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Abstract: Because of the floating magnetic nanomaterial, ferrofluids have magneto-viscous prop-
erties, enabling controllable temperature changes as well as nano-structured fluid characteristics.
The study’s purpose is to evolve and solve a theoretical model of bioconvection nanofluid flow with
a magnetic dipole effect in the presence of Curie temperature and using the Forchheimer-extended
Darcy law subjected to a vertical cone surface. The model also includes the nonlinear thermal
radiation, heat suction/injection, viscous dissipation, and chemical reaction effects. The developed
model problem is transformed into nonlinear ordinary differentials, which have been solved using
the homotopy analysis technique. In this problem, the behavior of function profiles are graphically
depicted and explained for a variety of key parameters. For a given set of parameters, tables rep-
resentthe expected numerical values and behaviors of physical quantities. The nanofluid velocity
decreases as the ferrohydrodynamic, local inertia, and porosity parameters increase and decrease
when the bioconvection Rayleigh number increases. Many key parameters improved the thermal
boundary layer and temperature. The concentration is low when the chemical reaction parameter
and Schmidt number rises. Furthermore, as the bioconvection constant, Peclet and Lewis numbers
rise, so does the density of motile microorganisms.

Keywords: ferromagnetic; nanofluid; bioconvection; porous medium; heat suction/injection;
magnetic dipole

1. Introduction

Fluids that are often magnetized by the existence of an exterior magnetic field are
known as ferrofluids, which is an abbreviation for fluid and ferromagnetic particles. These
fluids are made up of colloidal fluids formed of nanosized ferromagnetic or ferrimagnetic
particles that have been stopped inside the fluid transporter. Brownian motion causes
particle suspension and must not start moving under normal conditions. Besides that,
to avoid clogging, each ferromagnetic particle is encased in a solvent, and the nano-scaled
ferromagnetic particles have a weak magnetic attraction whenever the surfactant’s Van
der Waals force adequately stopped aggregation or clustering. Numerous applications of
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ferromagnetic fluids have emerged in a variety of fields. Heat transfer agents, angular
momentum changers, friction reducers, and so on are used in electronic equipment, analyt-
ical techniques, and medical science; some examples can be found in the references [1–3].
Because of these numerous applications, many researchers and scientists have been focused
on this subject. Andersson and Vanes [4] first investigated the influence caused by magnetic
dipoles on ferrofluids. Zeeshan et al. [5] investigated the convective heat transfer flow
of ferromagnetic fluids with partial slip effects using a stretching sheet. Hayat et al. [6]
reported on radiation and magnetic dipole effects of Williamson ferromagnetic fluid flow
across a stretched surface.

A nanofluid is a nanometer-sized particle suspended in a fluid. Choi [7] established
the basic extension of “nanofluid”, and scientific results verified that heat transfer can be
significantly enhanced through the mixture of tiny metallic nanomaterials with the working
fluids. A few studies in particular on nanofluids have been conducted. Ellahi [8] performed
an analytical study and concluded that the temperature variable and viscosity affects MHD
non-Newtonian nanofluid flow in a pipe. Ellahi et al. [9] presented peristaltic nanofluid
flow with entropy generation via a medium of porosity. Hayat et al. [10] investigated the
flow of third-grade nanofluids caused by a rotating stretchable disk containing a heat source
and a chemical reaction. Awais et al. [11] explored the effects of magnetohydrodynamics on
peristaltic ciliary-induced flow coatings to rheological hybrid nanofluids. Reddy et al. [12]
studied the boundary layer naturally convective MHD nanofluid flow along a vertical cone
under the influence of chemical reaction and heat suction/injection.

Due to disorganized frameworks and destabilization, low-density microorganisms re-
main on the surface of a fluid, causing bioconvection. Because nanoparticles move differently
than motile microorganisms, the cumulative importance of nanomaterials and bioconvec-
tion is such that they play a vital role in microfluidic devices. Bioconvection is a novel man-
ufacturing and fluid mechanic with a biological phenomenon involving gyrotactic microor-
ganisms. As a result, it becomes an interesting field of research to which many researchers
continue to pay attention. Alsaedi et al. [13] investigated stratified magnetohydrodynamic
nanofluid flow, causing bioconvection in gyrotactic microorganisms. Hayat et al. [14]
researched the magnetohydrodynamic (MHD) nonlinear radiative nanofluid flow with
gyrotactic microorganisms. Nadeem et al. [15] reported on the Rosseland assessment for
ferromagnetic fluid with involvement of magnetic dipoles and gyrotactic microorganisms.
Bhatti and Michaelides [16] researched thermo-bioconvection nanofluid flows across a Riga
plate as a function of Arrhenius activation energy. Waqas et al. [17] have also numerically
simulated the magnetized non-Newtonian bioconvection nanofluid flow along stretching
cylinders/plates.

Combining mass and heat fluxes in liquid saturated porous media is crucial among
a wide range of engineering procedures such as heating systems, oil and gas reservoirs,
and chemical catalytic reactor designs [18,19]. The dragging force, the Darcy–Forchheimer
technique, is a widely popular method for simulating fluid passed through a porous
medium with high velocity. In the literature, flow through a cone in Darcy–Forchheimer
porous media has already been analyzed by many researchers. Kumar et al. [20] investi-
gated the non-Darcy MHD viscoelastic fluid flow through a flat plate and a vertical cone.
Chamkha et al. [21] explored the non-Newtonian natural convective nanofluid flow over
a saturated cone in a non-Darcy porous medium with uniform volume fraction and heat
fluxes. Mallikarjuna et al. [22] researched the impacts of radiation, thermophoresis and tran-
spiration on convective non-Darcy flow via a rotating cone. Durairaj et al. [23] investigated
the chemically reacting Casson fluid of a non-Darcy porous medium flow through a flat
plate and a vertical cone saturated with heat generating/absorbing. Patrulescu et al. [24]
investigated a convection flow due to a vertical plate embedded in a bi-disperse non-Darcy
porous medium.

According to a recent literature review, despite important applications in extrusion sys-
tems, geothermics, organic compounds, geophysics, improved manufacturing techniques,
material processing, and improved energy generation, research on viscous ferrofluid flows
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via a linear vertical cone with consideration of Darcy–Forchheimer porous media has
been studied by very few researchers in the past. The aim of this research is to use the
Forchheimer-extended Darcy law to explore the effect of magnetic dipole and porosity
relations in the boundary layer of a ferromagnetic nanofluid flow via a vertical cone surface.
The study of the effect of the magnetic dipole on ferromagnetic nanofluid flow via the verti-
cal cone surface makes this work different from the existing literature. A nonlinear ordinary
differential equation replaces the governing equations and is solved using HAM techniques.
Initially, Liao [25–27] presented a homotopy analysis method with HAM. The method has
fast convergent solutions with many advantages over some existing methods. Various
researchers have been drawn to it as a result of its rapid convergence [28–31]. The results
collected for all associated parameters on all profiles are shown graphically. The validation
of the results by comparing them to previously published material in the literature is
an important feature of the presented model. In this regard, illustrious coherence has
been attained.

2. Materials and Methods

An incompressible electrically conducting viscous nanofluid flow via a vertical cone
with bioconvection is explored in two dimensions as an axisymmetric, steady, natural
convective ferrofluid flow. Furthermore, it is postulated that temperature and concentration
are non-uniform at the surface due to the influence of heat generation/absorption, chemical
reaction and viscous dissipation. The flow is electrically magnetized by a magnetic dipole,
and a Darcy–Forchheimer porous medium model is also used. Thermal radiation exists as a
unidirectional flux in the transverse to the cone surface (s-direction). In comparison to the s-
direction, the radiation heat flux in the x-direction is considered neglected. The x-axis of the
chosen coordinate system corresponds to the direction of flow over the cone surface. Tw is
taken to be the temperature at the cone’s surface (s = 0), and the concentration is governed
by the condition DB

∂C
∂s + DT

T∞
∂T
∂s = 0 at the cone’s surface, where T∞ is the temperature and

C∞ is the concentration and N∞ density of microorganisms in the ambient nanofluid.
The boundary layer equation [12,14,21] based on the assumptions stated above are the

equations of continuity and momentum as well as energy, concentration, and microorganisms:

∂(ru)
∂x

+
∂{(rw)}

∂s
= 0, (1)

w
∂u
∂s

+ u
∂u
∂x

=
µ f

ρ f

∂2u
∂s2 −

µ f

k∗o
u−

ρ f Cb√
k∗o

u2 + λo M
∂H
∂x

+ g
[

βT(T − T∞) + βC(C− C∞) + βN(N − N∞)

]
cos(α), (2)
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(
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(ρcp) f

∂qr

∂s
, (3)

w
∂C
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∂C
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= DB
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∂s2 +

DT
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∂s2 − Kr(C− C∞), (4)
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+
bWc

Cw − C∞

(
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∂s

∂N
∂s

+ N
∂2C
∂s2

)
= Dn

∂2N
∂s2 , (5)
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with initial boundary conditions

u = 0, w = Ww, T = Tw, −DB
∂C
∂s

=
DT
T∞

∂T
∂s

, N = Nw at s = 0, (6)

u→ 0, w→ 0, T→ T∞, C→ C∞, N→ N∞, as s→ ∞, (7)

where (u,w) are the velocity components in the x-direction (radial) and s-direction (trans-
verse), respectively; T, C, N are the temperature, concentration, and gyrotactic microor-
ganism, respectively; the diffusion coefficients named Brownian, thermophoresis, and
microorganism correspond to DB, DT , and Dn, respectively; while τ is the ratio of heat
capacitance, fluid density is ρ f , thermal conductivity of fluid is k f , electrical conductivity
of fluid is σ , the dynamic viscosity is µ f , thermal diffusivity of base fluid is α f , mag-
netic permeability is λo, heat capacitance of fluid is (ρcp) f , first order chemical reaction
parameter is Kr, speed of gyrotactic cell is Wc, and b is chemotaxis.

Magnetic Dipole

The magnetic field features impacted the ferrofluid flow with magnetic dipole effects
detected mostly by magnetic scalar potential Φ1, as given in Equation (8):

Φ1 =
γ

2π

x
x2 + (s + c)2 , (8)

Considering Hx and Hs to be the components of magnetic field, with γ as the magnetic
field strength at the source, see Equations (9) and (10):

Hx = −∂Φ1

∂x
=

γ

2π

x2 − (s + d)2

[x2 + (s + d)2]2
(9)

Hs = −
∂Φ1

∂s
=

γ

2π

2x(s + d)
[x2 + (s + d)2]2

. (10)

As the strength of a magnetic body is normally approximately equal to the Hx and Hs
gradients, it is therefore given as in (11):

H =
√

H2
x + H2

s . (11)

Equation (12) displays the approximate linearized relation of the magnetization M as
function of temperature T,

M = −K1(T∞ − T), (12)

with K1 identified as the ferromagnetic coefficient. Figure 1 depicts the physical configura-
tion of the heated ferrofluid.

Considering the following transformations, given the stream function as Φ(x, s),
such that

u =
1
r

∂Φ
∂s

w = −1
r

∂Φ
∂x

(13)

with Φ(x, s) = ν f rRax f (ζ) and Rax is the Rayleigh number given by Rax =
ρ f βT g(Tw−T∞)x3cos(α)

ν2
f

,

therefore, the following are given:

u =
ν f Ra

1
2
x

x
f ′(ζ), w = −

ν f Ra
1
4
x

x

(
ζ f ′(ζ)− f (ζ)

)
, ζ =

s
x

Ra
1
4
x ,

(Tw − T∞)θ(ζ) = (T − T∞), (Cw − C∞)φ(ζ) = (C− C∞), (Nw − N∞)χ(ζ) = (N − N∞). (14)
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Figure 1. A picture scheme of the problem.

Taking r to be approximately the cone local radius, for the thermal boundary layer
becoming thin, it will be along the x coordinate with r = xsin(α).

By using the above transformations, Equation (1) will be satisfactory, and Equations (2)–(5)
will be

f ′′′ − P1 f ′ + f f ′′ − Fr f ′2 +
2β

(ζ + α1)4 (1 + θ) + Ncφ + Rabχ = 0, (15)

(
1 + Rd

)
θ′′ + Pr f θ′ + Nbφ′θ′ + Nt(θ′)2 +

2Prβλ(θ − ε)( f − ζ f ′)
(ζ + dα1)3

+ Prβλ(θ − ε)

[
2 f ′

(ζ + α1)4 +
4(ζ f ′ − f )
(ζ + α1)5

]
+ PrEc( f ′′)2 = 0, (16)

φ′′ +
Nt
Nb

θ′′ + Scfφ′ − δScφ = 0, (17)

χ′′ − Pe
[
φ′χ′ + φ′′χ + δnφ′′

]
+ Lb f χ′ = 0. (18)

Moreover, with the new boundary conditions:

f ′ = 1, f = S, θ = 1, Nbφ′ + Ntθ = 0, χ = 1atζ = 0,

f ′ → 0, θ → 0, φ→ 0, χ→ 0, as ζ → ∞, (19)
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where α1 is dimensionless distance, Nc is the ratio due to buoyancy force, Rab is the
bioconvection Rayleigh number, β is the ferrohydrodynamic interaction parameter, ε the
Curie temperature, λ is the heat dissipation parameter, S is the heat generation/absorption
parameter (S > 0 for suction and S < 0 for injection), Nb and Nt are the Brownian
motion and thermophoresis parameters, the Prandtl number is Pr, the Eckert number is
Ec, the radiation parameter is Rd, the local inertia parameter is Fr, the chemical reaction
parameter is δ, the porosity parameter is P1, the Schmidt number is Sc, the Lewis number of
bioconvection is Lb, the Peclet number Pe, δn is the bioconvection constant, and quantities
are defined by

S =
Wwx

ν f Ra
1
2

, Nc =
gβC(Cw − C∞)x3cos(α1)

ν2
f Rax

, Rab =
gβN(Nw − N∞)x3cos(α)

ν2
f Rax

, P1 =
µ f

k∗o
,

Li =
Cb√

k∗o
, β =

γλoKρ f (Tw − T∞)

2πµ2
f

, Pr =
µ f cp

k f
, Ec =

W2
w

cp(Tw − T∞)
, λ =

µ2
f

ρ f (Tw − T∞)Ra
3
4
x

, (20)

δ =
K1x2

ν f Ra
1
2
x

, Rd =
16σ∗T3

∞
3k∗k f

, Sc =
ν f

DB
, Pe =

bWc

Dn
, Lb =

ν f

Dn
, ε =

T∞

T∞ − Tw
,

d =
aRax

x
, Nt =

τDT(Tw − T∞)

T∞α f
, Nb =

τDB(Cw − C∞)

α f
, δn =

N∞

Nw − N∞
.

The local Nusselt, Sherwood, and local Density expressions, as well as the coefficient
of skin friction, will be computed by

C f =
2τw

ρ f W2
w

, Nux =
qhx

k f (Tw − T∞)
, Shx =

qmx
DB(Cw − C∞)

, Snx =
qnx

Dn(Nw − N∞)
, (21)

τw = µ f us|s=0, qh = [−k f Ts + qr]|s=0, qm = −DBCs|s=0, qn = −DnNs|s=0, (22)

Ra
1
4
x C f = 2 f ′′(0), Nu = −Ra

1
4
x (1 + Rd)θ′(0), Sh = −Ra

1
4
x φ′(0), Sn = −Ra

1
4
x χ′(0). (23)

3. HAM Solutions Methodology

The homotopy analysis method (HAM) was applied to solve Equations (15)–(18).
Shijun Liao developed this technique in 1992. It is often valid, regardless of whether there
are a limited number of parameters or otherwise. It can be used to solve both weakly
and strongly nonlinear problems. It offers a wide range of options for selecting the base
functions of solutions, as well as discretion in choosing the linear operators. However, it
provides a convenient method for ensuring the convergence of series solutions. Therefore,
this method differs from other techniques, with examples like Adomain decomposition and
the delta expansion methods. In the introduction section, some studies on the approach
were presented.

Taking the initial guesses of the f (ζ),θ(ζ), φ(ζ), and χ(ζ) with the auxiliary linear
operators respectively as

f0(ζ) = 1− e−ζ , θ0(ζ) =

(
Bi

1 + Bi

)
e−ζ , φ0(ζ) = −

(
Nt
Nb

)
e−ζ , χ0(ζ) = e−ζ . (24)

and

L f = f ′′′ − f ′, Lθ = θ′′ − θ, Lφ = φ′′ − φ, Lχ = χ′′ − χ, (25)
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the properties are satisfied as given below

L f (Λ1 + Λ2eζ + Λ3e−ζ) = 0, Lθ(Λ4eζ + Λ5e−ζ) = 0,

Lφ(Λ6eζ + Λ7e−ζ) = 0, Lχ(Λ8eζ + Λ9e−ζ) = 0 (26)

with arbitrary constants Λi, i ∈ [1, 9]. The Zeroth order form of the problem is given by

(1− p)L f [ f (ζ; p)− f0(ζ)] = ph f N f [ f (ζ, p), θ(ζ, p), φ(ζ, p), χ(ζ, p)], (27)

(1− p)Lθ [θ(ζ; p)− θ0(ζ)] = phθNθ [θ(ζ, p), f (ζ, p), φ(ζ, p)], (28)

(1− p)Lφ[φ(ζ, p)− φ0(ζ)] = phφNφ[φ(ζ, p), θ(ζ, p), f (ζ, p)], (29)

(1− p)Lχ[χ(ζ, p)− χ0(ζ)] = phχNχ[χ(ζ, pp), φ(ζ, p), f (ζ, p)], (30)

with p ∈ [0, 1] as the embedded parameter, and nonlinear operators N f , Nθ , Nφ, and Nχ

obtained by using Equations (15)–(18).
The problems’ equivalent m order of the deformation are

L f [ fm(ζ, p)− ηm fm−1(ζ)] = h fR f ,m(ζ), (31)

Lθ [θm(ζ, p)− ηmθm−1(ζ)] = hθRθ,m(ζ), (32)

Lφ[φm(ζ, p)− ηmφm−1(ζ)] = hφRφ,m(ζ), (33)

Lχ[χm(ζ, p)− ηmχm−1(ζ)] = hχRχ,m(ζ), (34)

fm = S, f ′m = 0, θ′m − Biθm = 0, Nbφ′m + Ntθ′m = 0, χm = 0, at ζ = 0

f ′m = 0, θm = 0, φm = 0, χm = 0asζ → ∞. (35)

ηm =

{
0, if m ≤ 1
1, if m > 1,

(36)

whereRm
f (ζ),R

m
θ (ζ),Rm

φ (ζ),Rm
χ (ζ) can be obtained using Equations (15)–(18).

The general solutions are given by

fm(ζ) = f s
m(ζ) + Λ1 + Λ2eζ + Λ3e−ζ , (37)

θm(ζ) = θs
m(ζ) + Λ4eζ + Λ5e−ζ , (38)

φm(ζ) = φs
m(ζ) + Λ6eζ + Λ7e−ζ , (39)

χm(ζ) = χs
m(ζ) + Λ8eζ + Λ9e−ζ , (40)

where ( f s
m(ζ), θs

m(ζ), φs
m(ζ), χs

m(ζ)) are special solutions.

4. Analysis of Convergence of the Solutions

The convergence Table 1 is organized for each profile up towards the 35th order of
approximation. Table 2 compares the current work to the published work and reveals that
there is very close agreement.
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Table 1. Convergence of HAM solutions with order approximations.

Order of Approximations − f ′′(0) −θ′(0) −φ′(0) −χ′(0)

1 1.87633 0.6333 1.12222 0.69596
5 1.93521 0.76748 1.12327 0.69583
10 1.93385 0.76804 1.12349 0.69575
15 1.93135 0.7658 1.12354 0.69575
25 1.93026 0.7658 1.12354 0.69575
30 1.93026 0.7658 1.12354 0.69575
35 1.93026 0.7658 1.12354 0.69575

Table 2. Comparison of −θ′(0) and −φ′(0) by alternating buoyancy ratio parameter Nc with pub-
lished work.

Nc
−θ′(0) Present −φ′(0) PresentReddy et al. [12] Reddy et al. [12]

0.1 0.32598 0.32601 1.48394 1.48381
0.2 0.32405 0.32411 1.46789 1.46801
0.3 0.32229 0.32231 1.45214 1.45215
0.4 0.32125 0.32129 1.43598 1.43594
0.5 0.31868 0.31867 1.41938 1.41940

5. Results and Discussion

The role of β on velocity profile is detected in Figure 2. The ferromagnetic parameter
emphasizes the effect of the magnetic dipole’s external magnetic field on fluid dynamics.
As the magnetic field acts as a deforming force, the axial velocity decreases. Figure 3 depicts
the important properties of the Fr on the dimensionless velocity. Obviously, increasing
Fr causes the velocity of fluid layers to decrease. From a physical standpoint, the local
inertia parameter generates resistance forces against the motion of fluid particles. Moreover,
as the local inertia parameter increases, so does the velocity. Figure 4 depicts the impact
of increasing P1 on the velocity. The porosity parameter is defined as the kinematic
viscosity to permeability strength of porous space ratio. As the porosity parameter increases,
the velocity curves definitely decrease. Figure 5 depicts the effect of the Rab on the velocity
profile. It was discovered that when the values of Rab rise, the velocity accelerates. As a
result of the buoyancy forces caused by bioconvection, the fluid velocity increases by
increasing the bioconvection Raleigh number. Figure 6 shows that the temperature on
the boundary layers enhances as a result of increasing the values of β. This is due to an
interaction of the fluid’s movement and the interference of the ferromagnetic particles.
The interplay reduces the velocity while frictional heating increases between the fluid
layers, resulting in an increase in the thermal boundary layer thickness. The effect of λ
on the temperature profile is depicted in Figure 7. In this case, temperature is displayed
as an increasing function of λ. Usually, as the values of λ increase, so does the thermal
conductivity, and thus the temperature. Figure 8 displays the role of Fr on temperature
profile. A rise in Fr results in a rise in temperature and the thermal boundary layer thickness.
Figure 9 reveals that as Bi increases, so does the thickness of the thermal boundary layer,
and the temperature also enhances. A higher Biot number contributes to more convection,
which leads to the enhancement of the temperature and thermal boundary layer thickness.
Figure 10 shows the effect of S < 0 on the dimensionless temperature. This figure reveals
that when increasing S < 0, the temperature and the thickness of the thermal boundary
layers both decrease. As an outcome, suction is removed from the warm fluid in the
boundary layer region to a large extent. Moreover, the opposite trend is observed in the
temperature profile, as shown in Figure 11 with S > 0. This is attributable to the fact
that the temperature of the fluid is raised by injecting warm fluid into the boundary layer
region. Figure 12 depicts the effects of Rd on the temperature profile for various Rd values.
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An increase in the Rd causes a rise in the temperature, and the effect of thermal radiation
improves the medium’s thermal diffusive. Besides that, for higher Nt values, temperatures
rise in the boundary layer region (Figure 13). The thermophoretic force developed in the
boundary layer regime is an outcome of the temperature gradient; such forces entail the
diffusion of nanoparticles out of the higher temperature area to a lower temperature area,
leading to a thermal boundary layer thickness enhancement. Figure 14 depicts the Nb
characteristics on a temperature profile. Usually, a rise in Nb improves the motion of fluid
particles randomly, resulting in more heat generation. As a result, the temperature rises.
Figure 15 depicts the temperature distribution by raising Ec values. The Ec defines the
connection among the flow of kinetic energy and heat enthalpy variation. As a consequence,
raising Ec also raises the kinetic energy. Moreover, temperature is well understood to be
defined as average kinetic energy. As a result, the fluid’s temperature rises. This graph
shows that as Ec increases, so does the temperature. Figure 16 shows the role of Pr on
the temperature profile. It has been discovered that raising the Pr lowers the temperature
of the fluid flow. Large Pr values clearly result in the thinning of thermal boundary
layers. As δ increases, so does the concentration profile. The concentration becomes less
effective as the delta values increase, as shown in Figure 17. The physical effect of Nb
on a concentration profile is depicted in Figure 18. Brownian motion does play a role
in determining the efficiency of heat transfer during nanofluid flow. The nanoparticles
collide with one another and transfer energy due to the random motion of a nanofluid. As
a result, as Nb levels rise, the concentration profile falls. The effect of Nt on nanoparticle
concentration is depicted in Figure 19. The concentration field rises in this case due to
an increase in Nt. Larger Nt causes an increase in thermophoresis forces, which further
frequently carries nanomaterials from higher to lower temperature regions. As a result,
the concentration decreases. The effect of Sc on concentration is depicted in Figure 20.
Sc denotes the momentum-to-mass diffusivity ratio, which measures the relative efficacy
of momentum and mass transport through diffusion within concentration boundary layers.
Figures 21 and 22 show the effects of Pe and Lb on the microorganism profile. According to
these figures, the microorganism field decreases with increase of both numbers. According
to Table 3, as Pr estimates increase, so does the Nusselt number. Table 4 shows that as δ and
Sc increase, so does the Sherwood number. The results of motile microorganism density
are increased by increasing Lb and Rab, as shown in Table 5.

Figure 2. Influence of β on f ′(ζ).
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Figure 3. Influence of Fr on f ′(ζ).

Figure 4. Influence of P1 on f ′(ζ).

Figure 5. Influence of Rab on f ′(ζ).
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Figure 6. Influence of β on θ(ζ).

Figure 7. Influence of λ on θ(ζ).

Figure 8. Influence of Fr on θ(ζ).
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Figure 9. Influence of Bi on θ(ζ).

Figure 10. Influence of S < 0 on θ(ζ).

Figure 11. Influence of S > 0 on θ(ζ).
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Figure 12. Influence of Rd on θ(ζ).

Figure 13. Influence of Nt on θ(ζ).

Figure 14. Influence of Nb on θ(ζ).
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Figure 15. Influence of Ec on θ(ζ).

Figure 16. Influence of Pr on θ(ζ).

Figure 17. Influence of δ on φ(ζ).
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Figure 18. Influence of Nb on φ(ζ).

Figure 19. Influence of Nt on φ(ζ).

Figure 20. Influence of Sc on φ(ζ).
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Figure 21. Influence of Pe on χ(ζ).

Figure 22. Influence of Lb on χ(ζ).
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Table 3. Influence of β, ε, λ, S, Rd, Fr, Ec, and Pr on θ′(0).

β ε λ S Rd Fr Ec Pr θ′(0)

0.2 0.3 0.2 0.4 0.3 0.2 0.1 0.7 0.44701
0.3 0.43167
0.5 0.40752

0.4 0.39766
0.5 0.38914
0.6 0.37245

0.5 0.45806
0.8 0.45739
1.1 0.45623

0.8 1.03123
1.2 0.87433
1.6 0.64876

0.5 0.45342
0.7 0.44534
0.9 0.43998

0.6 0.64554
1.0 0.63854
1.4 0.61291

0.3 0.38453
0.5 0.38123
0.7 0.37941

6.7 0.75651
7.7 0.80612
8.7 0.86432

Table 4. Influence of δ, Sc, Nb on φ′(0).

δ Sc Nb φ′(0)

0.2 0.3 0.5 1.28733
0.4 1.26931
0.6 1.24887

0.5 1.32742
0.7 1.31022
0.9 1.30271

1.0 1.33075
1.5 1.41186
2.0 1.47572

Table 5. Influence of Nδ, Pe, Lb, Rab on χ′(0).

δn Pe Lb Rab χ′(0)

0.1 0.3 0.3 0.2 0.57238
0.2 0.56103
0.3 0.55271

0.5 0.42714
1 0.45102

1.5 0.49327
0.5 0.53185
1 0.62386

1.5 0.66671
0.3 0.75408
0.4 0.76965
0.5 0.77121
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6. Conclusions

A vertical cone has been used to study the flow of ferromagnetic nanofluid with bio-
convection and magnetic dipole elements. There is also evidence of the Darcy–Forchheimer
flow model. Viscosity dissipation, Brownian motion, chemical reaction, and thermophore-
sis are involved. Using appropriate transformations, nonlinear PDEs were reduced to a set
of nonlinear ODEs. The important outcomes are listed below:

• The velocity decreases as the ferromagnetic interaction parameter, porosity parameter,
and local inertia parameter increase.

• The temperature rises as the ferromagnetic interaction, heat dissipation, injection,
thermal radiation parameters and Eckert number are raised, and reduces when the
Prandtl number and sunction parameter are raised.

• When the Brownian motion, chemical reaction parameters and Schmidt number
increase, the concentration decreases, while it increases when the thermophoresis
parameter increases.

• The motile microorganism density decreases through raising the Peclet number and
bioconvection Lewis number.
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