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Abstract: The surface morphology of specimens significantly affects the measurement accuracy of
indentation hardness. Surface undulation leads to dispersion in measured hardness and makes
it very difficult to obtain an accurate hardness. In the past, mechanical polishing and increasing
the indentation depth were widely performed to decrease the influence of surface morphology.
However, both methods have limitations for the hardness measurement of small-scale structures
such as thin films or coatings. Thus, obtaining an accurate hardness measurement from one or two
simple indentation tests is of great application value. In this study, we introduced a new regression
method to eliminate the influence of surface undulation on hardness measurements. We simulated
the indentation tests of thin films with undulating surfaces by finite element simulation and then
analyzed the regularity of the measured hardness. The numerical simulations validated that the
regression method can effectively eliminate the influence of surface undulation and obtain the
accurate hardness of materials. This method breaks through the limitations of conventional methods,
simplifies the testing workload, and improves measurement accuracy.

Keywords: indentation hardness; thin film; surface morphology; regression method

1. Introduction

Mechanical properties are essential to evaluate the reliability and failure behavior
of structures in engineering. The instrumented indentation technique is one of the most
powerful tools to characterize the mechanical properties of solid materials, especially for
the measurements of hardness and elastic modulus [1,2]. More recently, the indentation
technique has been widely used to characterize the mechanical behaviors of small-scale
structures, such as thin films and coatings [3–7]. However, while the indentation technique
offers great convenience in characterizing the mechanical behaviors of solid materials at
small scales, many challenges remain unsolved, one of which is the surface morphology
of specimens.

The indentation test is based on a smooth plane, but surface undulation of specimens
makes an important impact on measurement accuracy [8,9]. Figure 1 shows an indentation
test on the undulating surface of a thin film. The undulating morphology causes serious
deviations in the measurements of hardness and elastic modulus, particularly at shallow
indentation depths. In recent years, surface morphology has been of interest and has been
reported in numerous studies [10–20]. For instance, Jang et al. [12] confirmed that surface
morphology makes a significant impact on both hardness and elastic modulus and leads to
serious measurement deviations through numerical simulations of copper film with straight
groove defects. Walter et al. [13] indicated that Young’s modulus will be underestimated
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with increasing surface roughness and showed that the mean Young’s modulus of rough
thin films is 5%–14% lower than that of smooth surfaces. Cech et al. [15] reported that a
surface morphology of a wave character results in the severe underestimation of mechanical
properties by more than 50%. As stated above, the surface morphology of thin films plays an
important role in the determination of mechanical properties from indentation experiments.
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Figure 1. Schematic representation of indentation test on the undulating surface.

The measurement accuracy is usually subjected to the influence of surface morphology
in indentation tests, and its inaccuracy is dependent on the deviation of the contact area
resulting from depth deviation. The indentation test is a typical contact problem [21]. A
complete indentation test consists of loading and unloading, shown in Figure 2a, which cor-
respond to the measurements in plasticity and elasticity, respectively [1,2]. The indentation
technique has micron or nano resolution, which accurately measures load and displacement
changes during loading and unloading, and then a load-displacement curve is obtained, as
in Figure 2b. The load-displacement curve presents many important measured parameters,
on the basis of which hardness and elastic modulus can be calculated. Hardness is usually
defined as the mean value of contact stress. Once contact area A is determined, the hardness
is calculated from:

H =
Pmax

A
(1)
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Note that this hardness definition is based on the contact area A under applied load P.
Moreover, the measurement of the elastic modulus follows its relationship to the contact
area A and the unloading stiffness S measured in Figure 2b. Since the indenter is not
completely rigid, the effective elastic modulus Er is introduced

S = β
2√
π

Er
√

A (2)

where β is a constant depending on the indenter shape. Young’s modulus E is determined
from the relation

1
Er

=
1− v2

E
+

1− v2
i

Ei
(3)

where E is the measured Young’s modulus, v is the Poisson’s ratio of the specimen, and Ei
and vi are the elastic modulus and Poisson’s ratio of the indenter, respectively. It can be
seen that the hardness and elastic modulus are determined by the contact area that depends
on the indentation depth. Hence, the influence of surface morphology on the measurement
accuracy of hardness or elastic modulus is expressed by the measurement deviation of the
indentation depth.

Hardness or elastic modulus is calculated by the contact area between the indenter
and specimen. The contact area is not measured directly but calculated from the contact
depth and indenter geometry. This implies that the specimen surface must be ideally
smooth and all points within the contact depth in continuous contact. Hence, to eliminate
the effect of surface morphology and obtain accurate mechanical parameters, it should
be ensured that the specimens are perfectly smooth or that the indentation depth greatly
exceeds the undulating height of the surface morphology [22]. In the past, mechanical
polishing and increasing the indentation depth were widely performed to decrease the
effect of surface morphology. Broadly speaking, mechanical polishing can effectively
decrease surface roughness and obtain a desirable surface finish [23,24], which ensures
that the contact is smooth and continuous. Likewise, increasing the indentation depth is
also a common way to decrease the effect of surface morphology, which manifests as a
decrease in hardness deviation with the increase in indentation depth. However, these two
methods may raise a variety of problems for indentation tests of thin films. To be specific,
mechanical polishing can lead to an emergence of a surface deformation layer and residual
stress, which will introduce new variable factors that affect measurement accuracy. As a
result, it is required that vibration treatment is utilized to eliminate residual stress after
polishing, which undoubtedly increases testing workloads. Additionally, the method of
increasing indentation depth is also inadequate for eliminating the influence of surface
morphology. Thin films are different from bulk structures; increasing indentation depth too
much can cause substrate effects. Generally, to avoid the substrate effect, the indentation
depth is required to be less than ten percent of the thickness of the thin film. As a result, this
method has an important limitation for eliminating the influence of surface morphology for
the indentation tests of thin films. To sum up, there is still no applicable method to solve
the challenges resulting from the surface morphology of thin films.

The surface morphology of samples significantly affects measurement accuracy and
leads to an important deviation in the measured data in indentation tests [16,25]. It is
essential to obtain accurate mechanical properties by one or two simple indentation tests
for undulating surfaces. Exploring a new effective method to eliminate measurement
deviation resulting from surface morphology is of great application value.

Herein, we show the influence of the surface morphology of thin films on indentation
hardness testing. We propose a numerical regression method to eliminate the hardness
deviation resulting from surface morphology. The feasibility of this method was validated
by finite element simulation. This method avoids the limitations of traditional methods,
reduces measurement workloads, and provides a theoretical reference for subsequent
experimental tests.
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2. Method and Modeling

A simplified schematic diagram of heterogeneous surface morphology is shown in
Figure 3. To simplify the computational model and maintain the original undulating
topography, we introduced a sinusoidal curve to establish a two-dimensional surface
model to characterize the undulating morphology of thin film. Previous studies have
reported that the surface morphology was described by sinusoidal curves [26,27]. Further,
Chen et al. [28] demonstrated that the surface morphology was characterized by a single-
level or multi-level sinusoidal function. The sinusoidal model is expressed by a combination
of multiple continuous crests and troughs. The horizontal size of an adjacent crest and
trough is Dx, and the vertical height is Ry. They were defined as the characteristic size to
describe the sinusoidal surface model.
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Figure 3. Simplified schematic of heterogeneous surface morphology.

Hardness was measured on smooth surfaces, which was independent of the surface
morphology of the samples. However, surface morphology can affect measurement accu-
racy in hardness. Note that the influence s expressed through contact positions between the
indenter and the sample. Here, we simply took the contact positions of the crest and trough
as examples to evaluate the influence of surface morphology on hardness measurements,
as shown in Figure 4. For classical materials, mechanical properties are independent of the
materials’ scale, and a geometric self-similar indenter can be infinitely enlarged. Both crest
position and trough position are approximately manifested as a plane with the enlargement
of contact positions between the indenter and the sample, as shown in Figure 4. In other
words, the indentation tests on the crest or trough position are equivalent to those on a
plane when geometric self-similar indentation is very shallow. Simply but importantly, the
measured hardness of undulating surfaces is equal to the true hardness of smooth planes
at the shallow indentation. However, shallow indentation tests are rather difficult and are
affected by multiple uncertain causes, which leads to an important dispersion of measured
data. It is difficult to obtain accurate results only by simple shallow indentation. Thus,
based on our considerations, we proposed a numerical method to obtain accurate hardness
by regressing measured data to that corresponding to shallow indentation.
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3. Simulation and Validation
3.1. Finite Element Simulation

In this study, we used a plane strain model to simulate the indentation test of thin
films using ABAQUS without a strain gradient. We defined the model as homogeneous and
isotropic and characterized by an ideal elastoplastic model. The stress–strain relationship
is given as follows:

σ =

{
Eε , ε ≤ ε0
σ0 , ε > ε0

(4)

where σ0 and ε0 are the stress and strain values corresponding to the yield strength. This
material model is often used for metal plasticity and is rate-independent. The Mises yield
function with the associated flow was used. The volume strain is

ευol = trace(ε) (5)

the deviatoric strain is
e = ε− 1

3
ευolI (6)

and the strain incremental decomposition is

dε = dεel + dεpl (7)

where εel is the elastic component and εpl is the plastic component of the strain ε. Using the
standard definition of corotational measures, this can be written in an integrated form as

ε = εel + εpl (8)

The elasticity is linear and isotropic. Bulk modulus K and shear modulus G are
computed readily from Young’s modulus E and Poisson’s ratio v, as

K =
E

3(1− 2v)
(9)

and
G =

E
2(1 + v)

(10)

The elasticity can be written in volumetric and deviatoric components as follows.
Volumetric:

p = −Kευol (11)

where
p = −1

3
trace(σ) (12)

is the equivalent pressure stress. Deviatoric:

S = 2Geel (13)

where S is the deviatoric stress,
S = σ+ pI (14)

The flow rule is
depl = depln (15)

where
n =

3
2

S
q

(16)

q =

√
3
2

S : S (17)
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and depl is the equivalent plastic strain rate. As the material is rate-independent, the yield
condition is

q = σ0 (18)

where σ0
(

epl , θ
)

is the yield stress and is defined as a function of the equivalent plastic

strain (epl) and temperature (θ). From what has been discussed above, the material behavior
was defined. The constitutive parameters are shown in Table 1. To simplify calculations,
we defined the indenter as a rigid body and assumed that the contact between the indenter
and sample was frictionless and continuous.

Table 1. Constitutive parameters of thin film.

Thin Film Young’s Modulus Poisson’s Ratio Yield Strength

Parameters 2.06 × 105 MPa 0.28 280 MPa

The contact positions between the indenter and sample include the plane, crest, and
trough. All the samples were 1000 µm × 500 µm in size, and the indenter angle was
tan θ = 2, as shown in Figure 5. Partial magnifications of the contact positions are shown in
Figure 6, where Dx is 100 µm and Ry is 10 µm. The three models use eight-node quadratic
plane strain elements (CPE8) that are suitable for large deformation and contact problems.
The minimum size of meshes was 1 µm.
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The half-wavelength Dx is 100 µm and the vertical height Ry is 10 µm.
In accordance with actual indentation tests, we set the boundary conditions for the

finite element model. A fixed constraint was implemented to the bottom edge of the
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sample. We used the displacement loading mode and set two analysis steps of loading and
unloading. A vertical displacement load was exerted to the indenter top. To observe the
influence of surface undulation on measured hardness, the indentation depth was defined
as twice the height Ry.

The stress contours of the simulations are shown in Figure 7. The stress distributions
are symmetric, mainly concentrated at the indenter tips, and circularly diffuse outward.
Moreover, Figure 7 shows that the stress contours are not affected by substrates.
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3.2. Effect of Surface Morphology on Hardness

The load–depth curves are obtained by measuring the relationship between the load
and the indentation depth during loading and unloading, as shown in Figure 8. From
Figure 8, the load of the crest position is minimum while the load of the trough position
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is maximum at the same depth. This is because there is less material around the indenter
tip at the crest position, which leads to a smaller opposite reaction to the indenter. On the
contrary, there is more material around the indenter tip at the trough position, which leads
to a larger opposite reaction to the indenter.
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Figure 8. Load–depth curves of different contact positions.

According to the Oliver–Pharr method [1], hardness is often defined as average
contact stress. The contact area A is not directly measured and is often calculated through
indentation depth h and indenter geometry. Here, the contact area is A = 4h for the plane
strain model. The hardness–depth curves of three positions are calculated in Figure 9.
From Figure 9, a large oscillation emerges on these curves in the initial stage, which results
from computational convergence. At the same depth, the measured hardness of the crest
position is the smallest and the measured hardness of the trough position is the largest. For
the smooth plane, the measured hardness is true hardness, and its hardness change is small
and negligible. The crest and trough have different effects on the hardness measurements.
For the crest, measured hardness is manifested as a decrease and then increases with
increasing indentation depth. For the trough, measured hardness is manifested as an
increase and then a decrease with increasing indentation depth. Further, we suggested that
the measured hardness of both the crest and trough will approach the true hardness of the
smooth plane when the indentation depth is large enough. This is because the influence of
surface morphology will gradually decrease with increasing indentation depth. Hence, in
the past, increasing indentation depth was often used to reduce the influence of surface
morphology, but this will lead to the substrate effect, which introduces a new cause.
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As mentioned, if both crest and trough positions are continuously magnified, they
will approach a smooth plane. Equivalently, the measured hardness of both the crest and
trough will approach the true hardness of a smooth plane with decreasing indentation
depth, from Figure 9. Based on this idea, we proposed a regression method for eliminating
the influence of surface morphology on measured hardness.

3.3. Regression and Validation

The regression method refers to the derivation of true hardness by fitting inaccurate
hardness within an infinitely shallow indentation according to measured hardness changes.
From Figure 9, the two hardness–depth curves of both crest and trough are non-linear,
so we suggested using polynomial fitting to regress these curves. Here, for the sake of
simplicity, we used a quadratic polynomial to fit the measured hardness and to derive the
hardness corresponding to an infinitely shallow depth. The hardness at infinitely shallow
depth is true hardness.

Firstly, we needed to determine the fitting segment of the data. From Figure 10, we
found that the relative calculation error of hardness was less than 2% when the indentation
depth is more than 2 µm. The measured hardness with a depth greater than 2 µm was
picked for fitting. Moreover, since the vertical height of the surface undulation was 10 µm,
measured hardness with a depth less than 10 µm was picked for fitting. Thus, the measured
hardness of depths from 2 µm to 10 µm were picked for fitting.
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Figure 10. Hardness–depth curve of a smooth plane. True hardness is 951.8 MPa. The relative
calculation error of hardness is less than 1.8% when indentation depth is more than 2 µm.

The regression results are shown in Figure 11. The measured hardness of indentation
depths from 2 µm to 10 µm was regressed by quadratic polynomial fitting. When indenta-
tion depth was 0 µm, the regressed hardness of the crest was 957.53 MPa and the regressed
hardness of the trough was 943.11 MPa. This suggested that the regressed hardness of the
crest and trough approaches the true hardness of the smooth plane with decreasing depth.

Then, we changed Dx and kept Ry constant to simulate indentation tests of different
sinusoidal surfaces. Here, Dx = 80 µm, Ry = 10 µm, and Dx = 120 µm, Ry = 10 µm. The
regression results are shown in Figure 12. From Figure 12a, the regressed hardness of the
crest was 952.82 MPa and the regressed hardness of the trough was 944.50 MPa when the
regressed depth was 0 µm. From Figure 12b, the regressed hardness of the crest was 956.22
MPa and the regressed hardness of the trough was 945.09 MPa when the regressed depth
was 0 µm. These fitting curves converge to a point within a rather small depth, and the
regression hardness approaches the true hardness of smooth plane.
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are Dx = 100 µm and Ry = 10 µm.
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Figure 12. Hardness regression of crest and trough. (a) Dx = 80 µm and Ry = 10 µm; (b) Dx = 120 µm
and Ry = 10 µm.

The relative errors of the regressed hardness are shown in Table 2, which are all less
than 1%. This demonstrates that our regression method can effectively eliminate hardness
deviation resulting from the surface morphology of the samples.

Table 2. Relative errors of regressed hardness.

Relative Errors (%) Crest Trough

Dx = 80 µm 0.11 0.77
Dx = 100 µm 0.60 0.91
Dx = 120 µm 0.46 0.70

The measured hardness of the crest and trough was non-linear and presented a
quadratic function with increasing depth. Therefore, we simply picked the initial mono-
tonic section of the curves to fit. In this paper, because the profile height of the surface
morphology was Dx = 10 µm, we suggested that the maximum fitting depth should not
exceed 10 µm. Here, for the measured hardness of the crest and trough (Dx = 100, Ry = 10),
we compared the regressed hardness for different fitting depths (from 2 µm to 8, 9, and
10 µm), as shown in Figure 13. One can find that all regressed hardness approaches the
true hardness of the smooth surface when the indentation depth is small. From Figure 13a,
when the depth is 0 µm, the regressed hardness of Fitting A is 951.02 MPa, the regressed
hardness of Fitting B is 954.13 MPa, and the regressed hardness of Fitting C is 957.53 MPa.
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From Figure 13b, when the depth is 0 µm, the regressed hardness of Fitting A is 951.41 MPa,
the regressed hardness of Fitting B is 945.93 MPa, and the regressed hardness of Fitting C is
943.11 MPa. The relative errors of regressed hardness were calculated as shown in Figure 14,
which are all less than 1%. The results indicate that fitting ranges have little influence on
the accuracy of regressed hardness. Thus, we suggest that fitting ranges should be selected
within the characteristic size of the surface morphology.
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Figure 13. Hardness regression of indentation depths from 2 µm to 8, 9, 10 µm; (a) Crest position.
(b) Trough position.
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Figure 14. Relative errors of hardness regression. All relative errors of regressed hardness are less
than 1%.

4. Summary

In this study, we discussed the effect of the surface morphology of thin films on
indentation hardness measurements. Given the insufficiency and limitation of traditional
solutions, a new regression method was proposed to eliminate the influence of surface
undulation. The method was validated by numerical simulation. The following conclusions
are drawn:

An undulating surface consisting of crests and troughs can induce an inaccuracy in
measured hardness. To be specific, the crests can lead to a decrease and then an increase in
measured hardness with increasing indentation depth. The troughs can lead to an increase
and then a decrease in measured hardness with increasing indentation depth.
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Our regression method successfully eliminates the hardness deviation resulting from
surface undulation and obtains accurate hardness with relative errors of less than 1%. This
method is expressed as a reverse derivation of measured hardness through the quadratic
polynomial fitting. The fitting scope of measured hardness should be determined by the
characteristic size of the surface morphology.

The surface morphology of samples is not controllable, which leads to a significant
measurement deviation in experiments. This study demonstrates that the reliable numerical
method is beneficial to eliminate hardness deviation resulting from surface morphology.
Furthermore, this regression method could be used to eliminate elastic modulus deviation.
Since the elastic modulus is proportional to stiffness, the stiffness of crest positions is
small, and the stiffness of trough positions is large. The elastic modulus measured on
the sinusoidal surface has a similar change law with hardness. Thus, this method is
theoretically applicable to eliminate measurement deviation in elastic modulus.

The regression method was developed to solve the problem of the surface morphology
of thin films, independent of the thickness of thin films, and is also applicable to bulk
materials. More importantly, this method breaks through the limitations of conventional
methods, simplifies the experimental workload, and improves measurement accuracy, so
that it is expected to be put into practice in the future.
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