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Abstract: To control the welding residual stress and deformation of metal inert gas (MIG) welding,
the influence of welding process parameters and preheat parameters (welding speed, heat input,
preheat temperature, and preheat area) is discussed, and a prediction model is established to select the
optimal combination of process parameters. Thermomechanical numerical analysis was performed to
obtain the residual welding deformation and stress according to a 100 × 150 × 50 × 4 mm aluminum
alloy 6061-T6 T-joint. Owing to the complexity of the welding process, an optimal Latin hypercube
sampling (OLHS) method was adopted for sampling with uniformity and stratification. Analysis
of variance (ANOVA) was used to find the influence degree of welding speed (7.5–9 mm/s), heat
input (1500–1700 W), preheat temperature (80–125 ◦C), and preheat area (12–36 mm). The range
of research parameters are according to the material, welding method, thickness of the welding
plate, and welding procedure specification. Artificial neural network (ANN) and multi-objective
particle swarm optimization (MOPSO) was combined to find the effective parameters to minimize
welding deformation and stress. The results showed that preheat temperature and welding speed
had the greatest effect on the minimization of welding residual deformation and stress, followed by
the preheat area, respectively. The Pareto front was obtained by using the MOPSO algorithm with
ε-dominance. The welding residual deformation and stress are the minimum at the same time, when
the welding parameters are selected as preheating temperature 85 ◦C and preheating area 12 mm,
welding speed is 8.8 mm/s and heat input is 1535 W, respectively. The optimization results were
validated by the finite element (FE) method. The error between the FE results and the Pareto optimal
compromise solutions is less than 12.5%. The optimum solutions in the Pareto front can be chosen by
designers according to actual demand.

Keywords: welding parameters; preheat parameters; welding deformation; welding stress; multi-
objective optimization; artificial neural network; FEM simulation

1. Introduction

With the rapid development of rail vehicles in China in recent years, an increasing
number of high requirements have been put forward for the materials used in railway
vehicles [1]. Among different lightweight materials, aluminum alloys possess an excellent
strength-to-weight ratio and are extensively used in subways, intercity trains, and high-
speed electric multiple units (EMU) [2–4]. However, due to the high linear expansion
coefficient of 6061-T6, a study of methods to reduce the welding residual stress and
deformation is urgently needed [5,6].

Many scholars have chosen to study and optimize the welding process parameters to
improve the welding qualities and to reduce the welding residual deformation and residual
tensile stress [7,8]. Kumar [9] studied the effects of MIG welding process parameters such

Coatings 2021, 11, 998. https://doi.org/10.3390/coatings11080998 https://www.mdpi.com/journal/coatings

https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings11080998
https://doi.org/10.3390/coatings11080998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/coatings11080998
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings11080998?type=check_update&version=1


Coatings 2021, 11, 998 2 of 20

as current, voltage, and preheat temperature and optimized them using gray-based Taguchi
methodology. The influence of above parameters was determined by analysis of variance
(ANOVA). Matthew [10] used a design of experiments (DOE) to study the welding process
parameters, such as velocity, weld pressure, upset distance, and preheat temperature,
on weld strength, heat affected zone, and energy usage for the friction welding of AISI
1020 steel. Aalami-Aleagha [11] investigated the welding current of Al alloy T-joints in a
double-pulsed metal inert gas welding process. Finally, the optimization parameters of
the best condition were gained by simulation. Khoshroyan [12] studied three modes of
current, two different speeds, and two different sequences, through comparative analysis;
the influence parameters of reducing transverse deformation were found.

Beyond the above processing parameters, the effect of preheating on welding parts is
significant. Preheating the parts to be welded above room temperature before welding is
a method often used to improve the welding quality and the plastic deformation ability
of materials and to reduce welding stress to prevent cracks. Thus, many scholars have
also focused on this factor [13,14]. Asadi [15] studied temperature and residual stress
fields in multipass TIG welds with different pipes, and found that preheating up to at least
325 ◦C is essential to keep residual stress below the yield strength. Fallahi [16] employed
3-D numerical models to study the behavior of residual stresses and entropy results
from three common welding sequences at different preheating temperatures. Liang [17]
simulated the MIG welding process of 6061-T6 thin plate for healthcare applications
using the commercial software ABAQUS to study the effect of different preheating welding
procedures on residual stress in the aluminum alloy. Liu [18] used ANSYS and the Gaussian
heat source model to study the distribution of the temperature field in the high-strength
steel synchronizing process of preheating and welding. Considering boards of different
dimensions and different demands for the preheating width, some simulating evaluations
were done under the conditions of single preheat source and double preheat source to
show the feasibility of the preheat simulation method.

With an increasing number of variables listed in the research area and set as opti-
mization parameters, it becomes increasingly difficult to find the optimal combination of
variables. Many scholars have begun to study welding results prediction methods based
on artificial neural networks (ANN) and new optimization methods [19–23]. Bai [24] com-
bined the inherent deformation method and the complex method to efficiently predict the
welding deformation of large and complex welded structures. Huang [25] used the local
solid model and global shell model to predict the deformation of laser welded thin plate
based on inherent strain theory and considering geometrical imperfection in the numerical
model. Zhang [26] proposed a new electron beam welding method to decrease the distor-
tion of thin-walled structures. However, it is worthwhile to further study improvement
in the accuracy of the surrogate model and to make the Pareto front of multi-objective
optimization solutions more uniform and diverse.

In this paper, the effects of the processing and preheat parameters of metal inert gas
(MIG) welding in the modification of the residual deformation and stress distribution are
both investigated. The analysis of variance (ANOVA) was conducted by an optimal Latin
hypercube sampling (OLHS) method to find the influence degree. The multi-objective
particle swarm optimization (MOPSO) based on ANN is innovatively adopted to optimize
the above parameters to gain the Pareto front.

2. Finite Element Simulation

A T-joint FE model is established for this study using Hypermesh. The dimensions of
the web plate and flange plate are 200 mm, 80 mm, and 2 mm; 200 mm, 50 mm, and 2 mm
respectively, as shown in Figure 1. Many hexahedron elements and a few tetrahedron
elements are adopted in the FE model to assure the quality of grids in the region of the
welding seams. To reduce the computation cost, the mesh size of elements in the region of
the welding seam and the weld heat-affected zone were set as 1 mm, and the mesh size of
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elements far away from the above region increased to 5 mm gradually. The numbers of
elements and nodes are 13,900 and 20,099, respectively.
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Figure 1. T-joint FE model.

The chemical composition of 6061A-T6 is shown in Table 1. The temperature-dependent
thermal and mechanical properties of 6061-T6 are obtained by reference [27] and the ex-
trapolation method, as shown in Figure 2. The thermal and mechanical properties of the
welding seam are equivalent to the thermal and mechanical properties of the region far
from the welding seam.

Table 1. Chemical composition of 6061A-T6 (wt.%).

Mg Si Fe Cu Cr Mn Zn Ti Al

0.8–1.2 0.4–0.8 0.70 0.15–0.40 0.04–0.35 0.15 0.25 0.15 Balance
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Figure 2. Temperature-dependent properties for 6061-T6.

To solve the problem of difficulty in convergence in welding simulation analysis,
the sequential thermomechanical coupling method is adopted in this paper. First, the
temperature field is analyzed, and then the results of the temperature field analysis are
loaded into the stress field as initial conditions for the stress field analysis.

In thermal analysis, the element attribute is Solid 70. Initial condition: set the envi-
ronment temperature as 293 K. Temperature field boundary conditions: the heat source
function model proposed by Goldak et al. [28] with double-ellipsoidal distribution was
adopted to simulate the welding process of MIG welding. The heat source distribution
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of the two ellipsoids is shown in Equations (1) and (2), and the heat transfer coefficient
is loaded on the free surface of the model. The application of the moving heat source is
realized by the moving welding heat source method [29]. The welding process of metal
gradually filled is simulated by the birth-death method [30].
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where af, ab, b, and c are the shape parameters of the heat input, respectively; Q is the
thermal input power; ff is the energy distribution coefficient of the front half of the ellipsoid;
and fb is the energy distribution coefficient of the back half of the ellipsoid. In general,
ff = 0.4 and fb = 1.6, which are employed for the analysis optimization. According to the
shape and size of the weld pool and the temperature field in the actual welding, the shape
parameters of the heat source are adjusted and the corresponding model parameters of the
double ellipsoid heat source are af = 2 mm, ar = 3.5 mm, b = 2.2 mm, and c = 2 mm.

In mechanical analysis, the element attribute is Solid 185. Initial condition: the results
of the temperature field analysis are set as initial conditions. Stress field constraint con-
straints: all freedom of element D was constrained in Figure 1 to guarantee the convergence
of FE calculation.

3. Experiments and Finite Element Model Validation

Both the temperature fields and the stress fields were verified according to refer-
ence [27] to verify the accuracy of the finite element model. In the experiment, the base
material was 6061-T6 Al alloy. The arc welding robot system, produced by OTC in Japan
is used for T-joint MIG welding. The filler wire adopted was ER5356 Al-Mg alloy with
a diameter of 1.2 mm, and the feed rate of filler wire is 6 m/min. The welding process
throughout this work was shielded by pure argon at air flow rate of 25 L/min in the
experiment. The welding process parameters of both the experiment and the simulation
are welding current 90 A, welding speed 60 cm/min, and welding angle 45◦.

According to reference [27], the layout of the measuring points of the web near
the fusion zone is shown in Figure 3, each having a length of 5 mm, were installed at
points A, B, and C. As shown in Figure 4, the time–temperature curves of experimental
measurements and simulation results are highly fitted. Curve A reaches the highest
temperature because point A is closest to the welding seam. In addition, the isotherm
corresponding to the melting of the base metal is compared with the weld pool shape
obtained by the experiment with the same parameters, as shown in Figure 5, verifying the
accuracy of the result by simulation.
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Figure 5. Simulation and experiment comparison of bead width and depth.

The residual welding stress of the workpiece was measured by the blind hole method.
Four strain gauges of 10 mm were located on the flange plate, from 1 to 4. Welding residual
stress and deformation comparison of the experimental measurements and simulation
results of this paper and the simulation result of reference [27] are shown in Figure 6 and
Table 2, respectively. As shown in Figure 6, the welding stress curves of the experimental
measurements and simulation results are highly fitted. Furthermore, the deviation of
welding deformation between the simulation in this paper and experimental values is
smaller than the deviation between the simulation in reference [27] and experiment values,
which illustrates the effectiveness and high accuracy of the simulation method in this paper.

Table 2. Comparison of simulated and experimental results of welding deformation of T-joint.

Result Experiment [27] Simulation Deviation Simulation [27] Deviation

Distance along Z direction (mm) 1.1 1.08 1.8% 1.05 4.5%
Angular deformation (◦) 1.61 1.54 4.3% 1.50 6.8%
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4. Multi-Objective Optimization Problem

Among the different kinds of ANN, the back-propagation neural network (BPNN) [31]
was selected for its strong nonlinear relationship identification ability in finding the complex
nonlinear relationship between welding process parameters and welding deformation in
multiple groups of welding samples. This nonlinear relation is then used to predict the
welding deformation and stress of the combination of several alternative welding parameter
samples and establishes the objective functions of the multi-objective optimization problem.

4.1. Selection of the Process Parameter Combination Based on OLHS

Many process parameters affect the welding effect in MIG welding, such as welding
current, welding voltage, welding speed, and shielding gas flow rate. To reduce welding
cracks, welding residual tensile stress, and ensure the depth of fusion, it is necessary to
preheat thick welding parts before welding and to reasonably control the welding heat
input. Therefore, the welding process parameters, preheat temperature, preheat area,
welding speed, and welding heat input, which are effective in solving the above problem,
are set as the research objects.

In the welding process of aluminum alloy, the welding heat input and preheat temper-
ature must be strictly controlled to ensure the welding quality. If the preheat temperature
is too low, the preheating effect before welding cannot be achieved. If the preheat tempera-
ture is too high, the performance of the aluminum alloy may be affected, leading to joint
softening and the formation of a weld with a bad appearance. To prevent excessive local
stress, the range of preheating must be no less than three times the thickness of the welded
part on both sides of the weld and no more than 100 mm.

Furthermore, if the welding heat input is too low and the welding speed is too fast,
the welding arc will be unstable and will cause defects such as incomplete welding and
slag clamping. However, when the welding heat input is too high and the welding speed
is too slow, defects such as burn-through, bite edge, and coarse grain in the heat-affected
zone will easily occur, affecting the mechanical properties of the welding seam. Thus, as
shown in Table 3, the range of research parameters is selected according to the material,
welding method, thickness of the welding plate, and welding procedure specification.
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Table 3. The range of research parameters.

Research Parameters Selected Range

Preheat temperature 80–125 ◦C
Preheat area 12–36 mm

Welding speed 7.5–9 mm/s
Welding heat input 1500–1700 W

Among many alternative combinations of welding process parameters, the set of
combinations that can achieve the optimization goal is selected as the optimal plan. The
spare set is the solution space of this welding process parameter optimization system.
Therefore, the greater the number of alternative welding process parameter combinations,
the larger the optimization space and the greater the possibility of obtaining the optimal
combination. However, if all the combinations are listed, there are many redundant plans,
which seriously affects the operational efficiency of the system.

Thus, OLHS [32] is utilized to generate samples within the design space. Preheat
temperature, preheat area, welding speed, and welding input were chosen as the four
factors, and for each factor, four levels were chosen. The total of all the process parameter
combinations is 44, but the OLHS table only requires 72 combinations to completely reflect
the basic situation.

4.2. Design of a Back-Propagation Neural Network

A three-layer BPNN structure was chosen as the prediction model. The numbers of
neurons in the input layer and the output layer were four and one, respectively. Each
neuron of the input layer represents welding current, welding voltage, welding speed, and
preheat temperature. Welding deformation and welding stress were chosen as the output
layer neuron to establish two four-input and one-output BPNN structure, respectively.

According to the formula, the number range of hidden layer neurons was calculated.
Then, comparing the performance of BPNN under different hidden layer neurons, the
number of neurons that could cause the performance of BPNN to reach the best prediction
performance was found.

hidden_num =
√

m + n + a (3)

where hidden_num is the neuron number of the hidden layer, m and n are the neuron
numbers of the input layer and output layer, and a is an integer between 0 and 10. The
number of hidden layer neurons was set as an integer between 2 and 13 to train the network.
According to the mean square error (MSE) value obtained in each training, it is found that
when the number of hidden layer nodes is 6, the MSE value trained by the network is the
smallest and the network performance is the best. Therefore, the network structure of this
model is finally determined as 4-6-1, as shown in Figure 7.
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4.3. Multi-Objective Particle Swarm Optimization Algorithm
4.3.1. Definition of Optimization

The prediction model of welding deformation and welding stress is equivalent to
the objective function of the multi-objective optimization model. In this model, the opti-
mization variable is the set of welding process parameters, and the objective variables are
welding deformation and welding stress. The functional relation between the optimization
variable and the objective variable YWelding residual deformation, YWelding residual deformation =
f (XPreheat temperature, XPreheat area, XWelding speed, XWelding heat input) is the nonlinear relation
gained by the BPNN algorithm based on sample data. The constraint condition of opti-
mization variable X is determined according to the welding equipment and product quality.
The value range of each optimization variable in this paper is shown in Equation (4).
The multi-objective optimization mathematical model of welding process parameter is
established as follows:

f ind : X =
(

XPreheat temperature, XPreheat area, XWelding speed, XWelding heat input

)
min : YWelding residual deformation(X), YWelding residual deformation(X)
s.t. 80 ◦C < XPreheat temperature < 125 ◦C

12 mm < XPreheat area < 36 mm
45 cm/min < XWelding speed < 54 cm/min
1500 W<XWelding heat input < 1700 W

(4)

where YWelding residual deformation(X), YWelding residual deformation(X) are the optimization ob-
jective functions, which are replaced by the prediction model in the actual optimization,
YWelding residual deformation and YWelding residual deformation represent the welding deformation
and welding stress predicted by the prediction model, respectively.

4.3.2. The Pareto Front

It is difficult for each optimization objective to reach the optimal solution simulta-
neously, hence the Pareto optimal solution is usually discussed in the multi-objective
optimization problem. In Pareto optimal solutions, a set of solutions is created such that
none is dominant to the others.

5. Results and Discussion
5.1. Results of OLHS Table

According to the OLHS method and the selected range of the research parameters,
72 combinations of different values of each parameter are listed in Table 4. To study the in-
fluence of the welding heat input and prevent burn-through and excessive deformation, the
thickness of the aluminum sheet is increased to 4 mm, as shown in Figure 8. Furthermore,
72 combinations are conducted using the temperature-dependent properties in Figure 2
and the sequential thermomechanical coupling method mentioned in Section 2.

The optimization objectives of welding residual deformation and welding stress only
reflect the results in the stress field after thermal-mechanical coupling analysis. Thus, the
average central temperature of the heat source is extracted to reflect the rules of welding
heat input as a reference in the temperature field after thermal analysis. Finally, the average
central temperature of the heat source, the maximum deformation along the Z direction,
and maximum welding tensile stress along path 1 are extracted as the result of each
combination and are listed in Table 4.
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Table 4. OLHS Plans and Results.

No

Optimization Variable Objective Variable

Preheat
Temperature

(X1) (◦C)

Preheat
Area (X2)

(mm)

Welding
Speed (X3)

(mm/s)

Welding
Heat Input

(X4) (W)

Heat Source
Central

Temperature (◦C)

Welding Residual
Deformation (Y1)

(mm)

Welding
Residual Stress

(Y2) (MPa)

1 95 20 8.5 1570 1091 1.904 186.36
2 95 20 9 1700 1150 1.926 181.74
3 95 36 7.5 1700 1320 2.002 129.12
4 95 36 9 1630 1125 1.929 173.30
5 95 12 8 1700 1207 1.896 171.43
6 95 28 8.5 1700 1206 1.962 165.51
7 95 36 8 1500 1105 1.917 171.88
8 95 28 7.5 1570 1189 1.951 159.43
9 95 20 7.5 1500 1115 1.909 176.34
10 95 20 8 1630 1177 1.925 171.97
11 95 12 8.5 1630 1113 1.873 185.90
12 95 12 9 1570 1011 1.860 199.86
13 80 36 9 1700 1154 1.910 173.22
14 80 20 8.5 1500 1004 1.879 197.36
15 80 28 9 1500 974 1.880 198.75
16 80 20 8 1700 1216 1.910 167.56
17 80 36 7.5 1630 1227 1.920 148.05
18 80 12 7.5 1500 1074 1.851 184.19
19 80 28 8.5 1630 1137 1.905 179.16
20 80 20 7.5 1700 1265 1.932 155.23
21 80 28 7.5 1570 1169 1.916 166.15
22 80 12 8.5 1700 1158 1.867 181.54
23 80 36 8 1500 1080 1.888 178.16
24 80 28 8 1630 1175 1.918 169.41
25 110 20 9 1500 1000 1.915 198.42
26 110 36 9 1630 1148 1.964 166.27
27 110 36 8.5 1700 1241 2.000 145.53
28 110 12 9 1700 1137 1.900 185.61
29 110 28 9 1570 1090 1.959 182.17
30 110 20 8.5 1570 1109 1.932 183.01
31 110 12 8 1630 1166 1.901 176.75
32 110 36 7.5 1570 1225 1.984 137.67
33 110 28 7.5 1630 1266 2.013 141.98
34 110 20 7.5 1700 1305 2.001 144.46
35 110 28 8 1500 1117 1.956 173.91
36 110 12 8.5 1500 1009 1.870 198.54
37 80 12 8 1570 1095 1.855 185.84
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Table 4. Cont.

No

Optimization Variable Objective Variable

Preheat
Temperature

(X1) (◦C)

Preheat
Area (X2)

(mm)

Welding
Speed (X3)

(mm/s)

Welding
Heat Input

(X4) (W)

Heat Source
Central

Temperature (◦C)

Welding Residual
Deformation (Y1)

(mm)

Welding
Residual Stress

(Y2) (MPa)

38 80 28 7.5 1500 1113 1.901 174.49
39 80 28 9 1700 1147 1.916 178.30
40 80 36 8 1570 1140 1.901 169.89
41 80 36 9 1500 983 1.876 192.99
42 80 12 9 1630 1054 1.853 196.78
43 80 12 8 1630 1146 1.864 180.61
44 80 20 8 1500 1054 1.874 188.68
45 80 12 7.5 1700 1243 1.892 162.00
46 80 20 7.5 1630 1203 1.910 165.84
47 80 20 9 1570 1023 1.873 197.44
48 80 36 8.5 1570 1097 1.892 178.84
49 125 12 9 1700 1149 1.919 183.76
50 125 36 8 1630 1259 2.027 132.03
51 125 28 8 1700 1305 2.066 137.49
52 125 28 9 1500 1056 1.979 183.51
53 125 20 8.5 1630 1170 1.979 173.84
54 125 20 9 1630 1132 1.971 182.26
55 125 20 7.5 1570 1203 1.982 160.36
56 125 20 8.5 1700 1222 1.998 167.41
57 125 20 8 1570 1164 1.971 171.76
58 125 28 7.5 1630 1291 2.055 134.07
59 125 36 7.5 1500 1188 1.998 138.36
60 125 36 9 1570 1127 1.984 164.14
61 125 12 7.5 1570 1168 1.918 172.15
62 125 28 8.5 1500 1099 1.983 176.19
63 125 28 9 1630 1156 2.011 171.14
64 125 12 9 1500 976 1.884 202.62
65 125 12 8 1500 1070 1.894 188.02
66 125 36 8.5 1630 1209 2.013 144.84
67 125 12 7.5 1630 1217 1.932 164.90
68 125 28 8 1570 1189 2.013 156.82
69 125 36 8 1700 1321 2.061 123.87
70 125 12 8.5 1570 1089 1.898 189.93
71 125 28 7.5 1700 1351 2.090 124.79
72 125 20 7.5 1500 1185 1.963 170.15

5.2. Influence of Welding Parameters
5.2.1. ANOVA for Heat Source Central Temperature, Welding Residual Deformation and
Welding Residual Stress

To further study the influence of the process parameters, the influence degree of
each parameter and the ANOVA for heat source central temperature, welding residual
deformation, and welding residual stress are discussed in this section according to the
results listed in Table 4.

The influence of different process parameters on the average central temperature of
the heat source is shown in Figure 9. By and large, the preheat temperature, preheat area,
and welding input are positively correlated with the heat source central temperature and
welding heat input, and the welding speed is a negative correlation with the target, as
shown in Figure 9a–d. This indicates that the higher the total welding heat input per unit
time and unit area, the higher the central temperature of the heat source will be.
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Figure 9. The influence of different process parameters on the average central temperature of the heat source. (a) The
influence of preheat temperature; (b) the influence of preheat area; (c) the influence of welding speed; (d) the influence of
welding input.

The influence of different process parameters on welding residual deformation and
stress is shown in Figure 10. Generally, the higher the heat input, the larger the residual
deformation caused by temperature change. Because the deformation releases some stress,
the larger the deformation is, the smaller the residual stress. As shown in Figure 10a–d,
the overall trend is the same as the above theory, but some points do not satisfy. That
is probably because preheating raises the temperature around the weld seam, and an
appropriate preheat temperature and preheat zone can reduce the temperature change
gradient to reduce the welding tensile stress. Thus, it is necessary to further discuss
the influence degree of each variable on the analysis target to find the influence of this
parameter on the temperature field and stress field and the best value of this parameter to
control the residual stress according to the actual demand in production.
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Figure 10. The influence of different process parameters on welding residual deformation and stress. (a) Effect of preheat
area and preheat temperature on welding residual deformation; (b) effect of preheat area and preheat temperature on
welding residual stress; (c) effect of welding speed and welding input on welding residual deformation; (d) effect of welding
speed and welding input on welding residual stress.

To find the influence degree of each variable, the ANOVA is shown in Table 5 based
on the OLHS plans and results. The F-value reflects the influence degree on the heat
source central temperature, welding residual deformation, and welding residual stress,
respectively. The greater the F-value is, the greater the correlation. The p-value reflects the
significance level of the parameters. If the p-value is less than 0.0001, this parameter has a
significant effect on the result. AB, AC, and so on in the first column reflect the effect of the
interaction of the two parameters on the result.

It can be seen from Table 5 that all the process parameters have a significant effect
on the heat source central temperature, but the welding input has the greatest impact.
However, for welding residual deformation, the preheat temperature and area have the
greatest impact. Furthermore, the welding speed and preheat area greatly affect the residual
stress, and the preheat temperature has no significant effect on the residual stress.



Coatings 2021, 11, 998 13 of 20

Table 5. The ANOVA for heat source central temperature, welding residual deformation and stress.

Source
Heat source Central Temperature Welding Residual Deformation Welding Residual Stress

F-Value p-Value – F-Value p-Value – F-Value p-Value –

Preheat temperature
(A) 883.33 <0.0001 significant 11,116.15 <0.0001 significant 239.05 0.0113 –

Preheat area (B) 515.71 <0.0001 significant 4272.88 <0.0001 significant 3955.25 <0.0001 significant
Welding speed (C) 2400.74 <0.0001 significant 651.98 <0.0001 significant 4302.08 <0.0001 significant
Welding input (D) 4125.25 <0.0001 significant 2105.38 <0.0001 significant 3097.19 <0.0001 significant

AB 16.61 0.0032 – 181.84 <0.0001 significant 166.65 0.0007 –
AC 1.17 0.4567 – 7.1 0.022 – 7.9 0.059 –
AD 0.4833 0.8381 – 23.23 0.0015 – 7.24 0.0676 –
BC 1.43 0.3613 – 11.75 0.0072 – 21.29 0.0153 –
BD 0.6517 0.7286 – 25.66 0.0012 – 11.12 0.0366 –
CD 1.33 0.3961 – 27.01 0.001 – 20.04 0.0165 –

5.2.2. Discussion of Welding Residual Deformation and Stress

According to the conclusion of ANOVA, the preheat temperature has the greatest
influence on the residual deformation of the T-joint, and the preheat area has a secondary
impact on residual deformation. Thus, the temperature cycle curves of group 15 (pre-
heat temperature 80 ◦C), group 52 (preheat temperature 125 ◦C), group 37 (preheat area
12 mm), and group 40 (preheat area 36 mm) were extracted, and the corresponding residual
deformation results were discussed.

The temperature curve of the tracking points of different preheat temperatures and
preheat areas is shown in Figure 11. It can be seen from Figure 11a–d that the variation
trend of the temperature curve at tracking point A and tracking point B is consistent, which
shows that the temperature curve first remains unchanged, then rises rapidly, and finally
falls rapidly to a stable level. The variation trend of the temperature curve at tracking point
C is to remain unchanged at first, then to rise slowly, and finally stabilize. In the 50 s, the
temperature curves of all tracking points coincide. In addition, the closer to the weld seam,
the higher the maximum temperature and heat input at the tracking point, and the more
drastic the temperature change.

It can be seen that the variation trend of the temperature curve at each tracking point is
similar. The difference occurs between the maximum temperature at the tracking point and
the temperature at the end of the simulation. With the increase in the preheat temperature
and preheat area, the welding heat input and final temperature at the same tracking point
also increase slightly. Preheating increased the depth of fusion and welding heat input
on the outer surface of the weld, reduced the temperature gradient and cooling rate after
welding, improved the plastic deformation ability of the material, and reduced the welding
stress to prevent the formation of cracks. However, the residual deformation of groups
52 (preheat temperature 125 ◦C) and 40 (preheat area 36 mm) are 5.27% and 2.48% higher
than the values for groups 15 (preheat temperature 80 ◦C) and 37 (preheat area 12 mm),
respectively. Therefore, further optimization analysis is needed to obtain the minimum
deformation.

Figure 12 shows the distribution of equivalent residual stress and deformation of
T-joints after cooling. Because the transverse stress change is relatively small, this section
only considers the longitudinal stress.

According to the conclusion of ANOVA, the effects of welding speed and preheat zone
on the residual stress distribution of T-joints are discussed, respectively. The stress curves
of group 58 (welding speed 7.5 mm/s) and 63 (welding speed 9 mm/s) were extracted and
the corresponding residual stress results were discussed. As shown in Figure 12a, the faster
the welding speed is, the lower welding heat input is, the higher the welding residual
stress is, but the wider the distribution of welding residual compressive stress is.
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As shown in Figure 12b, the stress curves of groups 37 (preheat area 12 mm) and 40
(preheat area 36 mm) were extracted and the corresponding residual stress results were
discussed. The wider the preheat zone, the higher welding heat input is, the lower the
welding residual stress, but the wider the residual tensile stress distribution. The simulation
results showed that preheating can reduce the longitudinal residual stress near the welding
beam. However, the wider preheat area can increase the area of tensile stress, which is not
good for the fatigue strength of parts.

In practice, preheating of the base material is often used to improve the welding
process and improve the welding quality. The preheat temperature should not be too
high or too low. Too high a temperature will affect the welding efficiency, and too low
a temperature will produce limited improvement of welding deformation and welding
stress, so it is necessary to choose the appropriate preheat temperature.
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5.3. Performance of BPNN

For further optimization analysis, the BPNN prediction model is established to reflect
optimization objectives in this section. To test the BPNN model, the data in Table 4 are
separated into 70% training part, 15% validation part, and 15% testing part.

Additionally, the sigmoid function is selected as the transfer function of neurons in
the hidden layer and the output layer of the network. MSE is selected as the evaluation
index of network performance. The calculation formula of MSE is:

MSE =
1
q

q

∑
i=1

(yi − oi)

2

(5)

where q, yi, and oi represent the number of output neurons, the expected value and
predicted value of the ith output neuron, respectively. Figure 13 shows the network error
curve, and the least MSE = 0.0019538 illustrates that the BPNN model gains the best
validation performance at epoch 12.
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The precision distribution of the training and test samples are shown in Figure 13. The
aggregation point along the 45◦ line indicates that the predicted value is close to the true
values. The accuracies of the models can be verified by multiple correlation coefficients R.
The equation for R is expressed as
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R =

q
∑

i=1
(yi − y)(oi − y)√

q
∑

i=1
(yi − y)

2 q
∑

i=1
(oi − y)

2
(6)

where yi is the expected value of the ith output neuron; oi is the predictive value; y is the
average of expected values; and q is the number of plans. An R value close to 1 indicates a
high degree of coincidence between the origin and the fitting line of the predicted data and
a good fitting effect.

As can be observed in Figure 14a, the data points of the training sample were com-
pletely coincident with the fitting line (R = 0.999) indicating that the prediction model made
full use of the data in the training sample. In Figure 14b,c, the degree of coincidence of data
points and fitting lines of the verification samples and the test samples was high, and the R
value was 0.990 and 0.995, respectively, indicating that the prediction model had a good
prediction effect. Moreover, the difference in R values between the verification samples
and the test samples is not large, indicating that the prediction model is relatively robust.
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5.4. Optimal Values of Design Parameters for Minimizing Objective Functions

According to the discussion results in Section 5.2, the variation trend of welding
residual stress is opposite that of residual deformation. To obtain the solution that meets
both the design requirements according to the facts, multi-objective optimization is needed.
Based on the BPNN prediction model, the MOPSO algorithm with ε-dominance proposed
by Mostaghim et al. [33] is used to optimize the mathematical problem in Section 4.3.1.
The MOPSO algorithm [34] was selected to obtain the Pareto front of the objectives for
its effective searchability. In addition, the ε-dominance method can find solutions much
faster and gain better convergence and diversity. The MOPSO algorithm with ε-dominance
only considers the velocity and position variation of the particles when searching the
Pareto front, which is more fitted in manufacturing problems. The flowchart of the multi-
objective optimization method based on the MOPSO algorithm with ε-dominance is shown
in Figure 15.
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The initial parameters for the MOPSO algorithm with ε-dominance are as follows: the
numbers of population and repository size are both 100; the inertial weight ω is 0.73; the
accelerated constants c1 and c2 are both 1.5; and the maximum number of iterations Maxy-
gen is 1000. All parameters and results in the optimization domain are normalized to the
0–1 region before optimization. After 950 iterations, the Pareto fronts of the two-objective
model are shown in Figure 15. The calculation time in MATLAB was approximately 18.5 s.
The 1st objective presents the welding residual deformation, and the 2nd objective presents
the welding residual stress. In Figure 16, the star symbol presents the Pareto front to reflect
the optimal solutions for different objectives. The Pareto optimal sets are evenly distributed
along the Pareto frontier, which indicates that the MOPSO algorithm with ε-dominance
has more uniform distribution characteristics.
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5.5. Simulation Experiments Confirmation

Three representative optimal solutions were selected from the Pareto front. Case 1
had the minimum value of the 1st objective. Case 2 had the minimum value of the 2nd
objective. Case 3 was the compromise solution of the 1st objectives and the 2nd objective.
The representative optimal solutions of different objectives are listed in Table 6. The results
indicated that the optimization was consistent with the FE results. The error between the
FE results and three representative optimal solutions selected from the Pareto front was less
than 12.5%. These compromise solutions help the designers to select appropriate factors for
the MIG welding process according to the actual requirements and reduce the dependence
on work experience.

Table 6. Optimal compromise solution of two-objective optimization models.

No. Result Type
Preheat

Temperature
(◦C)

Preheat Area
(mm)

Welding
Speed
(mm/s)

Welding Heat
Input (W)

Welding
Residual

Deformation

Welding
Residual

Stress

Case 1
Optimization

119 33 7.5 1692
0.985 0.616

FE 0.862 0.665

Case 2
Optimization

81 36 7.6 1653
0.886 1.000

FE 0.935 0.928

Case 3
Optimization

85 12 8.8 1535
0.927 0.721

FE 0.881 0.786

6. Conclusions

A validated FE model of 6061-T6 Al alloy T-joint is used to study the influence of
welding process parameters and preheat parameters on welding residual deformation and
stress. The multi-objective optimization method based on a neural network is adopted to
optimize the above parameters to gain the Pareto front. The conclusions of this paper are
as follows:

(1) The thermal elastoplastic method was used to simulate the residual deformation
and stress of 6061-T6 aluminum alloy T-joint in ANSYS. The simulation results are
basically consistent with the measured data, and the error is within 5%.

(2) The OLHS and ANOVA method were adopted to sample with uniformity and find
the influence degree. The results showed that preheat temperature and welding speed
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had the greatest effect on the minimization of welding residual deformation and
stress, respectively, followed by the preheat area.

(3) Preheating can reduce the temperature gradient and cooling rate after welding and
reduced the welding stress to prevent the formation of cracks. However, the higher
the preheat temperature is, the larger the residual deformation is. Furthermore, the
simulation results showed that preheating can reduce the longitudinal residual stress
near the welding beam. However, the wider preheat area can increase the area of
tensile stress, which is not good for the fatigue strength of parts. In addition, the
faster the welding speed is, the higher the welding residual stress is, but the wider
the distribution of welding residual compressive stress is.

(4) Artificial neural network-based MOPSO was used to optimize the effective parameters
to minimize welding deformation and stress. The BPNN was selected to predict the
value of the objective functions. The R values were 0.990 and 0.995, respectively,
indicating that the prediction model had a good prediction effect.

(5) Welding residual deformation and stress are at the minimum at the same time, when
the welding parameters are selected as preheating temperature 85 ◦C and preheating
area 12 mm, welding speed 8.8 mm/s and heat input 1535 W, respectively. The Pareto
front was obtained by using the MOPSO algorithm with ε-dominance. The error
between the FE results and the Pareto optimal compromise solutions is less than
12.5%. The designers can select one solution from many Pareto solutions according to
practical needs.

(6) Further, in order to further verify the reliability of the prediction, we will test and
verify the welding results in the test group in the future, and obtain more useful con-
clusions by comparing the change rules of welding heat curve, residual deformation
and stress.
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