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Abstract: The plasma nitriding of 3Cr13 steel occurred at 450 ◦C for 4, 8 and 12 h in NH3 with and
without rare earth (RE). The nitrided layers were characterized using an OM, SEM, TEM, XRD, XPS,
microhardness tester and electrochemical workstation. The modified layer, with and without La, are
composed of a compound layer and diffusion layer from surface to core. After the addition of La
during nitriding, the maximum increase of layer thickness, mass gain and average microhardness
was 15.6%, 35.8% and 212.50HV0.05, respectively. With the increase of the proportion of ε-Fe2-3N, the
passivation zone of the corrosion resistance curve increases from 2.436 to 3.969 V, the corrosion current
density decreases, the corrosion potential and pitting potential both increase, and, consequently, the
corrosion resistance is significantly improved. Most of the surface microstructures of the nitrided
layer was refined by the addition of La. The presence of La reduces the N content in the modified
layer, which accelerates the diffusion of N atoms and, thus, accelerates the nitriding process.

Keywords: 3Cr13 steel; plasma nitriding; microstructure; microhardness; corrosion resistance

1. Introduction

Because of its low price, it is suitable for a stainless steel working environment with
general requirements. Because of its impact resistance, processing formability and high
plasticity, it is widely used to manufacture ice blades, scalpels, piston rods, turbine blades
and valve parts [1,2]. It can be used for surgical cutting tools, tool materials and structural
materials in the fields of medical instruments, the plastics industry and mechanical con-
struction [3]. Compared with other stainless steels, 3Cr13 steel has enhanced toughness
and reduced hardness, with relatively worse rust resistance. In order to improve its service
life and expand its application, researchers have investigated techniques such as salt bath
nitriding [4], cathode cage nitriding [5], radio frequency magnetron sputtering nitriding [6],
active screen plasma nitriding [7] and pulse DC plasma nitriding [8] technology processing.

From an economic point of view, it not only reduces the cost, but also improves the
surface properties of various steels in an environmentally friendly way. As an efficient and
energy-saving thermochemical surface processing and modification technology, it has the
advantages of a short processing time, low temperature, reduced brittleness of the nitriding
layer, a reduction of work piece deformation and surface flexibility and toughness [9].

China possesses the world’s largest reserve of RE elements, which play an important
role in the metallurgical industry, military, petrochemical, glass, ceramics, new materials
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and agriculture. RE elements are mainly used in tanks, aircraft, lighting sources, polishes
and exhaust purification catalysts [10].

In recent years, scientists have explored the impacts of adding RE elements to steel in
terms of corrosion resistance [11], strengthening effect [12], contact fatigue limit, bending
fatigue limit [13] and other mechanical properties of steel [14,15]. The effects of RE types
(cast lanthanum La, pure La block, La2O3, Er2O3, Yb2O3, CeO2) on the strength, corrosion
resistance and fatigue life of steel were also studied. Zhang [16] et al. proved that La
reduced the N content in the nitrided layer and promoted the diffusion of interstitial
nitrogen from the surface to the interior of the workpiece. La atoms can also attract each
other with N atoms in order to achieve the ability of denitrification.

However, there are few studies on plasma nitriding of 3Cr13 stainless steel with
the addition of RE. Therefore, it is necessary to conduct a detailed analysis of the com
properties of 3Cr13 stainless steel with and without the addition of RE. In this paper, 3Cr13
steel has been plasma nitrided at 450 ◦C for 4, 8 and 12 h in NH3, with and without RE. The
effects of RE (La) on the microstructure, phase composition, microhardness and corrosion
resistance of the modified layer were studied.

2. Materials and Methods

The material used in the present work is 3Cr13 steel with the following chemical
composition (wt.%): 0.33C, 12.6Cr, 0.1Ni, 0.48Si, 0.52P, 0.01S and balance Fe. Before
nitriding, the steel was solution treated in the box electric furnace SXL-1400C (Shanghai
Jvjing Precision Instrument Manufacturing Co., Ltd., Shanghai, China) at 960 ◦C for 1 h
and then quenched in oil. The surface of the sample was polished with water sandpaper
(#120 and #240), and then cleaned with alcohol by ultrasonication.

Before using the LDMC-30AFZ plasma nitriding furnace (Wuhan Shoufa Surface
Engineering Co., Ltd., Wuhan, China) for the plasma nitriding treatment, the chamber
was evacuated to below 10 Pa by a rotary pump. The RE used in the experiment came
from the RE block with a volume of (0.5 × 0.5 × 1) cm3, namely RE0.25. The samples
were uniformly tied to the sample frame with iron wire, and the RE block was tied to the
center of the sample frame. The nitriding conditions are the same with or without RE.
The nitriding experiment was conducted in ammonia (NH3) with a flux of 100 mL/min
at a temperature of 450 ◦C for 4, 8 and 12 h, and the voltage and working current during
nitriding were 260 Pa and 12 A, respectively. After plasma nitriding, the specimens were
cooled down slowly inside the vacuum furnace.

The weight gain during the experimental process was obtained using CPA-225D
electronic balance (Sai Dolis scientific instruments Beijing Co., Ltd, Beijing, China) with
an accuracy of 0.00001 g. A metallographic samples inlaying machine (XQ-1, Shanghai
Metallurgical Equipment Company Ltd., Shanghai, China) was used for cross-section
sample preparation. The models of grinding water sandpaper were 120#, 240#, 400#, 600#,
800#, 1000#, 1200#, 1500# and 2000#, respectively. The polished samples were etched
using a marble solution (2 g CuSO4 + 10 mL HCl + 50 mL H2O) for 1 s. The cross-section
micrographs were observed using an optical microscope (OM, 9XB-PC, Shanghai Op-
tical Instrument No.1 Factory, Shanghai, China). Microhardness was measured with a
microhardness tester (HV-1000IS, Shanghai Jvjing Precision Instrument Manufacturing
Co., Ltd., Shanghai, China) under an indentation load of 50 g for 15 s. The anodic polar-
ization tests were employed to estimate the corrosion resistance of the specimens in a 3.5
wt.% NaCl solution, the reference electrode was Ag/AgCl and a platinum column was
used as the auxiliary electrode. The anodic polarization curves of the specimens were
recorded at a sweeping speed of 0.01 V/s. X-ray diffraction (XRD) with Cu-Kα radiation
(λ = 0.15418 nm) was carried out in the range of angles 20◦–100◦ at 45 kV and 200 mA
with a 5◦ interval step mode using a D8 Advance diffractometer (Bruker, Billerica, MA,
USA). The cross-section morphologies of the modified surfaces and the changes in element
content with depth were analyzed using a S-3400 scanning electron microscope (SEM,
Hitachi, Tokyo, Japan), coupled with energy dispersive X-ray analyzer (EDS) facilities. XPS
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analysis was performed in an ultra-high vacuum using a Escalab250XI (Thermo Fisher
Scientific, Waltham, MA, USA). The excitation source was monochromatic Al Kα radiation,
operated at 15 kV and the emission current was 10 mA. The binding energy of C1s neutral
carbon peak at 284.6 eV was taken as the reference value and the measured binding energy
was modified. The argon ion spray gun (kinetic energy of 3 keV) was used to complete the
30 min incident argon ion sputtering process on the samples in the preparation chamber to
ensure that the surface of the samples, at a depth of 100 nm, was clean. The microstructure
and grain size of the amorphous samples were observed using a transmission electron
microscopy (TEM, JEOL Ltd., Tokyo, Japan) at the operating voltage of 300 kV.

3. Results and Discussion
3.1. Cross-Sectional Microstructure and Depth Analysis

Figure 1a,b are cross-sectional micrographs of 3Cr13 steel after plasma nitriding for 4,
8 and 12 h without and with RE. The nitrided layer is composed of a compound layer and
diffusion layer from surface to core. There are distinct boundaries between the compound
layer, the diffusion layer and the substrate. The total thickness of the nitrided layer can
be obtained according to the microhardness diagrams, the thickness of the compound
layer can be obtained according to the ruler in Figure 1, and the difference value is the
thickness of the diffusion layer. With the addition of RE, the thickness of the nitrided layer
increases with time, and the total thickness of the nitrided layer is 130.4, 161.5 and 185.6 µm,
respectively, which is 8.6%, 15.6% and 14.7% higher than that without RE, respectively.

Figure 1. Cross-section micrograph of modified layer of 3Cr13 steel after plasma nitriding (a) h4,
(b) h8, (c) h12 without RE and (d) h4, (e) h8, (f) h12 with RE.
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Figure 2a,b are histograms of the thickness increase of the modified layer section of
3Cr13 steel after plasma nitriding for 4, 8 and 12 h without and with RE. The change in the
thickness of the nitrided layer can be seen more intuitively.

Figure 2. Thickness of modified layer section of 3Cr13 steel after plasma nitriding at different times (a) Without RE (b) With RE.

Figure 3a,b are histograms of the weight gain of 3Cr13 steel after plasma nitriding for
4, 8 and 12 h without and with RE. The weight gain of the sample becomes more significant
with the extension of time. With the addition of RE, the weight gain of the nitrided layer is
very obvious, reaching 2.31, 3.56 and 4.23 mg/cm2, respectively, which is 102.6%, 135.8%
and 121.5% higher than that without the addition of RE, respectively.

Figure 3. Mass increase per unit area of 3Cr13 steel after plasma nitriding at different times (a) Without RE (b) With RE.

3.2. Microhardness Profile

Figure 4a,b are the microhardness diagrams of 3Cr13 steel after plasma nitriding for
4, 8 and 12 h without and with RE. Microhardness varies with the nitriding time and
depth of the nitriding layer. From the surface layer to the dense compound layer, the
microhardness first increases (gradual horizontal hardening), reaches the peak and then
gradually decreases. A platform appears (flat horizontal hardening) when it reaches the
diffusion layer. There is a sudden drop from the diffusion layer to the substrate boundary
and then a gradual transition to the substrate. After 4, 8 and 12 h of nitriding, the average
hardness of the modified layer is 813.53HV0.05. After 4, 8 and 12 h of RE nitriding, the
average hardness of the modified layer is 1026.03HV0.05, which demonstrates an increase
of 212.50HV0.05 compared to the sample without RE. The increase in surface hardness was
directly related to the formation of fine and uniform ε-Fe2-3N and γ’-Fe4N nitride phases in
the cemented layer, as shown in Figure 5. The comparison between the microhardness and
the depth profile of nitrogen concentration indicated that this was related to the diffusion
of N. The N content on the surface (0 µm) reaches the maximum and the surface hardness
reaches the maximum. From the compound layer to the diffusion layer and until the
substrate, the surface hardness decreased significantly with the decrease of N content.
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Figure 4. The microhardness diagrams of 3Cr13 steel after plasma nitriding at different times (a) Without RE (b) With RE.

Figure 5. XRD pattern of the modified layer of 3Cr13 steel after plasma nitriding at different times (a) Without RE (b) With RE.

3.3. XRD

Figure 5a,b are the XRD pattern of the modified layer of 3Cr13 steel after plasma
nitriding for 4, 8 and 12 h without and with RE. In Figure 5a, the main phase is ε-Fe2-3N,
the secondary phase is γ’-Fe4N. After the addition of La, the intensity of the ε-Fe2-3N
diffraction peak is significantly enhanced, and the content of ε-Fe2-3N in the modified
layer is greatly increased. Reference [14] shows that ε-Fe2-3N improved the corrosion
resistance to a significant extent, and more than that of γ’-Fe4N. At the same time, due
to the La atoms dissolving into the nitride layer, the lattice distortion results in increased
microhardness [12].

3.4. Polarization Curve and Fitting Data Analysis

Figure 6a,b display the corrosion resistance curve of 3Cr13 steel after plasma nitriding
for 4, 8 and 12 h without and with RE. With or without the addition of RE, the passivation
zone of the corrosion resistance curve becomes wider with the increase of time, the corrosion
resistance is slightly enhanced.

The data relating to the corrosion rate, corrosion potential (E0), polarization resis-
tance (Rp) and corrosion current (I0) on the surface of the modified layer are shown in
Tables 1 and 2. In comparing the samples with and without RE nitriding, with the increase
of time, the corrosion rate of the modified layer decreased slightly, and the corrosion
resistance of the modified layer increased slightly. It can be concluded that the modified
layer has the best corrosion resistance after 12 h of RE nitriding, with the corrosion rate
decreasing to 0.9255 × 10−2 mm/a.
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Figure 6. Corrosion resistance curve of modified layer of 3Cr13 steel after plasma nitriding at different times (a) Without RE
(b) With RE.

Table 1. Fitting data of the polarization curve of the modified layer of 3Cr13 steel after plasma
nitriding at different times.

Time/h
Corrosion

Rate/(×10−2

mm·a−1)

Rp/(×10−3

Ω·cm−2)
I0/(×10−5

A·cm−2) E0/V Passivation
Zone/V

Untreated 49.746 61.681 4.22930 −0.87501 1.038
4 1.3519 2.2697 1.14930 −0.94865 1.352
8 1.2851 2.3995 1.04978 −0.94805 1.801

12 1.0895 2.7796 1.00630 −0.95095 2.436

Table 2. Fitting data of the polarization curve of the modified layer of 3Cr13 steel after RE plasma
nitriding at different times.

Time/h
Corrosion

Rate/(×10−2

mm·a−1)

Rp/(×10−3

Ω·cm−2)
I0/(×10−5

A·cm−2) E0/V Passivation
Zone/V

Untreated 49.746 61.681 4.22930 −0.87501 1.038
4 1.2288 2.3767 0.89491 −0.91983 2.105
8 1.0463 2.4935 0.73978 −0.94882 2.401

12 0.9255 2.9950 0.63733 −0.92949 2.563

The enhanced corrosion resistance is due to the presence of a dense nitride-rich layer
on the ε-nitride surface, as more nitride helps protect the surface from corrosion [17].
Figure 5 proved that the formation of ε-Fe2-3N and γ’-Fe4N greatly improves the corrosion
resistance of the modified layer [18].

3.5. SEM

The C, N, Cr Fe and La elements at different locations of the modified layer were
measured by point scanning. The content of N element decreases gradually from the
surface to the substrate, while the content of Fe element increases gradually.

As shown in Figure 7a, as the depth of the nitriding layer increases, Fe content grad-
ually decreases, N content reaches as high as 4.57 at.%, and then continues to decline
to 0.23 at.%. As shown in Figure 7b, as the depth of the nitriding layer increases, Fe
content gradually decreases, the N content in the surface layer does not reach the maxi-
mum, but gradually increased to a maximum of 2.72%, and then gradually transitioned
to the substrate.
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Figure 7. Element content depth distribution of the modified layer of 3Cr13 steel after plasma nitriding for 12 h (a) Without
RE (b) With RE.

First, ion bombardment produces La ions and some neutral ions, which are deposited
on the surface of stainless steel and play a role in cleaning and activation, increasing the
concentration of surface nitrogen [9]. Then, due to the large size difference between La
and Fe atoms, La causes obvious distortion in the surrounding lattice. Meanwhile, La
enhances the surface bombardment effect, increasing the crystal defects such as vacancies
and dislocations and further reducing the N content in the nitrided layer, which accelerates
the diffusion of N atoms and produces solid solution strengthening. Thus, the thickness
of compound and effective hardening layer is increased, and the nitriding process is
accelerated [19,20].

Figure 8a,b are the element depth profile of the modified layer of 3Cr13 steel after
plasma nitriding for 12 h, without and with RE. The percentage of La, C and N are mea-
sured by linear scanning. As can be seen from Figure 8a,b, the Cr content of both C-layer
(0–125.6 µm) and D-layer (0–144.8 µm) increased, while the N content decreased sig-
nificantly. As shown in Figure 9a, the total diffusion depth increased from 145.3 to
157.9 µm, the contents of Cr and N decreased in the D-layer layer (125.6–145.3 µm), while
the contents of Cr and N basically remained unchanged in the D-layer (144.8–157.9 µm)
layer in Figure 9b. The La content decreased gradually. The addition of La greatly promoted
the diffusion of N and reduced the precipitation of CrN.

Figure 8. Element depth profile of modified layer of 3Cr13 steel after plasma nitriding for 12 h (a) Without RE (b) With RE.
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Figure 9. XPS spectra modified layer of 3Cr13 steel after RE plasma nitriding for 12 h (a) Survey spectra (b) Cr 2p spectra (c)
La3d spectra.

3.6. XPS

The detailed chemical characteristics of various elements in the surface layer are
analyzed by XPS characterization in order to obtain information about the formation of
surface nitride in the plasma ionitriding process. The results are shown in Figure 9a.

In order to determine the possibility of producing a Cr-N bond on the sample surface
under consideration and to study the content of CrN on the surface, the XPS spectrum of a
high-resolution Cr2P is shown in Figure 9b. A strong peak (a weak peak) was observed in
the XPS spectrum of Cr2P, with a peak position matching the orbital 2P1/2 (586.6 eV) and
orbital 2P2/3(576.8 eV) [21].

Figure 9c shows the photoemission spectra of La 3D rays obtained by surface mod-
ification with monochromatic Al Ka photons. The main peak of the La3d XPS spectrum
was about 853.4 and 834.7 eV, belonging to La3d3/2 and La3d5/2, respectively [22]. The
results show that the successful diffusion of the La element to the nitride surface can not
only spread to a significant depth of the surface, but can also help the gap nitrogen to
diffuse to a deeper layer of the workpiece, and improve the structure and properties of the
modified layer.

3.7. TEM

Figure 10a,b show typical transmission electron microscope images and diffraction
ring images of nanocrystallization of 3Cr13 steel at 10 µm from the sample surface after
RE nitriding for 12 h. According to the scale and the comparison of the standard XRD
diffraction peak pattern in Figure 10b, the inner ring corresponds to the crystal plane
γ’-Fe4N (311), and the outer ring corresponds to the crystal plane ε-Fe3N (112). The SAED
patterns shows that there are a large number of γ’-Fe4N and ε-Fe3N particles. The addition
of La can further refine the grain size of the nanocrystalline layer [23], and the results
indicate that the addition of La can produce a microalloying effect on the nitride layer of
3Cr13 steel.

Figure 10. TEM bright field image (a) and corresponding SAED pattern (b) of surface nanometer
layer of modified 3Cr13 steel after RE plasma nitriding for 12 h.
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4. Conclusions

In this paper, 3Cr13 steel was plasma nitrided for 4, 8 and 12 h at 450◦C in NH3
atmosphere with and without RE, and the following conclusions were drawn:

1. The nitrided layer was composed of a compound layer and diffusion layer from
surface to core. The total thickness of the RE nitrided layer increased by 8.6%, 15.6%
and 14.7% more than that of the layer without RE. The thickness of the compound
layer was increased by 9.7%, 19.0% and 15.3% more than that of the compound layer
without RE. The mass gain of the RE nitrided layer was significant, and increased by
36% more than that of plain nitriding.

2. The modified layer was mainly composed of ε-Fe2-3N and γ’-Fe4N nitride phases.
The addition of RE (La) increased the phase ratio of ε-Fe2-3N in the surface layer.
The corrosion current density was decreased, the corrosion resistance was increased,
and the passivation zone gradually widened. The addition of RE (La) made the
passivation more obvious, thus improving the corrosion resistance.

3. The average hardness of the compound layer was 813.53HV0.05. The average hardness
of the RE compound layer was 1026.03HV0.05, which increased by 212.50HV0.05.

4. SEM (EDS) and XPS demonstrated the presence of La, and the N content gradually
decreased with the depth of the nitride layer. La diffused into the interior of the layers
and further reduced the N content in the nitride layer, which accelerated the diffusion
of N atoms and thus promoted the nitriding process.

5. There are many γ’-Fe4N and ε-Fe3N particles in the nitrided layer. The addition of
RE further refined the microstructure in the nitrided layer, in which the microalloying
effect was produced to strengthen the modified layer.
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