertical and horizonal macro-texture refers to the vertical
and horizontal irregularities, respectively, and pertains to 0.5–5 mm wavelengths. Evalua-
tion indexes calculated based on surface elevation data in the vertical direction to describe
vertical irregularities, as shown in Figure 5, were named vertical macro-texture indexes.
The evaluation indexes calculated based on wavelength data in the horizontal direction
to describe horizontal irregularities, as shown in Figure 5, were named horizontal macro-
texture indexes [34]. Vertical and horizontal irregularities and the geometric characteristics
of the pavement surface were characterized. The schematic diagram of the vertical and
horizontal macro-texture distribution is shown in Figure 5.
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The vertical macro-texture indexes mainly describe the texture distribution of pave-
ment surface along the z axis, i.e., in the amplitude direction, as shown in Figure 5. The
indexes utilized in this research include arithmetic mean value (Ra), standard deviation
(Rq), range (Rz), skewness (Rsk), and kurtosis (Rku), which could describe the difference
degree of texture depth, skew degree, kurtosis degree, and even the texture orientation [35]
of pavement surface, and reflect the changes of pavement vertical macro-texture under
different conditions. They were calculated according to the equations reported in similar
research [36].

As demonstrated in Figure 5, the horizontal macro-texture indexes were used to
describe the horizontal distribution and distribution deviation, i.e., in the driving direction,
while reflecting the changes of the horizontal macro-texture of actual roads under different
conditions. The horizontal macro-texture indexes used include average wavelength, La,
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and root mean square of wavelength, Lq, of the profile. They were calculated according to
a published a master dissertation [34].

Geometric features refer to the shape characteristics of a certain object. In this research,
geometric indexes, including the average slope, S1, and the average curvature, C, were used
to describe the contour shape of the outside edge of pavement surface profiles. They were
calculated according to previous research [36]. All the indexes involved are summarized in
Table 3.

Table 3. All the evaluation indexes of pavement surface macro-texture involved in this research.

Texture Index Classification Evaluation Index Calculation Formula Definition Details

Vertical macro-texture indexes

Arithmetic mean value Ra Ra =
1
n

n
∑

i=1

∣∣zi − Z
∣∣

n is the number of elevation data,
i.e., sampling points in the sec-

tion; zi denotes the texture elevation
of the i-th sampling point; Z

denotes the average of elevation
data of all the sampling points;

σ denotes the standard deviation of
elevation data of all the sampling
points; ∆x represents sampling

interval.

Standard deviation Rq Rq =

√
1

n−1

n
∑

i=1

(
zi − Z

)2

Range Rz RZ = max(zi)− min(zi)

Skewness Rsk Rsk = 1
σ3n

n
∑

i=1

(
zi − Z

)3

Kurtosis Rku Rku = 1
σ4n

n
∑

i=1

(
zi − Z

)4

Horizontal macro-texture
indexes

Average wavelength La
La = 2πRa/Da

Da =
1

n−1

n−1
∑

i=1

∣∣∣ zi+1−zi
∆x

∣∣∣
Root mean square of wavelength Lq

Lq = 2πRq/Dq

Dq =
n−1
∑

i=1

√
1

n−1

(
zi+1−zi

∆x

)2

Geometric indexes
Average slope S1 S1 = 1

n−1

n−1
∑

i=1

zi+1−zi
∆x

Average curvature C C = 1
n−2

n−1
∑

i=2

2zi−zi−1−zi+1
∆x2

4. Results and Discussions
4.1. Laboratory Accelerated Loading Test and Determination of Laboratory Test Time

In order to compare the relationship model between pavement macro-texture and
skid resistance established by the data obtained from on-site measurement and in the
laboratory, the Yangyan Road section was selected as a representative road section for the
laboratory accelerated loading test. Firstly, an AC-13 asphalt mixture with the same material
composition as Yangyan Road section was designed, and specimens were fabricated using
gyratory compaction. Secondly, a laboratory accelerated loading test was conducted with
MMLS3 to simulate vehicle loads on the pavement surface. The loading frequency was
set as 5200 cycles per hour with a contact pressure of 0.7 MPa. During this process, the
number of loading passes was recorded. According to the annual average traffic volume
and the accumulated traffic volume data of the Yangyan Road section during the tracking
test period, the connection between the number of laboratory loading passes and real
vehicle loading was established. Finally, the macro-texture and skid resistance of laboratory
specimens were tested after a set number of months since the road construction was
completed: 0, 1, and 2 months (corresponding to the on-site test for the first time); 3, 4, 5, 6,
8, and 11 months (corresponding to the on-site test for the second time); and 14 months
(corresponding to the on-site test for the third time).

4.2. Selection and Determination of Pavement Macro-Texture Indexes

Up to now, both the skid resistance and pavement macro-texture have been measured
three times during the one and a half years of tracking, with a total of 83 groups of data
acquired. The calculation results of macro-texture indexes are shown in Figure 6. In order
to improve the accuracy of the relationship model and eliminate the influence of redundant
indicators on its establishment, the grey correlation entropy analysis method was utilized
to select the appropriate macro-texture indexes.
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Figure 6. Test results of pavement surface texture. Arithmetic mean value (Ra), standard deviation
(Rq), range (Rz), skewness (Rsk), and kurtosis (Rku) are vertical macro-texture indexes; average
wavelength (La) and root mean square of wavelength (Lq) are horizontal macro-texture indexes;
average slope (S1) and average curvature (C) are geometric indexes.

4.2.1. Correlation Degree between Macro-Texture Indexes and Skid Resistance at Different
Service Time

When calculating the grey entropy correlation degree, the research targets are regarded
as reference sequences, whereas the factors affecting research targets are always regarded
as the comparison sequences. Aiming to investigate the changes of the correlation degree
between different macro-texture indexes and skid resistance at different pavement service
times, F60 was taken as the reference sequence, and the calculated value of each macro-
texture index was used as the comparison sequence to calculate the grey entropy correlation
degree between each texture index and anti-skidding performance. The calculation results
are listed in Table 4.

Table 4. Grey entropy correlation degree at different pavement service times between different
macro-texture indexes and F60.

Test Date Ra Rq Rz Rsk Rku La Lq S1 C

December 2019 0.9705 0.9682 0.9866 0.9585 0.9620 0.9301 0.9429 0.9240 0.9121
September 2020 0.9690 0.9694 0.9685 0.9602 0.9542 0.9547 0.9177 0.9581 0.9212
December 2020 0.9851 0.9553 0.9642 0.9587 0.9599 0.9378 0.9277 0.9249 0.8343

Table 4 shows that the correlation between vertical macro-texture indexes and the pave-
ment skid resistance performance is the highest, indicating that anti-skidding performance
of pavement is significantly affected by vertical macro-texture. This is because anti-skidding
performance is mainly derived from the energy dissipation and cutting action produced by
the contact between the tire and pavement surface, and the vertical macro-texture indexes
can describe the vertical fluctuation and distribution. As for the horizontal macro-texture
indicators and geometric indexes of the pavement surface, their correlation with the skid
resistance performance appears to be lower than that of the vertical macro-texture.
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As shown in Table 4, during different service periods, the correlation degree between
each texture index and anti-skidding performance demonstrates little alteration, indicating
that the pavement macro-texture could reflect the pavement anti-skidding performance
across different service times stably. As a result, pavement macro-texture could be used to
evaluate the pavement anti-skidding performance to a great degree.

4.2.2. Correlation Degree between Macro-Texture Indexes and Skid Resistance in Different
Mixture Types

In order to investigate the effect of mixture types on the correlation degree between
different macro-texture indexes and skid resistance, 83 groups of texture data obtained
on the six roads were classified into three types, Ultra-Thin Wear Course (UTWC), AC-13,
and AC-16. F60 was considered as a reference sequence, and the calculated value of each
macro-texture index was a comparison sequence to calculate the grey entropy correlation
degree between each texture index and the anti-skidding performance. The correlation of
UTWC data is not considered here, since its amount is too small. The calculation results of
correlation degree are shown in Table 5.

Table 5. Grey entropy correlation degree of different mixtures between different macro-texture
indexes and F60.

Mixture Types Ra Rq Rz Rsk Rku La Lq S1 C

AC-13 0.9851 0.9853 0.9842 0.9787 0.9899 0.9678 0.9677 0.9249 0.8343
AC-16 0.9741 0.9746 0.9772 0.9728 0.9754 0.9713 0.9419 0.9110 0.9006

Table 5 shows that the correlation between the vertical macro-texture indexes of pave-
ment surface and the anti-skidding performance is the highest for different mixture types,
which is consistent with the above conclusions. Pavement vertical macro-texture affects
the pavement anti-skidding performance significantly. The correlation degree between
vertical macro-texture indexes and pavement skid resistance is high and stable across
different service times and mixture types with different NMAS, indicating that pavement
vertical macro-texture indexes could be used to evaluate pavement skid resistance. The
correlation degree between skid resistance and horizontal texture indexes and geometric
indexes remains lower than that of vertical macro-texture.

Consistent law is obtained based on the analysis from aspects of service time and mix-
ture types; that is, the correlation between the vertical macro-texture indexes of pavement
surface and the skid resistance is the highest, followed by the horizontal macro-texture
indexes, and the correlation with the geometric indexes is the smallest, which is consis-
tent with previous literature [37]. Therefore, in the subsequent analysis, the pavement
vertical macro-texture indexes are regarded as the main influencing indexes, and attempts
should be made to establish a relationship model between them and the pavement skid
resistance. The horizontal macro-texture indexes and geometric characteristics would not
be considered in the following model establishment.

4.3. Establishment of the Relationship Model between Macro-Texture and Skid Resistance

In order to establish the relationship model between the macro-texture of pavement
surface and skid resistance accurately, the machine learning technology of an artificial
neural network was utilized for data fitting. It should be noted that F60 and BPN represent
the test results of skid resistance at high speeds and low speeds, respectively, which lack
reliable conversion methods. F20 and BPN both represent skid resistance at low speeds
and have a certain correlation [28]. Therefore, the relationship model between macro-
texture and high-speed skid resistance (i.e., F60), as well as the relationship model between
macro-texture and low-speed resistance (i.e., F20 and BPN), were established separately. For
each model, both the multiple linear regression (MLR) method and nonlinear multi-layer
perceptron method software were utilized by WEKA for data fitting.
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4.3.1. Establishment of Multiple Linear Regression Model

An MLR model can be used to explore the linear relationship between one dependent
variable and multiple independent variables, and to evaluate the influence degree of
each independent variable on the dependent variable. The MLR model between F60 and
pavement vertical macro-texture is shown in Equation (1):

F60 = 0.1117 ∗ Rq + 0.0427 ∗ Rz − 0.1068 ∗ Rsk − 0.076 ∗ Rku + 0.225 (1)

The correlation coefficient (R2) of Equation (1) is 0.6108, the mean absolute error is
0.452, and the Root Mean Squared Error (RMSE) is 0.0586. It can be seen that the skid
resistance is related to Rku, Rq, Rsk, and Rz in the multiple linear relationship model.

In order to survey the relationship between surface macro-texture and skid resistance
at low speeds, the regression result was obtained by taking F20 as the dependent variable
and each macro-texture index as the independent variable, as shown in Equation (2):

F20 = −0.5881 ∗ Ra + 0.4651 ∗ Rq + 0.0421 ∗ Rz + 0.0614 ∗ Rsk + 0.3639 (2)

The R2 of Equation (2) is 0.4464, the mean absolute error is 0.69, and the RMSE is
0.0823. It can be seen that the skid resistance of actual roads at low speeds characterized
by F20 remains to be affected by the pavement vertical macro-texture. However, the R2 of
the relationship model at low speeds appears lower, and the error is higher than at high
speeds, which also proves that the pavement macro-texture mainly affects the anti-skidding
performance at high speeds to some degree [38,39].

With BPN measured in the laboratory accelerated loading test with MMLS3 as the
dependent variable and each vertical macro-texture index as the independent variable, the
regression result is shown in Equation (3):

BPN = −27.6308 ∗ Rq + 12.2667 ∗ Rz + 114.0228 ∗ Rsk + 52.7297 (3)

The R2 of Equation (3) is 0.404, the mean absolute error is 0.521, and the RMSE is 0.164.
It can be seen that the skid resistance at low speeds characterized by BPN is still greatly
affected by the vertical macro-texture. Compared with Equation (2), the independent
variable indexes in Equation (3) are roughly the same, except that Ra is excluded and the
R2 is close, indicating that there exists a certain correlation between BPN and F20. However,
the R2 are both lower than Equation (1), indicating that the skid resistance at low speeds is
less affected by the macro-texture of pavement surface, and the correlation between macro-
texture and anti-skidding performance at low speeds is low. This is also demonstrated by
the scatterplots of the measured and predicted skid resistance based on Ts (1)~(3), as shown
in Figure 7. Therefore, it should be considered together with pavement micro-texture when
describing the skid resistance at low speeds.

The R2 of all three equations obtained by MLR merely shows a medium level of
correlation, presumably due to the fact that MLR could only reflect the linear relationship
between variables, whereas the relationship between the pavement macro-texture and the
anti-skidding performance may be nonlinear. In the subsequent analysis, the nonlinear
method would be explored to investigate the relationship between macro-texture indexes
and the anti-skidding performance by the BP neural network.
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4.3.2. Establishment of BP Neural Network Model

The BP neural network is composed of a large number of neural elements and mutual
connections, and its general architecture includes the input layer, the hidden layer, and the
output layer. In order to establish the BP neural network model, the architecture of the BP
neural network needs to be determined first.

During BP neural network processing, some investigated data are needed to train
the network until it satisfies the designated requirements. Therefore, 70% of the data
were randomly selected as the training set, whereas the remaining 30% were used as the
test set for model verification. The model was established with the vertical macro-texture
indexes serving as the input layer, and F60 (F20 or BPN when investigating the anti-skidding
performance at low speeds) as the output layer. As for the hidden layer, both the number
of hidden layers and the number of hidden nodes affect the model accuracy and learning
efficiency. The former is generally determined empirically, whereas there is no scientific and
reasonable method for the latter. Given the lack of experience in establishing the relationship
between pavement macro-texture and skid resistance using the BP neural network, it is
deemed necessary to obtain the appropriate number of hidden layers and hidden nodes
through experimental verification. In general, R2 and RMSE were used to represent the
correlation between the predicted results and variables. They were also utilized as network
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training effect criteria to determine the number of hidden layers and the number of hidden
nodes in this research. The closer the R2 is to one, the better the correlation between the
independent variable and the dependent variable will be, whereas the smaller the RMSE
is, the higher the accuracy of the model tends to be. When determining the hidden layer,
the F60 was regarded as the output layer. Firstly, the number of hidden nodes was fixed,
and the number of hidden layers varied between one and three. The analysis results under
each number of hidden layers using the BP neural network are displayed in Table 6.

Table 6. Analysis results under different numbers of hidden layers using BP neural network with the
F60 as the output node.

Number of Hidden Layers R2 Result RMSE Result

1 0.8051 0.419
2 0.7403 0.439
3 0.4143 0.683

As can be seen from Table 6, when the number of hidden layers is one, the correlation
and accuracy of the relationship model, characterized by the R2 and RMSE, appear to be the
highest among the three different hidden layers. Increasing the number of hidden layers
not only reduces the accuracy of the relationship model, but also increases the training time.
Therefore, the optimal number of hidden layers was determined to be one.

When determining the optimal number of hidden nodes, the number of hidden layers
was fixed as one, and the number of hidden nodes varied between two and four, based
on experience and data amount. The analysis results under each number of hidden nodes
using the BP neural network are shown in Table 7.

Table 7. Analysis results under different numbers of hidden nodes using BP neural network with the
F60 as the output node.

Number of Nodes R2 Result RMSE Result

2 0.8160 0.461
3 0.8183 0.418
4 0.8045 0.434

It can be seen from Table 7 that a more accurate relationship model could be obtained
when the number of hidden nodes is three. At this time, the R2 was the largest and the
RMSE was smallest, indicating the best training effect among three different nodes. Thus,
the optimal combination of the BP neural network architecture is determined as one hidden
layer and three hidden nodes, as illustrated in Figure 8. This shows that vertical macro-
texture indexes, including Ra, Rq, Rz, Rsk, and Rku, were reflected by the five nodes in
the input layer, and F60 was reflected by the only node in the output layer. The nodes of
the network in each layer were fully connected to the nodes in the adjacent layers by the
weights. Owing to the characteristics of the feed-forward network, the algorithm processed
the information in the input layer forward propagation to the hidden layer, and then to
the output. After the output value and the actual value were compared, the error was
back-propagated. Additionally, the weights between nodes in the adjacent layers were
adjusted. The calculation was ended when the output layer met the designated accuracy
requirements. The weight values obtained according to the optimal network architecture
are shown in Table 8.

Data in the test set were put into the relationship model to verify the accuracy, and
the accuracy of the test set was 0.701. The results showed that 70.6% of the test set data
appeared suitable for the relationship model between macro-texture and skid resistance,
and that the accuracy of the training set and the test set was close to 70%, indicating the
superiority of the relationship model. In this way, more potential and valuable knowledge
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were discovered behind the pavement surface texture and anti-skidding resistance at high
speeds, characterized by F60.
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Table 8. Calculated model weights with F60 as the output node.

Input Value
Weight

Nodes

Node1 Node2 Node3

Ra 0.547 0.853 2.572
Rq −1.471 1.932 1.321
Rz −1.522 0.208 −0.999
Rsk −6.368 −3.253 −4.385
Rku −3.557 0.341 −3.777

Constant −4.098 −0.780 −0.754

Hidden layer
weight

Node1 Node2 Node3 Constant

3.039 1.883 0.488 −0.570

In order to explore the accuracy of the relationship model between macro-texture and
skid resistance at low speeds, F20 and BPN were taken as the dependent variable (output
layer), respectively, and the macro-texture indexes served as the independent variable
(input layer). The weight values calculated using the optimal network architecture, similar
to Figure 8 (one hidden layer and three hidden nodes), are displayed in Table 9 for F20 and
Table 10 for BPN.

Table 9. Calculated model weights with F20 as the output node.

Input Value
Weight

Nodes

Node1 Node2 Node3

Ra 0.496 3.935 0.869
Rq 0.552 2.224 0.573
Rz 0.541 −1.384 −0.513
Rsk −0.586 4.272 −0.839
Rku 0.817 5.958 0.168

Constant −0.880 −0.627 −0.944

Hidden layer
weight

Node1 Node2 Node3 Constant

0.026 1.588 0.882 −0.536
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Table 10. Calculated model weights with BPN as the output node.

Input Value
Weight

Nodes

Node1 Node2 Node3

Ra 1.862 −0.361 −0.977
Rq 0.301 −0.207 −1.380
Rz −0.696 0.461 −0.019
Rsk −3.154 −0.255 −2.951
Rku −2.743 −0.645 3.470

Constant −3.537 −1.141 −3.463

Hidden layer
weight

Node1 Node2 Node3 Constant

−4.197 1.464 3.483 −0.761

Thirty percent of the F20 data was used as the test set. It was put into the relationship
model of F20 to verify the accuracy, which was 0.484. The results showed that 46.2% of the
test set data was suitable for the relationship model between macro-texture and F20. The
accuracy of the training set and the test set was close to 50%, indicating that the results of
the relationship model were average.

Thirty percent of the BPN data, used as the test set, was put into the relationship
model of BPN to verify the accuracy, and the accuracy of the test set was 0.597. The results
demonstrated that 59.1% of the test set data was suitable for the relationship model between
macro-texture and BPN. The accuracy of the training set and the test set was close to 60%,
indicating that the results of the relationship model were average.

Judging from the above three models, when the anti-skidding performance at low
speeds is regarded as the output node, the accuracy of the nonlinear model is still poor,
which is consistent with the conclusion drawn by the MLR model, indicating that the
pavement macro-texture mainly affects the skid resistance at high speeds.

4.4. Comparison and Analysis of the Relationship Model between Macro-Texture and Skid
Resistance Characterized by Different Indicators

Based on the above analysis, it can be concluded that regardless of what kind of
indicator is used to evaluate the skid resistance, which is taken as the dependent variable,
the MLR model exhibits lower accuracy and higher error than the BP neural network model.
The use of a nonlinear BP neural network could better establish the relationship between
the pavement surface and anti-skidding performance at high speeds, with an accuracy rate
of about 70%, which is significantly improved compared with the MLR model, indicating
that the BP neural network model is suitable for the establishment of the relationship
model.

Whether established with the MLR method or the BP neural network method, with F60
serving as the dependent variable, the accuracy of the relationship model between macro-
texture and skid resistance at high speeds is higher than the accuracy of its counterpart at
low speeds, indicating that the macro-texture mainly affects the pavement skid resistance at
high speeds. For the relationship model between the surface texture and the skid resistance
in the full speed range, comprehensive consideration should be given to both macro-texture
and micro-texture.

5. Conclusions

In this research, the skid resistance of six roads was tested by the DFT three times,
corresponding to three different service times. Moreover, core sampling was conducted to
obtain the surface texture by 3D laser scanning. In the meantime, laboratory accelerated
loading tests were conducted. BPN and surface texture were tested on specimens after
different passes of loading. Based on the data, the relationship models between macro-
texture and skid resistance at both high and low speeds were established using the MLR
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method and BP neural network method. In view of the test results and analysis, the
following conclusions could be drawn.

The correlation between the vertical macro-texture of pavement surface and the skid
resistance is higher than that of the horizontal macro-texture and geometric characteristics,
indicating that pavement vertical macro-texture holds considerable influence over the
pavement skid resistance.

The MLR model has low correlation and appears insufficient to fully characterize the
relationship between macro-texture and pavement skid resistance. When the BP neural
network is employed to establish the relationship model between macro-texture and skid
resistance at high speeds, the correlation reaches 70.6%. Thus, it is recommended to use the
BP neural network for the establishment of a relationship model between macro-texture
and skid resistance.

The accuracy of the relationship model between macro-texture and skid resistance at
low speeds characterized by F20 and BPN using the MLR and BP neural network is lower
than that of the relationship model with F60 as the dependent variable, indicating that the
correlation between the macro-texture and skid resistance at low speeds is low, and the
macro-texture of pavement surface mainly affects pavement skid resistance at high speeds.
The establishment of the relationship model between surface texture and the skid resistance
in the full speed range requires a comprehensive consideration of both macro-texture and
micro-texture.

6. Future Research

This study evaluates the macro-texture from aspects of the elevation, wavelength,
and geometry, and analyzed their correlation with skid resistance. Furthermore, the
relationship models between macro-texture indexes and skid resistance, characterized by
F60, F20, and BPN, were established using both the multiple linear regression (MLR) and
back propagation (BP) neural network methods. By comparing them, the appropriate
model was recommended finally. All the results were based on data obtained on six roads
within an 18-month observation and a laboratory accelerated loading test by MMLS3;
however, the data for use was limited to the dozen-level. A more reliable model between
pavement macro-texture and skid resistance can be completed with hundreds of data
or even more, and further investigation will be conducted on this. Moreover, it is also
important to take the micro-texture into consideration when establishing skid resistance
prediction models from the perspective of pavement surface.
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